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ABSTRACT The traditional polar rapid transfer alignment (RTA) are generally modeled under small angle
misalignment assumption. Those linearized and nonlinear polar RTA error models presented, so far, are
not capable of accurately representing the nonlinear properties of the system where the all-orientation
large attitude errors happen between the master and slave strap-down inertial navigation systems (SINS).
It cannot satisfy the accuracy for the SINS initialization and has a singularity in computation. In this article,
the misalignment quaternion in the grid frame was selected as the state and observation. An innovative
polar RTA algorithm using the quaternion matching and the augmented unscented Kalman filter (UKF)
was then proposed to estimate all-orientation large attitude misalignments in polar regions. Furthermore,
the associated error propagation equations were redesigned in the grid frame and with compensations for the
lever-arm effect. The augmented UKF model was further adjusted to apply. Simulation and semi-physical
experiment results demonstrated that the performance of the innovative polar RTA algorithm proposed here
outperformed those via traditional polar RTA techniques, especially with 3-axis large-angle misalignments,
and was even robust with the disturbance of lever-arm effect aggravated by the harsh polar environment.

INDEX TERMS Large attitude misalignments, polar regions, quaternion, rapid transfer alignment, SINS.

I. INTRODUCTION
The rapid melting of glaciers caused by global warming has
probably rendered marine vessels voyage across the north
pole, significantlyminimizing the time sailing along theAsia-
Europe route. Thereby, the north polar region has grow-
ingly become a hotly disputed and scrabbled region since
it abounds with the biological and mineral resources and
occupies a strategic position [1]. Among various naviga-
tion techniques [2], the strapdown inertial navigation system
(SINS) is a priority with its superior concealment, autonomy,
which is seldom affected by the environment and outputs all-
navigation information [3], [4]. To achieve a fast and accurate
initialization, the rapid transfer alignment (RTA) is a primary
alignment technique for the moving base [5]–[7]. However,
the traditional error model of RTA is constructed under the
geographic frame. This mechanism inevitably happens to
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magnify errors along latitudes and overflow in the calcula-
tion [8].

To solve these problems, the grid frame [10] replaced the
traditional geographical north by the Greenwich meridian as
a reference for the definition of heading. The mechanism of
polar RTA was necessarily re-derived under the grid frame
for a high-precision alignment, whereas it merely applied
to the infinitesimal attitude misalignments [9]. In practice,
the salve SINS of the equipped devices (e.g., vessel-carried
weapons) located relative to the master reference even hap-
pens to almost 60◦ misalignments [11]. Thus, the polar RTA
model for a large azimuth misalignment was developed with
the premise of small horizontal attitude errors [12]. Due to the
long-time insolation and the severe state of the sea, the deck
deformation can reach 1 degree. The roll and pitch misalign-
ment relative to the master reference even reach 10 degrees.
In this situation, the system error model cannot be assumed
using the infinitesimal angle assumption. Thereby, the non-
linear model and the associated filter algorithm require to be
reconstructed and improved.
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More recently, several parameterizations have been used as
attitude representations, such as Euler angle [11], [13], cosine
directionmatrix (CDM) [14], rotation vector [15], and quater-
nion [16]–[19]. In detail, [11] constructed 9-angle error
model, whereas [13] pointed out that this model still assumed
horizontal attitude errors to small angles. The attitude matrix
is generally inferred by rotating an orthogonal frame three
times in an assigned sequence. This transformation matrix is
inevitably composed of trigonometric functions whose nature
is nonlinearity. Especially for weapons arbitrarily placed on
deck, attitude along each axis may be significantly large
relative to the master system, and complicated trigonomet-
ric functions are unavoidable in operations. The CDM was
adopted in [14], yet only 3 degrees of freedom existed, that
is, redundant six elements might increase the computational
burden. Besides, CDM is a three-order polynomial of trigono-
metric functions of Euler angles. Its differential equation for
nonlinear RTA is at least 6-order polynomial or more in [26],
which is complex and singular in computation. The rotation
vector was introduced in [15] to simplify the calculation,
but the attitude error model was still adapted from the addi-
tive quaternion error model. Thus, the quaternion has been
widely applied due to its non-singularity, all-orientation atti-
tude representation, high precision, and simple computation
[20]. Quaternions were used to construct an error propagation
model in the computer frame approach, solving the initial
attitudes uncertainty without an assumption of infinitesimal
misalignments [16]. The additive and multiplicative quater-
nion errors were modeled for RTA in the low and medium
latitudes [17]. Its simulation demonstrated that the z-axis
misalignment converged as fast and precisely as horizontal
attitude errors. Inspired by [17], Dai et al. established the non-
linear RTA model via multiplicative quaternions errors [18],
proving that it is equivalent to the conventional small-angle
linear model proposed in [5]. Given the highly nonlinear
quaternion-based models, the manipulation and management
of the quaternion measurement equation in [19] led to a linear
pseudo-measurement equation, whereas its model neglected
the lever-arm effect and was sensitive to flexural deformation.
Overall, any linearization for improving precision and simpli-
fying complexity must be abandoned, and all the disturbance
should be considered, which may occur in polar regions.

To accommodate the polar RTA under 3-axis large mis-
alignments, we need to develop a proper error model and
adopt a suitable observation indispensably. In this article,
the proposed algorithm adopts the misalignment quaternion
in the grid frame as the state and observation to solve 3-axis
large misalignments and rederives quaternion-based error
models without any infinitesimal angle assumptions to supply
a superior and feasible alignment for polar regions. This
method relatively lowers the polynomial order and reduces
the nonlinearity. We also consider the lever-arm effect and
flexural deformation comprehensively and add to the pro-
posed model. Furthermore, the measurement misalignment
quaternion, in which the master attitude quaternions mul-
tiplies the slave one jointly, is directly used as an attitude

observation to make the measurement equation more linear,
avoiding the linearized error. Since the attitude representation
in differential equations substitutes the Euler angle with the
quaternion, the polynomial order is reduced from 6 to 2.
However, the model is still nonlinear. An appropriate non-
linear estimator is required to process the quaternion-based
system error model under arbitrary and inaccurate attitude
error angles in polar regions.

We can use the extended Kalman filter (EKF), unscented
Kalman filter (UKF), and particle filter (PF) to estimate
nonlinear states. However, the PF comprises an enormous
amount of calculations. The EKFwas used for nonlinear RTA
models in [21]. However, the EKFmodels are expanded using
Jacobians, and the implementation difficulty of Jacobians is
one shortcoming of the EKF [16]. A rapid transfer alignment
based on the UKF was proposed in [22]. The UKF can reach
higher accuracy, its performance outperforms those via EKF,
and anti-interfere with a large initial error of states [23].
Nevertheless, the states and observations are multiplied by
the quaternion-based noise in both system and measurement
equations, and the UKF scarcely has a design of maintaining
the normalization. Therefore, the augmented UKF [30], [31]
is introduced here and adjusted to reasonably combine the
prior state information with multiplicative noise influence.
Enlighted by [24], [25], we adopt the projection to constrain
the nonlinear-equation normalization, which means that the
quaternion estimate was divided by its norm after each filter-
ing directly.

The proposed polar RTA is verified and outperforms a con-
ventional method [26] via the simulations and semi-physical
experiments. Moreover, we omit the lever-arm model in the
proposed model, intensify the noise, and become the sim-
plified model as a comparison in simulations. The results
illustrate that the proposed method is robust in the lever-arm
effect. Conclusively, the contribution of this article is that
the proposed algorithm can solve 3-axis large misalignments,
achieve accurate RTA effectively, and anti-interfere the lever-
arm effect intensified by the extreme environment in polar
regions.

The outline of the reminder of this article is as follows.
Firstly, the differential equations of error propagation involve
the multiplicative attitude quaternion and velocity kinemat-
ics and are constructed under the grid navigation frame in
Section II. In Section III, the dynamic and measurement
models for the augmented UKF are further developed. A
simulation system and semi-physical experiments are then
designed, and the related results are shown in Section IV. The
discussions aim at the mentioned results in Section V, and the
conclusion is given in Section VI eventually.

II. ERROR PROPAGATION MODEL
The notation of frames that may be utilized in this article is
listed at first:
i - the inertial frame;
e - the earth-centered-earth-fixed frame (ECEF);
n - the east-north-up navigation frame;
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FIGURE 1. Navigation error curve for attitude at various horizontal
misalignment angles.

G - the grid navigation frame;
m - the body frame of the master SINS;
s - the true body frame of the slave SINS;
s′ -the computed body frame of the slave SINS.

A. MULTIPLICATIVE QUATERNION ERROR EQUATION
In the traditional polar rapid transfer alignment [26], φGm rep-
resents the time-varying angular change between the master
and slave CDM, known as the measurement misalignments.
According to the Euler angle algorithm, the rotation ratesωs

′

ms′
of the s′-frame relative to m-frame can be represented by the
angular velocity of φm via rotating orthogonal frame three
times in a specific sequence, which can be derived as

ωs
′G
ms′ =

 cosφGmy 0 − sinφGmy
0 1 0

− sinφGmy 0 cosφGmy


×

 1 0 0
0 cosφGmx sinφGmx
0 − sinφGmx cosφGmx

 0
0
φ̇Gmz


+

 cosφGmy 0 − sinφGmy
0 1 0

− sinφGmy 0 cosφGmy

 φ̇Gmx0
0


+

 0
φ̇Gmy
0


=

 cosφGmy 0 − cosφGmx sinφ
G
my

0 1 sinφGmx
sinφGmy 0 cosφGmx cosφ

G
my

 φ̇Gmxφ̇Gmy
φ̇Gmz

 (1)

Assuming small horizontal angle misalignments (i.e., φGmx
and φGmy), the relation between ωs

′

ms′ and φm can be inferred
as ωs

′G
ms′ = φ̇Gm . When the initial angle misalignment is

respectively set to various values, the traditional polar RTA
is simulated, and the attitude error curves at 85◦N are shown
in Fig.1.

The quantity φGa in Fig.1 is the physical misalignment
between the master and slave SINS, and the δφa is an error

between the true and estimate misalignment to evaluate align-
ment performance. As shown in Fig.1, the traditional RTA
model works properly only in a small horizontal angle mis-
alignment situation. Therefore, it is necessary to modify the
attitude representation, improve the alignment accuracy, and
enhance the performance of the initialization of the slave
SINS.

Attitude rotation quaternion has superior merits of non-
singularity, high precision, and simplicity of calculation.
When a vector rotates about a single instantaneous axis at a
specific angle, the propagation of the kinematics of rotation
quaternion does not have any singularity and assumptions
about the rotation angles. Thus, the attitude rotation quater-
nion outperforms the Euler angle when describing arbitrary
angle misalignments. Since the unit quaternion is not closed
for subtraction, a multiplicative quaternion error is used to
represent the distance from the attitude quaternion of the
master reference and guarantee that the quaternion error after
operations still lies in unit quaternion sphere. Additionally,
the differential equations of quaternion error are derived by
the quaternion multiplication of attitude rotation quaternions,
that is, we can apply this quaternion parameterization in all
possible scenarios.

The attitude rotation quaternion needs to be established at
first. The kinematics solution for the attitude rotation quater-
nion defines the desired rotational motion for marine vessels.
The quaternion error in [27] is defined as

δq = q−1 ⊗ q̂, (2)

where q̂ represents the reference attitude rotation quater-
nion, q−1 is the inverse of the measurement attitude rotation
quaternion,⊗ is a quaternion product, and δq is a unit-vector
quaternion error.

Because we initialize the slave SINS with the no-error
navigation information from the master system, the mas-
ter body-to-grid frame rotation quaternion qGm can substitute
the reference rotation quaternion q̂, where the mater SINS
may compute and calibrate qGm thoroughly via the master
navigation computer. Meanwhile, the measurement rotation
quaternion q can be expressed as the computed slave body-
to-grid frame rotation quaternion qGs′ , which implies the phys-
ical attitude misalignments. Thus, a unit quaternion error δq
is treated as the measurement misalignment quaternion qs

′

m
between the two available (i.e., slave and master) frames. (2)
can be rewritten and then taken its time derivative as

q̇s
′

m =
d
(
qGs′
)−1

dt
⊗ qGm +

(
qGs′
)−1
⊗
dqGm
dt
. (3)

The kinematics of quaternion evolve in time according to
the differential equation.

q̇Gm =
1
2
qGm ⊗ ω

m
Gm (4)

A unit-vector rotation quaternion times its inverse equals
identity, that is, qGs′ ⊗

(
qGs′
)−1
= [ 1 0 0 0 ]T .Then, the deriva-

tive of the identity is performed as q̇Gs′⊗q
G−1
s′ +q

G
s′⊗q̇

G−1
s′ = 0.
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After rearrangement, the derivative of the inverse quaternion
evolves as:

q̇G
−1

s′ =
1
2
ω̂sGs ⊗ q

G−1
s′ . (5)

Substituting (23) and (5) into (3) yields

q̇s
′

m =
1
2
(qs
′

G ⊗ ω̂
G
sG ⊗ q

G
m + q

s′
G ⊗ q

G
m ⊗ ω

m
Gm)

=
1
2
(qs
′

m ⊗ ω
m
Gm − ω̂

s
Gs ⊗ q

s′
m) (6)

whereωmGm is the rotation rate of m-frame relative to G-frame,
ω̂sGs is the slave estimate of the body-from-grid frame rotation
rate, but ω̂sGs contains errors of the slave system. Because the
algorithm executes computations in the slave system, the data
will be extracted from the slave SINS for update evolutions.
Thus, introducing the actual misalignment quaternion qsm as
a system state, the rotation rate ωmGm can be rewritten by ω̂sGs
as:

ωmGm = (qsm)
−1
⊗ (ω̂sGs − ε)⊗ q

s
m. (7)

Substituting (6) into (5), the quaternion-based attitude error
equations for the polar RTA in the grid frame are:

q̇s
′

m =
1
2
qs
′

m ⊗ (qsm)
−1
⊗ ω̂sGs ⊗ q

s
m −

1
2
ω̂sGs ⊗ q

s′
m

−
1
2
qs
′

m ⊗ (qsm)
−1
⊗ ε ⊗ qsm

q̇sm = 0. (8)

B. VELOCITY ERROR EQUATION
Due to the different placement between the master and slave
SINS, the lever arm commonly occurs in the RTA and causes
the slave system to figure out an extra velocity, known as the
lever-arm effect. The lever-arm velocity is represented as

VG
r = qGm ⊗

(
ωmim × r

m)
⊗

(
qGm
)−1

(9)

where ωmim is the master body-from-inertial frame rotation
rate in the master body frame, and rm is a dynamic lever-arm
length.

And the time derivative of lever-arm velocity is

V̇
G
r =

d
dt

{
qGi ⊗ qim ⊗

(
ωmim × r

m)
⊗

(
qim
)−1
⊗

(
qGi
)−1}

= qGm ⊗
(
ω̇mim × r

m
+ ωmim × ṙ

m)
⊗

(
qGm
)−1

−ωGiG × q
G
m ⊗

(
ωmim × r

m)
⊗

(
qGm
)−1

= qGm ⊗ amr ⊗
(
qGm
)−1
− ωGiG × V

G
r (10)

where amr is the acceleration of the lever arm in the m-frame,
and ωGiG is the rotation rate of the grid navigation frame
relative to the inertial frame projected in the G-frame.

The deck easily deforms in sea-beaten situations, and
its high-frequency deformation angles may be modeled as
a second-order Markov process. Then, the dynamic lever
arm couples with deformation angels and these elements are

thereby expanded into the traditional states of the filter [26].
Nevertheless, its accuracy of alignment is at the cost of com-
putation amounts and aligning time. In comparison, we can
add and magnify the process noise, instead of modeling into
the lever-arm equation, to compensate for the removal of
associated flexural deformation terms [27]. Thus, the differ-
ential equation for the dynamic lever arm is rewritten as:

ṙm = wr (11)

where wr is the process noise of lever arm, modeled as the
white noise.

In the traditional rapid transfer alignment model, attitude
angle misalignments couple with the velocity via the cosine
direction matrix of Euler angles. Thus, the velocity model of
quaternion-based RTA should be rewritten.

Amid rapid transfer alignment, themaster SINS is regarded
as a non-error system. Thus, according to [10], the differential
equation of velocity is derived as

V̇G
m = qGm ⊗ f

m
m ⊗

(
qGm
)−1
− (2ωGie + ω

G
eG)× V

G
m + g

G
m,

(12)

where VG
m , q

G
m, f

m
m , and gGm are the velocity, attitude rotation

quaternion, special force, and gravity vector of the master
SINS. The ωGie is the rotational angular velocity of the earth
projected in the grid navigation frame, and ωGeG is the angular
rate of the grid frame relative to the earth frame projected in
the grid frame, which can be expressed below.

ωGie = CGn ω
n
ie

=

−ωie cosϕ sin σ
ωie cosϕ cos σ
ωie sinϕ


where ϕ is the geographic latitude; σ is the angle between
true north and grid north axis.

ωGeG =

ω
G
eGx

ωGeGy

ωGeGz

 =


1
τf

−
1
Ry

1
Rx

−
1
τf

κ

τf
−
κ

Ry


[
vGE
vGN

]

where vGE and vGN are the east and north velocity in the grid
navigation frame. Other parameters are as follows:

1
Rx
=

sin2 σ
RMh

+
cos2 σ
RNh

1
Ry
=

cos2 σ
RMh

+
sin2 σ
RNh

1
τf
=

(
1
RMh
−

1
RNh

)
sin σ cos σ

κ =
sin λ cosϕ√

1− cos2 ϕ sin2 λ

where λ is the geographic longitude, and RNh is the earth
prime radius.
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The slave velocity evolves in time according to the fol-
lowing differential equation because of the gyros drift and
accelerometers bias in practice.

V̇G
s′ = qGs′ ⊗ f̂

s
s ⊗

(
qGs′
)−1
− (2ω̂Gie + ω̂

G
eG)× V

G
s′ + ĝ

G
s ,

(13)

where VG
s′ is the slave velocity solution computed in G-frame,

and qGs′ is the computed slave attitude rotation quaternion; f̂ ss
is themeasured slave accelerometers in slave body frame; ω̂Gie,
ω̂GeG, and ĝ

G
s are slave estimate navigation parameters

Because the master reference system initializes the slave
SINS, the relationship between the master true and slave
measured special force is

f̂ ss = f ss +∇
s

= qsm ⊗ f
m
s ⊗

(
qsm
)−1
+∇

s

= qsm ⊗
(
f mm + a

m
r
)
⊗
(
qsm
)−1
+∇

s, (14)

where ∇s is the drift of the slave accelerometer.
It will be assumed that the gravitational compensation for

the master and slave system is identical so that the master and
slave gravitational effects cancel perfectly. Subtracting (13)
from (12) yields

V̇G
s′ − V̇

G
m = qGs′ ⊗ f̂

s
s ⊗ q

s′
G − q

G
s′ ⊗ q

s′
m ⊗ f

m
m ⊗ q

m
s′ ⊗ q

s′
G

−

(
2ωGie + ω

G
eG

)
×

(
VG
s′ − V

G
m

)
= qGs′ ⊗

(
f̂ ss − q

s′
m ⊗ f

m
m ⊗ q

m
s′

)
⊗ qs

′

G

−

(
2ωGie + ω

G
eG

)
×

(
VG
s′ − V

G
m

)
= qGs′ ⊗

(
f̂ ss − q

s′
m ⊗ q

m
s ⊗ f̂

s
s ⊗ q

s
m ⊗ q

m
s′

)
⊗ qs

′

G

+ aGr −
(
2ωGie + ω

G
eG

)
×

(
VG
s′ − V

G
m

)
−

(
2δωGie + δω

G
eG

)
× VG

s + q
G
s ⊗∇

s
⊗ qsG

(15)

The velocity error is defined with the lever-arm effect as

δVG
= VG

s′ − V
G
m − V

G
r . (16)

Substituting (10) and (16) into (15) generates

δV̇G
= qGs′ ⊗

(
f̂ ss − q

s′
m ⊗ q

m
s ⊗ f̂

s
s ⊗ q

s
m ⊗ q

m
s′

)
⊗ qs

′

G + q
G
s

⊗∇
s
⊗ qsG −

(
2ωGie + ω

G
eG

)
×

(
VG
s′ − V

G
m

)
−

(
2δωGie + δω

G
eG

)
× VG

s + a
G
r − V̇

G
r

= qGs′ ⊗
(
f̂ ss − q

s′
m ⊗ q

m
s ⊗ f̂

s
s ⊗ q

s
m ⊗ q

m
s′

)
⊗ qs

′

G + q
G
s

⊗∇
s
⊗ qsG −

(
2ωGie + ω

G
eG

)
×

(
VG
s′ − V

G
m − V

G
r

)
−

(
2δωGie + δω

G
eG

)
× VG

s −

(
2ωGie + ω

G
eG

)
×VG

r + ω
G
iG × V

G
r

= qGs′ ⊗
(
f̂ ss − q

s′
m ⊗ q

m
s ⊗ f̂

s
s ⊗ q

s
m ⊗ q

m
s′

)
⊗ qs

′

G + q
G
s

⊗∇
s
⊗ qsG −

(
2ωGie + ω

G
eG

)
× δVG

−

(
2δωGie + δω

G
eG

)
× VG

s − ω
G
ie

×

(
qGm ⊗

(
ωmim × r

m)
⊗ qmG

)
(17)

Due to data extracted from the slave SINS, (17) can be
rewritten as

δV̇G
= qGs′ ⊗

(
f̂ ss − q

s′
m ⊗ q

m
s ⊗ f̂

s
s ⊗ q

s
m ⊗ q

m
s′

)
⊗ qs

′

G + q
G
s

⊗∇
s
⊗ qsG −

(
2ωGie + ω

G
eG

)
× δVG

−

(
2δωGie

+ δωGeG

)
× VG

s − ω
G
ie ×

(
qGs′ ⊗ q

s′
m ⊗

((
qms

⊗
(
ω̂
s
is − ε

)
⊗ qsm

)
× rm

)
⊗ qms′ ⊗ qs

′

G

)
(18)

The measurement errors δωGie and δω
G
eG can be derived as

δωGie = ωie

 cosϕ sin σ
cosϕ cos σ

0

 δσ +
 sinϕ sin σ
sinϕ cos σ

cosϕ

 δϕ (19)

δωGeG =


0 0

vGN
(Re)2

0 0 −
vGE
(Re)2

vGN sin σ

Re sin2 L
0

vGN cotϕ sin σ

(Re)2


 δϕδλ
δh



+


0 −

1
Re

0

1
Re

1 0

0 −
cotϕ sin σ

Re
0


 δvGEδvGN
δvGU



+


0
0

vGN cotϕ cos σ

(Re)2

 δσ (20)

δσ =
sin λ

1− cos2 ϕ sin2 λ
δλ+

sin λ cos λ cosϕ

1− cos2 ϕ sin2 λ
δϕ. (21)

From (19) to (21), the error of 2δωGie + δω
G
eG is primarily

induced by the position error between two SINS systems
[26]. However, this error can be neglected since the distance
between the two systems is extremely short relative to the
radii of the earth, and RTA time is rather short. Additionally,
(38) can be simplified without the lever-arm effect and posi-
tion errors as

δV̇G
= qGs′ ⊗

(
f̂ ss − q

s′
m ⊗ q

m
s ⊗ f̂

s
s ⊗ q

s
m ⊗ q

m
s′

)
⊗ qs

′

G

−

(
2ωGie + ω

G
eG

)
× δVG

+ qGs ⊗∇
s
⊗ qsG. (22)

III. FILTER MODEL
According to the error equations derived in section II, the fil-
ter models for the proposed polar RTA, including the dynamic
and observation models, can be presented in this section.
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A. DYNAMIC MODEL
Firstly, the slave gyros and accelerometers can be modeled
as:

∇
b
= ∇

b
c +∇

b
w

εb = εbc + ε
b
w (23)

where ∇bc and εbc are constant errors; ∇
b
w and εbw are random

errors.
Then, the states should be determined. We consider the

disturbance and choose the attitude rotation quaternion error
qs
′

m, the actual attitude rotation quaternion error qsm, the grid
velocity error δVG, the constant drift of gyro∇bc , the constant
bias of accelerometer εbc ,and the dynamic lever-arm length rm

as the system states. Thus, the states are listed as follows:

X1 =
[
(qs
′

m)
T (qsm)

T (δvG)T (∇ss )
T (εss)

T (rm)T
]T
18×1

.

Combining the (8), (11), (18), and (23), the dynamic error
equations can be presented as follows:

q̇s
′

m =
1
2

(
qs
′

m ⊗
(
qsm
)−1
⊗ ω̂sGs ⊗ qsm − ω̂

s
Gs ⊗ qs

′

m

− qs
′

m ⊗
(
qsm
)−1
⊗ ε ⊗ qsm

)
q̇sm = 0

δV̇ = qGs′ ⊗
(
f̂ ss − q

s′
m ⊗ qms ⊗ f̂

s
s ⊗ qsm ⊗ qms′ ⊗ qs

′

G

+ qGs ⊗∇
s
⊗ qsG −

(
2ωGie + ω

G
eG

)
× δVG

−

(
2δωGie + δω

G
eG

)
× VG

s

−ωGie ×
(
qGs′ ⊗ qs

′

m ⊗
((
qms ⊗

(
ω̂
s
is − ε

)
⊗ qsm

)
× rm

)
⊗ qms′ ⊗ qs

′

G

)
∇̇
s
s = 0
ε̇ss = 0
ṙm = wr

(24)

The above dynamic model is defined as Algorithm 1. For
the simplicity and speed of the polar RTA, we can remove
the lever-arm length from the systematic states and its asso-
ciated terms from the dynamic model, which is defined as
Algorithm 2. The system states are rewritten as:

X2 =
[
(qs
′

m)
T (qsm)

T (δvG)T (∇ss )
T (εss)

T
]T
15×1

The differential equations combine the (9), (11), (22), and
(23). The dynamic model for Algorithm 2 can be rearranged
as follows:

q̇s
′

m =
1
2

(
qs
′

m ⊗
(
qsm
)−1
⊗ ω̂sGs ⊗ q

s
m − ω̂

s
Gs ⊗ q

s′
m

− qsm ⊗
(
qsm
)−1
⊗ ε ⊗ qsm

)
q̇sm = 0

δV̇ = qGs′ ⊗
(
f̂ ss − q

s′
m ⊗ q

m
s ⊗ f̂

s
s ⊗ q

s
m ⊗ q

m
s′

)
⊗ qs

′

G

−

(
2ωGie + ω

G
eG

)
× δVG

+ qGs ⊗∇
s
⊗ qsG

∇̇
s
s = 0
ε̇ss = 0

(25)

B. MEASUREMENT MODEL
In the case of a large azimuth misalignment in the traditional
polar RTA, the attitude observation can be extracted from

Therefore, the measurement equation for attitude can be
expressed as

Zatti =

Cs
′

m(2, 3)
Cs
′

m(1, 3)
Cs
′

m(1, 2)

 =
 φGmx

−φGmy

sinφGmz

+ v (27)

The component along the z-axis in the measurement equa-
tion comprises a sine function of a large azimuth misalign-
ment, which cannot be linearized by reason of accuracy. If the
horizontal angle misalignment is large enough, we may not
linearize the sine function of the measurement misalignment
to the angle itself, which is prone to introduce an error in
estimation.

The strapdown inertial navigation system computes and
outputs attitude rotation quaternions in practice, and the star
sensor on marine vessels is capable of opting quaternions
as an attitude output. Thus, it is possible to adopt the atti-
tude rotation quaternions as an observation for polar RTA.
The difference in velocity and the multiplicative quaternion
error via quaternion product are selected as the observations.
The observations with the lever-arm compensation for Algo-
rithm 1 are modeled as follows:

Zv = VG
s′ − V

G
m = δV

G
+ qGm ⊗ (ωmim × r

m)⊗ qmG

Zq = qs
′

m =

(
qGs′
)−1
⊗ qGm, (28)

The observationmodel is expressed in the forms of amatrix
as:

Z = Hx + v (29)

where the observation matrix H is specified for Algo-

rithm 1 as H =

[
I2×2 02×4 02×9

(
C(qGm)ω

m
im×

)
2×3

04×2 I4×4 04×9 04×3

]
,

C(qGm) is the cosine direction matrix transformed from the
attitude rotation quaternion qGm, and the measurement noise
v is the zero-mean Gaussian white noise with covariance
matrix R.

In contrast, the observations for Algorithm 2 are simplified
as following equations.

Zv = VG
s′ − V

G
m = δV

G

Zq = qs
′

m =

(
qGs′
)−1
⊗ qGm (30)

The observation matrix H for (30) is specified as H =[
I2×2 02×4 02×9
04×2 I4×4 04×9

]
. Compared with the traditional measure-

ment models, the option of the velocity and quaternion obser-
vation linearizes the measurement models, which renders the
z-axis attitude measurement free from a sine function as well.

Furthermore, the observations require to be divided into
two segments, the non-quaternion and quaternion vector,
since the measurement noise of quaternion is coupled via
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quaternion multiplication rather than addition in Euclidean
space. Thus, (29) is rewritten as follows:

Zv = δVG
+ vv

Zq = qs
′

m ⊗ vq (31)

where vv is the measurement noise of the non-quaternion
states, and vq is the measurement noise of the quaternion
components.

C. THE APPLICATION OF THE AUGMENTED UNSCENTED
KALMAN FILTER
As known, the extended Kalman filter (EKF) is a widely
used approach for a non-linear filter algorithm. Exploiting the
assumption that all transformations are quasi-linear, the EKF
simply linearizes all non-linear transformations and substi-
tutes Jacobian matrices for the linear transformations in the
KF equations. However, it is complicated to enforce Jaco-
bians to expand models, since the estimated state quantity in
the proposed model is at least 15. Due to the application of
local linearization at a single point in the state space, the high
nonlinearity of models must induce extra linearized errors.

A prevailing alternative estimator is UKF. According to
the (24) (25) and (31), the quaternion noise is coupled via
quaternion product with states. Hence, the augmented UKF
is employed and adjusted here to surmount the non-additive
noise, which expands the process and measurement noises
into system states and adds these noise covariances into the
initial state error covariance matrix.

According to the (24) (25) and (31), the nonlinear discrete
filter model is expressed as:{

Xk = f (Xk−1,wk)
Zk = h (Xk , vk),

(32)

where wk (m-dimension) and vk (l-dimension) represent the
process and measurement noise at time k, respectively. The
primary details of the augmented UKF are explained as fol-
lows.
(1) State Augmented

X̄
a
k−1 = [

(
X (1or2)k−1

)T
wTk−1 vTk−1 ]

T

P̄
a
k−1 =

Pk−1 0 0
0 Qk−1 0
0 0 Rk−1

 (33)

The augmented state vector X̄
a
k−1 and augmented covari-

ancematrix P̄
a
k−1 at time k− 1 are presented as (33), in which

X (1or2)k−1 is system states in Algorithm 1 or Algorithm 2.
P̄
a
k−1, Qk−1 and Rk−1 are the state error variance matrix,

system process noise covariance matrix, and measurement
noise covariance matrix at time k − 1.

(2) Initialization

The process and measurement noise are zero-mean Gaus-
sian white noise. Thus, the augmented states initialize as
follows.

X̄
a
0 = [XT

(1or2),0 0T 0T ]T P̄
a
0 =

P0 0 0
0 Q0 0
0 0 R0


(34)

We generate sigma points χak−1 as following rules.

χak−1(0) = X̄
a
k−1

χai,k−1 = X̄
a
k−1 +

(√
(L + λ) P̄

a
k−1

)
i
,

i = 1, 2, . . . ,L

χai,k−1 = X̄
a
k−1 −

(√
(L + λ) P̄

a
k−1

)
i
,

i = n+ 1, . . . , 2L,

(35)

where L = n + m + l, and n represents the quantity of the
system states.

The associated weights are

Wm
0 = λ/ (n+ λ)W

c
0 = λ/ (n+ λ)+

(
1− α2 + β

)
Wm
i = W c

i = 0.5/ (n+ λ) , i = 1, 2, . . . , 2L

λ = α2(n+ κ)− n, (36)

where α implies the sigma-point distribution, and it usually
selects a small value; κ is a scaled factor and normally adopts
3− n; β for Gaussian distribution chooses 2.

(3) Time Update

After the nonlinear transformation function f (Xk−1,wk) in
(32), we can obtain the one-step predicted mean and variance
of system states, at time k, as:

χai,k|k−1 = f
(
χai,k−1

)
, X̄

a−

k =

2L∑
i=0

Wm
i χ

a
i,k|k−1

P̄
a−

k =

2L∑
i=0

W c
i

[
χai,k|k−1 − X̄

a−

k

] [
χai,k|k−1 − X̄

a−

k

]T
.

(37)

(4) Measurement Update

Through the measurement equation h (Xk , vk) in (32),
we obtain the one-step predicted mean of measurements, its

Cs
′

m =

 cosφGmz sinφGmz −φGmy

− sinφGmz cosφGmz φGmx

φGmy cosφ
G
mz + φ

G
mxsinφ

G
mz φGmysinφ

G
mz − φ

G
mx cosφ

G
mz 1

 . (26)
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variance and covariance and updates as follows.

Zi,k|k−1 = h
(
χai,k−1

)
, Ẑ
−

k =

2L∑
i=0

Wm
i Zi,k|k−1

P̄
a
zk ,zk =

2L∑
i=0

W c
i

[
Zi,k|k−1 − Ẑ

−

k

] [
Zi,k|k−1 − Ẑ

−

k

]T
P̄
a
xak ,zk
=

2L∑
i=0

W c
i

[
χai,k|k−1 − X̄

a−
k

] [
Zi,k|k−1 − Ẑ

−

k

]T
Kk = P̄

a
xak ,zk
·

(
P̄
a
zk ,zk

)−1
, P̄

a
k = P̄

a−
k − Kk · P̄

a
zk ,zk ·K

T
k

X̄
a
k = X̄

a−
k + Kk

(
Zk − Ẑ

−

k

)
(38)

(5) Normalization Maintenance
After each step, we must enforce the (39) on the actual and

measurement misalignment quaternions in augmented state
vectors to guarantee the normalization and wait for the next
update cycle.

X̄a
qs′m
=

X̄a
qs′m∥∥∥X̄a
qs′m

∥∥∥ , X̄aqsm =
X̄aqsm∥∥∥X̄aqsm∥∥∥ (39)

Based on this filtering process, repeating the above steps,
continuous estimates can be realized.

IV. RESULTS AND ANALYSIS
An innovative polar RTA using the quaternion matching and
the augmented unscented Kalman filter is proposed for 3-axis
large attitude misalignments in this article, and the simu-
lations and experiments should be firstly conducted to test
its performance. The physical experiment is then performed.
However, the experiment is constrained by the geographical
location of the author’s country to obtain the polar INS data
hardly. So, we can carry out the semi-physical simulation,
extract the inertial measurement unit (IMU) noise at medium
latitudes, and construct the actual data of polar regions.

A. SIMULATION CONDITIONS
Various conditions andmaneuvers must be considered to con-
duct simulations in verisimilar state of the ocean, involving
the moderate sea state and maneuvers of the static, uniformly
linear, and uniformly accelerated motion.

(1) In the trajectory generator, the swaying motions of the
marine vessel are modeled as sine functions, and the parame-
ters are set as: the amplitude/period of attitude in the medium
state of polar regions is respectively 10◦/3s, 9◦/5s,and 7◦/7s;
the initial phase and heading are 0◦ and 0◦.
(2) Maneuvers of the marine vessels are pre-determined as

follows: the latitude and longitude are 89◦N and 126.67◦E ;
the uniformly linear velocity is 10nmile/h; the constant accel-
eration is 0.1m/s2.
(3) The constant drifts of the 3-axis gyros are set to

0.01◦/h, while random errors are the zero-mean Gaussian
white noise. The constant biases of the 3-axis accelerometers

are 100µg, while random errors are the zero-mean Gaussian
white noise.

(4) In the case of 3-axis large angle misalignments, the true
ones are reset to 15◦, 15◦, and 60◦; the 3-axis length of lever
arm are 1m− 2m− 2m, and 15m− 10m− 40m. The time of
simulation is 60s, and the frequency of filter is 100Hz.

(5) In the filter for Algorithm 1, the state error covariance
matrix P0, system process noise covariance matrix Q, and
measurement noise covariance matrix R are set respectively
as:

P0 = diag



(0.05)2 , (0.05)2 , (0.05)2 , (0.05)2 ,
(0.05)2 , (0.05)2 , (0.05)2 , (0.05)2 ,
(0.01m/s)2 , (0.01m/s)2 ,(
0.000978m/s2

)2
,
(
0.000978m/s2

)2
,(

4.8481× 10−8rad/s
)2
,(

4.8481× 10−8rad/s
)2
,(

4.8481× 10−8rad/s
)2
,

(0.1m)2 , (0.1m)2 , (0.1m)2 ,


Q = diag


(0.000978m/s2)2, (0.000978m/s2)2,
(2.42405× 10−8rad/s)2,
(2.42405× 10−8rad/s)2,
(2.42405× 10−8rad/s)2,
(0.001m)2, (0.001m)2, (0.001m)2


R = diag


(0.11m/s)2 , (0.11m/s)2 ,(
0.06◦/

√
h
)2
,
(
0.06◦/

√
h
)2
,(

0.06◦/
√
h
)2
,
(
0.06◦/

√
h
)2

 ;
(6) In the filter for Algorithm 2, the state error covariance

matrix P0, system process noise covariance matrix Q, and
measurement noise covariance matrix R are set respectively
as:

P0 = diag



(0.05)2 , (0.05)2 , (0.05)2 , (0.05)2 ,
(0.05)2 , (0.05)2 , (0.05)2 , (0.05)2 ,
(0.01m/s)2 , (0.01m/s)2 ,(
0.000978m/s2

)2
,
(
0.000978m/s2

)2
,(

4.8481× 10−8rad/s
)2
,(

4.8481× 10−8rad/s
)2
,(

4.8481× 10−8rad/s
)2


Q = diag


(0.00489m/s2)2, (0.00489m/s2)2,
(2.42405× 10−7rad/s)2,
(2.42405× 10−7rad/s)2,
(2.42405× 10−7rad/s)2


R = diag


(0.11m/s)2 , (0.11m/s)2 ,(
0.06◦/

√
h
)2
,
(
0.06◦/

√
h
)2
,(

0.06◦/
√
h
)2
,
(
0.06◦/

√
h
)2

 .
B. SIMULATION RESULTS AND DISCUSSIONS
The full-information polar quaternion rapid transfer align-
ment (QRTA) with lever-arm modelling proposed in this
article is defined as Model 1 (i.e., Algorithm 1 in section III).
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TABLE 1. RMS errors of RTA in medium sea state with misalignment
angles of 15◦,15◦, and 60◦.

The traditional polar RTA with a large azimuth misalignment
[11] is defined as Model 2. The simplified polar QRTA
without lever-arm modeling and position-induced errors (i.e.,
Algorithm 2 in section III) is defined as Model 3.

The comparison between Model 1 and Model 2 aims to
verify the feasibility and superiority of the QRTA in polar
regions. The comparison between Model 1 and Model 3 is
designed to verify the robustness of the QRTA in lever-arm
effect. Thus, we separate the simulations into two different
segments to make the comparison clarified and highlighted.

1) THE FEASIBILITY AND SUPERIORITY OF THE QRTA
Both model 1 and model 2 employ the nonlinear equations
and UKF. However, the difference is that model 1 estab-
lishes models without assumptions of misalignments, and
the UKF is augmented to match non-additive noise. In con-
trast, the model 2 constructs differential equations under the
premise of small horizontal attitude errors, the measurement
equations have a nonlinear sine function, and the general
UKF is adopted.

The simulation is conducted with the assumptions of the
3-axis angle misalignments of 15◦, 15◦, and 60◦ to validate
the feasibility and superiority of QRTA. In the medium sea
state, the estimate error δφa of the physical misalignment φGa
is depicted under the static, uniform linear, and uniformly
accelerated motion in Fig.2. Its root-mean-square (RMS)
error is listed in Table 1.

As the estimate error curves of φGa shows in Fig.2, the
RMS errors in Table 1 verify that the QRTA outperforms the
traditional RTA in 3-axis large-angle misalignments. Obvi-
ously, the yaw misalignment of the traditional RTA is sig-
nificantly larger than that through the QRTA. The results
demonstrate that the yaw misalignment in QRTA reduces
by 95.03%, which is rendered by no approximation dur-
ing model derivations and the increasing accuracy of hor-
izontal attitude estimates. Comparing the results of Model
1 with that of Model 2, the roll and pitch misalignments
reduce by 93.23% and 94.60% because using the actual

FIGURE 2. Attitude estimate error of φG
a in the medium sea conditions

with misalignment of 15◦,15◦, and 60◦ for various models (a) in the static
motion; (b) in the uniform linear motion; (c) in the uniformly accelerated
motion.

and measurement misalignment quaternions derive the error
models of the pitch and roll misalignments, and we adopt
the measurement misalignment quaternion as an observation
directly with no approximation assumptions. The traditional
RTA with a large azimuth misalignment cannot estimate the
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TABLE 2. RMS errors of RTA with various lever-arm length.

attitudes accurately and effectively for large misalignments.
Meanwhile, the QRTA shortens alignment time than the tra-
ditional RTA in Fig. 2. Thus, the full-information polar QRTA
(Algorithm 1 in Section II) based on the augmented UKF
can enhance the performance under all possible scenarios of
arbitrary misalignments.

2) THE ROBUSTNESS FOR THE LEVER-ARM EFFECT
This section of simulations is solely conducted in the uniform
linear motion under moderate sea conditions and various
lever-arm lengths. The misalignment is set here as 15◦, 15◦,
and 60◦.

With the lever-arm length of 1m, 2m, and 2m, the 3-axis
angle misalignment of Model 1 reduces by 0.0004◦, 0.0051◦,
and 0.0083◦ over that of Model 3. With the lever-arm length
of 15m, 10m, and 40m, the 3-axis angle misalignment of
Model 1 reduces by 0.002◦, 0.0031◦, and 0.0079◦ over that
of Model 3. In practice, these errors seldom affect accuracy
of RTA. In conclusion, the lever-arm effect barely impacts
the performance and accuracy of the QRTA. The reason is
that themultiplicative quaternion error takes four components
as state variables, and all four components jointly determine
the values of the 3-axis angle misalignments. In other words,
the proposed algorithm is robust with disturbance of the lever-
arm effect.

Meanwhile, in the data processing of simplified QRTA, the
operating time of the main program decreases from 67.522s
to 45.366s, the measurement equation cuts the call time in
half, and the dynamic equations reduce call time by 32%. In
fact, the simulation of the simplified QRTA spends less time
calling a program at the cost of accuracy due to the reduc-
tion of the system states in the augmented UKF. Therefore,
the simplified QRTA has been proved to be employed effec-
tively in practice for time-limited alignment, although the
full-information QRTA has a more accurate alignment result.

C. THE POLAR-REGION DATA GENERATIONS FOR THE
SEMI-PHYSICAL EXPERIMENTS
In practice, the data sensed by gyros and accelerometers can
be modeled as follows:

f̂ b = f b +∇b

ω̂bib = ω
b
ib + ε

b,

FIGURE 3. Attitude estimate error curves of φG
a in the moderate sea

conditions with different lever-arm lengths for various models. (a) with
the lever-arm length of 1m, 2m, and 2m; (b) with the lever-arm length
of 15m, 10m, and 45m.

where the superscript b represents the body frame, referring
to the master and slave body frame. The practical inertial
measurements (i.e., f̂ b and ω̂bib) are composed of the true data
(i.e., f b and ωbib) and its errors (i.e., accelerometer bias ∇b

and gyro drift εb).
Provided by the confirmed latitudes and maneuvers,

the real data are the same nomatter where the data is obtained.
Thereby, the values of f b and ωbib can be determined via the
trajectory generator and simulation. As follows in Fig.4, the
IMU-based SDINS comprises the 3-axis accelerometers and
gyros, fixed on a high-precision turntable, and supplies rotary
movements. The errors can be extracted from the measured
data of the IMU. Thus, the real data via simulations plus the
errors obtained from the non-polar data generates the semi-
physical experimental data of polar regions through the lab-
based experiments.

After the lab-based experiment, the constant drifts of
the 3-axis gyros are −3.6245 × 10−9rad/s, 9.8537 ×
10−9rad/s, and −9.6793 × 10−8rad/s with random
variances of

(
3.324× 10−6rad/s

)2
,
(
3.76× 10−6rad/s

)2
,
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FIGURE 4. Experimental device (a) IMU; (b) the turntable and SINS.

and
(
1.449× 10−6rad/s

)2
. The constant bias of the

3-axis accelerometers are −8.9071 × 10−6m/s2, 6.5986 ×
10−6m/s2, and −3.8755 × 10−6m/s2 with random
variances of

(
0.001809 m/s2

)2
,
(
0.001358m/s2

)2
, and(

0.0003836m/s2
)2
.

D. SEMI-PHYSICAL EXPERIMENT RESULTS AND
DISCUSSIONS
Other conditions can be referred in Section IV-A. Semi-
physical experiment results of Model 1 and Model 2 under
the three typical maneuvers in the moderate sea conditions
are shown in Fig.5 and Table 3 with misalignment angles of
15◦, 15◦, and 60◦.
As shown in Fig.5 and Table 3, semi-physical experiment

results further verify that Model 1 performs better thanModel
2 on both accuracy and convergence speed. Model 1 even
restrains the alignment time within 5 seconds. This merit
results from the option of the attitude rotation quaternion in
the grid frame, which is applied as the full-orientation attitude
representation in the polar RTA algorithm. The time slippage
for convergence is that attitude rotation quaternion rotates
the frame once from one to another. In contrast, Euler angel
represents a time-consuming transformation using a three-
time successive rotation in a sequence.

FIGURE 5. Attitude estimate error curves of φG
a in medium sea state and

semi-physical experiments (a) in the static motion; (b) in the uniform
linear motion; (c) in the uniformly accelerated motion.

Semi-physical experiment results of Model 1 and Model
3 under the three typical maneuvers in the moderate sea
conditions are shown in Fig.6 and Table 4 with misalignment
angles of 15◦, 15◦, and 60◦.
With the lever-arm length of 1m, 2m, and 2m, the

3-axis angle misalignment of Model 1 reduces by 0.0064◦,
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TABLE 3. RMS errors of RTA in the medium sea state and semi-physical
experiments.

FIGURE 6. Attitude estimate error curves of φG
a in the medium sea

conditions and semi-physical experiments. (a) with the lever-arm length
of 1m, 2m, and 2m; (b) with the lever-arm length of 15m, 10m, and 45m.

-0.0064◦, and -0.0086◦ over that of Model 3. With the lever-
arm length of 15m, 10m, and 40m, the 3-axis angle misalign-
ment of Model 1 reduces by 0.0021◦, 0.0005◦, and 0.0053◦

over that of Model 3. Thus, semi-physical experiment results

TABLE 4. RMS errors of RTA with various lever-arm length in
semi-physical experiments.

in Fig.6 and Table 4 proves that the attitude rotation quater-
nion can anti-interfere the lever-arm effect induced by the
extreme state of the sea in polar regions.

The semi-physical experiment results imply that Algo-
rithm 1 enables the shipborne SINS to align and work effec-
tively in polar regions. Furthermore, the polar rapid transfer
alignment based on the quaternion matching and the aug-
mented UKF can perform accurately in the case of the 3-
axis large misalignments and has superior robustness for the
disturbance of the lever arm.

V. DISCUSSION
As shown in the simulation and semi-physical experiment
results, the innovative polar RTA algorithm using the quater-
nion matching method and the augmented UKF is signifi-
cantly superior to the traditional polar RTA algorithms for
3-axis large attitude misalignments. Compared with tradi-
tional ones, the novel algorithm proposed in this article pos-
sesses below merits: (1) The traditional algorithms of polar
RTA assume the horizontal attitude errors as small angles to
derive the linear relation between the rotation rates ωs

′

ms′ and
the angular velocity of φGm . So, the conventional nonlinear
model merely suits a large azimuth misalignment. When the
horizontal attitude errors increase, the traditional algorithms
may magnify RMS error or even diverge in results. Since the
quaternion is an all-orientation attitude representation with-
out any singularity during rotation, the attitude kinematics
based on the misalignment quaternion propagate and evolve
in time under no angle approximation assumptions. The dif-
ferential equation can then estimate the physical angle errors
for 3-axis large attitude misalignments. Besides, the transfor-
mation rotates the matrix once by the quaternion, rather than
3 times via the Euler angle algorithm.Model 1 thereby spends
less time on converging than Model 2.

(2) The lever-arm effect is a theoretical error caused by
the distance among systems. Adding this error as a mas-
ter velocity error may introduce the distortion into the sys-
tem. Thus, calculation compensation is customarily adopted,
which augments the lever-arm length into systematic states,
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estimates, and then compensates directly. There are two mod-
els constructed for the augmented UKF in this article. One is
a full-information model for QRTA as Algorithm 1, in which
the state and measurement models consider the lever-arm
compensation. Another is a simplified model as Algorithm 2,
which omits all associated lever-arm terms and increases the
process noise to offset. The full-information algorithm is
straightforward and high-precision, yet it evolves complicat-
edly and compensates hardly online. According to the results
in the simplified QRTA, the multiplicative attitude rotation
quaternion is barely sensitive to the error rendered via the
lever-are effect. The call time of the main program in Model
3 also costs less than Model 1, since the number of system
states for UKF decrease. Therefore, as far as the residual for
incomplete lever-arm compensation occurs, the multiplica-
tive misalignment quaternion is advised to be employed as
the state and observation to construct the polar RTA model.
Furthermore, as far as the accuracy is allowed, the simplified
QRTA algorithm can also be adopted as an alternative of full-
information QRTA for a time-saving transfer alignment.

VI. CONCLUSION
In the case of divergence and singularity of 3-axis large-
angle misalignments occurring in the traditional polar RTA
algorithm, an innovative polar rapid transfer alignment, using
the quaternion matching method and the augmented UKF,
is proposed here for arbitrary misalignments. In this article,
the proposed algorithm adopts the misalignment quaternion
in the grid frame as the state and observation to rederive
quaternion-based mathematic system models for polar RTA.
The quaternion matching method solves the 3-axis large-
angle misalignments, decreases the model nonlinearity, and
makes the measurement equation more linear. Additionally,
we adjust the augmented UKF and apply it to process the non-
additive noise coupled by quaternion multiplication. Simula-
tion and semi-physical experiment results have demonstrated
that, in the case of 3-axis large attitude errors, the polar
QRTA proposed in this article is superior to the traditional
RTA. Furthermore, the comparison of Model 1 and Model
3 shows that the proposed algorithm is barely disturbed by the
lever-arm effect. Since the lever-arm effect frequently occurs
in the severe environment of polar regions, the polar rapid
transfer alignment based on quaternion error is superior to
the traditional ones matched by Euler angles in the robust-
ness of lever-arm disturbance. Thus, the polar rapid transfer
alignment proposed in this article has better feasibility for
the 3-axis large misalignments, owns great superiority for
lever-arm disturbance, and can be widely used in the field of
Engineering of polar regions.
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