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ABSTRACT This paper presents the adaptive control problem of manipulator actuated integrated position
and attitude stabilization of spacecraft in proximity operations. Towards this end, explicit kinematics and
dynamics are formulated for a spacecraft with multiple manipulators, where two vector factorizations are
proposed to ensure the skew-symmetric property of the system matrices. In what follows, a reference
trajectory adaptive tracking control scheme is designed following backstepping procedure to drive the
manipulator motion causing reactions on the spacecraft for the integrated position and attitude stabilization
in the presence of unknown kinematic and dynamic parameters. The prescribed reference trajectory is
designed by polynomial methods enabling a well-behaviored stabilization performance, and a second-order
filter is introduced to estimate the joint acceleration ensuring the control scheme available. Meanwhile,
to apply adaptive technique, the explicit-form regressor matrices of manipulator dynamics are derived
and the adaptation law is hence designed to update the estimate of unknown system parameters. The
closed-loop stability is guaranteed within the Lyapunov framework. At last, numerical simulations are given
to demonstrate the effect of the designed adaptive control scheme.

INDEX TERMS Manipulator actuation, adaptive control, integrated translation and rotation control.

NOMENCLATURE

aik position vector from the mass center of J ik to C
i
k

B0,Bik spacecraft and kth link of the ith manipulator,
respectively

bik position vector fromC i
k to themass center of J ik+1

bi0 position vector of joint 1 of the ith manipulator
with respect to the mass center of spacecraft

C i
k mass center of Bik

Ek k × k identity matrix
hik unit vector of the rotation direction of joint J ik
I0, I ik inertial tensor of B0 and Bik , respectively
J ik kth joint of the ith manipulator
m0,mik mass of spacecraft and Bik , respectively
pik position vector of J ik
q attitude of spacecraft represented by unit quater-

nion
rik position vector of Bik
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r0 position vector of spacecraft
v0 velocity vector of spacecraft
ω0 angular velocity vector of spacecraft
θ ik rotational angle of joint J ik
τ ic,k control torque acting on J ik

I. INTRODUCTION
Integrated translation and rotation control is considered as
a promising technology for proximity operation missions
and thus has been studied for the past decade. To develop
this technology, earlier works mainly focused on the feasi-
bility and reasonability [1]–[3]. Afterwards, more practical
issues were then taken into account, including fuel-optimal
integrated control problem [4], [5], finite-time technique
based responsive integrated maneuver [6], [7], collision-free
six degree-of-freedom (DOF) control for spacecraft ren-
dezvous [8], [9], and velocity-free integrated control [10].

Besides the above, recent years have witnessed the
increased concentrations on the effect of control actuator,
because its characteristics greatly affect the control system
performance, and what’s more, actuator layout and resulting
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control allocation straightforwardly determine the capabil-
ity of integrated translation and rotation control of space-
craft [11]–[16]. In view of configuration flexibility and
design convenience, thruster was regarded as a routine choice
to provide both enough control force and torque enabling
the designed integrated control algorithm in previous
works and applications. Moreover, various thruster-relevant
problems were handled, involving thruster layout design
problem [11], [12], thruster saturation [13], [14], thruster mis-
alignment [15], and thruster failure problem [16]. However,
the utilization of thruster has to cost limited fuel of spacecraft
and heavily restricts the control accuracy due to its hard
nonlinearity caused by the on-off working mode of thrusters.

In such situation, advanced actuation strategies are nec-
essary for future proximity operation missions requiring
higher control accuracy and better system performance.
Different from the working principle of thrusters, momen-
tum exchange devices have increasingly been studied and
gained applications. Flywheels and control moment gyro-
scopes are two such good examples to enable accurate atti-
tude control of spacecraft based on rotating masses inside
the body [17]–[19]. Similarly, strain-actuated solar arrays
were proposed and utilized to ensure an ultra-quiet spacecraft
attitude control system, which had also been experimentally
demonstrated in a 1DOF testbed [20].

Momentum exchange philosophy is thus a good alternative
to the traditional thruster actuation methods. However, if it
is used to enforce integrated spacecraft position and attitude
control, both linear angular and linear momentum exchange
should be conducted. By virtue of this, space manipulators,
especially ones mounted on spacecraft body to complete
various proximity operations such as capture and movement,
were deemed as possible control actuators in [21]–[23] for
the integrated translation and rotation stabilization of a space-
craft. In fact, a spacecraft withmultiplemanipulators captures
the dynamic characteristics of a multi-body system, enabling
both angular and linear momentum exchange. The feasibility
and effectiveness of the manipulator actuated control strategy
had been initially verified in kinematic level by using a single
manipulator [21], [22] and dual manipulator actuation [23].

Specifically, the previous studies [21]–[23] formulated
and mainly focused on the kinematic couplings between the
motions of spacecraft and manipulators. The command joint
motion enabling manipulator actuation was developed from
this kinematic coupling equation, and thus the strategy was
in fact proposed only from the kinematic view point. Nat-
urally, the impact of manipulator dynamics was neglected
and the joint rates of manipulators were directly treated as
control inputs, in the light of the high servo-capability of joint
control-loop. This treatment was only suitable for initially
verifying the feasibility of the manipulator actuation method.
However, the actual control input should be joint control
torque rather than the joint rate, though the joint control-loop
performs a good performance. The impact of the manipulator
dynamics should be considered in the control-loop of the
whole system comprising both kinematics and dynamics.

Dynamic modeling of space manipulator has been always
a research focus for many years [24]–[30]. To facilitate the
controller design and closed-loop stability analysis, the recur-
sive Newton-Euler method and the Euler-Lagrange method
are two prevalent dynamic modeling approaches. The former
one ensures an explicit chain-form dynamic formulation of
manipulator dynamics [24]–[27], while the later one leads to
a compact-form, albeit implicit, dynamic formulation holding
the skew-symmetric property [28]–[30]. In view of missions
with multiple manipulators with higher DOF, it is necessary
and better to incorporate two above methods and develop
an explicit dynamic formulation possessing skew-symmetric
property for spacecraft whose motions actuated by multiple
manipulators.

Another thing should be addressed is unknown system
parameter. Recalling thruster-actuated spacecraft systemwith
unknown mass property, adaptive control had been utilized
in the integrated translation and rotation control system
design [13], [15], [31]–[33]. Compared with a single space-
craft, the spacecraft containing manipulators often has much
more unknown parameters, because manipulators consist of
several links and the relevant parameter, includingmass prop-
erty and position of center mass are hard to be exactly deter-
mined or measured. In spite of this, adaptive control [34], [35]
was still a natural and preferred approach and the resulting
closed-loop stability analysis was almost mature and rigor-
ous based on an premise that the uncertain kinematics and
dynamics were linear in a set of kinematic and dynamic
parameters [36]–[40], although there were other endeavors
mainly focusing on ground manipulators such as approxi-
mate Jacobian control method [41], [42], and observer-based
controller design [43], [44]. However, for adaptive control,
the regressor matrices in the previous studies [36]–[40] only
possessed implicit forms and thus may be hardly applied
in a general scenario, especially the one containing multi-
ple manipulators with higher DOF. Thus, for manipulator
actuated control missions subject to unknown kinematic and
dynamic parameters, it is indispensible to derive explicit-
form regressor matrices based on the explicit dynamicmodel-
ing. To the best of author’s knowledge, few studies have been
made on the adaptive dynamic control problem of the manip-
ulator actuated integrated position and attitude stabilization
of spacecraft subject to the unknown parameters

In this paper, a multiple-manipulator actuated adaptive
nonlinear control scheme is proposed to deal with the inte-
grated translation and rotation stabilization problems for
spacecraft in proximity operations subject to unknown sys-
tem parameters, including not only the mass properties of
manipulator links and spacecraft body but also the posi-
tion of the mass center of each manipulator link. To do so,
recursive Newton-Euler modeling philosophy is first utilized
to formulate an explicit kinematics and dynamics within
the Lagrangian framework for a multiple manipulator actu-
ated spacecraft position and attitude control system, where,
as a key technique, two vector factorizations are proposed
to incorporate the above two classic dynamic modeling
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methods. Then, an adaptive control scheme is synthesized
by backstepping philosophy such that the position and atti-
tude error of the spacecraft can be stabilized subject to the
above unknown parameters, by solving an equivalent refer-
ence trajectory tracking problem. The reference trajectory is
pre-designed by polynomial methods for a well-behaviored
stabilization performance. A second-order filter is introduced
to estimate the joint and spacecraft acceleration ensuring the
control scheme computable. To apply adaptive technique, this
paper for the first time presents the explicit-form regressor
matrices of manipulator dynamics, and derives the adaptation
law to update the estimates of unknown system parame-
ters. The closed-loop stability is analyzed within the Lya-
punov framework. Finally, numerical simulations are given
to demonstrate the effect of the designed adaptive control
scheme.

The remainder of this paper is organized as follows:
In Sec. II, the kinematics and dynamics are formulated and
the control problem is stated. Then, a reference trajectory
tracking based adaptive control scheme is designed for joint
control torques enabling manipulator actuation in Sec. III,
where the closed-loop stability analysis is given as well.
Numerical simulation results applying the proposed adaptive
control law to a scenario are presented in Sec. IV. Finally,
Sec. V draws the conclusion.

II. SYSTEM MODELING AND PROBLEM FORMULATION
A. BASIC FRAMES
In the present paper, a spacecraft mounted with N space
manipulators is considered and the ith manipulator with ni
DOF is illustrated as an example in Fig. 1.

FIGURE 1. Multiple-manipulator actuated spacecraft system.

Let OIXIYIZI and O0X0Y0Z0 be an inertial frame and the
body frame of the spacecraft, respectively. In view of space

manipulators, let OikX
i
kY

i
kZ

i
k be the joint frame with origin at

the mass center of joint J ik , O
i
kZ

i
k along the rotational axis

of joint J ik , O
i
kX

i
k along the vector from the mass center of

joint J ik to the mass center of link Bik , and O
i
kY

i
k completing

the right-handed frame. All vectors and vector derivatives
appeared in this paper are described in the inertial frame,
if not pointed out specially.

B. DYNAMICS FORMULATION
The translational and rotational kinematics of a spacecraft is
described by [2], [17] q̇ =

1
2
Nq(q)ω0

ṙ0 = v0,
with Nq(q) =

[
−qTv

q0E3 + q×v

]
(1)

where q = [q0 qTv ]
T is an unit quaternion representing the

spacecraft attitude, composed of a scalar component q0 and a
vector component qv; ζ

× represents the cross product matrix
for any vector ζ ∈ R3. By defining the generalized velocity
and position of the spacecraft as V0 = [ωT

0 vT0 ]
T and X =

[qT rT0 ]
T, respectively, (1) can be simplified as

Ẋ = N(q)V0 (2)

where N(q) = diag{0.5Nq(q),E3}.
In what follows, by using the spatial operator in [42], [43]

and following the recursive modeling philosophy, the explicit
kinematics and dynamics are formulated for a N -manipulator
mounted spacecraft and the main formulations are given as
follows. Notice that, the mathematical derivation of dynamic
modeling in fact follows [28], [29] and thus the details are
omitted herein, due to the paper length limit. Meanwhile,
the explicit expressions of the system matrices appeared in
the dynamic formulations are summarized in Appendix A.

Supposing any external force or torque is not exerted on the
system, the linear and angular momentum of the total system
are conserved, which results in that

HbbV0 +Hbm2̇ = G(−r0)H0 (3)

where 2 = [(21)T (22)T · · · (2N )T]T is the joint angle
vector and the component 2i denotes the joint angle vector
of the ith manipulator, yielding2i

= [θ i1 θ
i
2 · · · θ

i
ni ]

T; G(·) is
an operator defined by

G(ζ ) =
[
E3 ζ×

O E3

]
, ∀ζ ∈ R3 (4)

and H0 = [LT(0) PT(0)]T, where L(0) and P(0) are constant
vectors representing initial angular and linear momentum of
the total system, respectively. Equation (3) in fact reveals the
couplings between manipulator motions and position/attitude
motions of spacecraft in the kinematic level.

As for the system dynamics, on the one hand, the dynamics
of the ith manipulator can be formulated as

(H i)TGiM i(GT
0 )V̇0 + (H i)TGiM i(Gi)TH i2̈

i

+(H i)TGiM i(Gi)Tβ i + (H i)TGibi = τ ic (5)
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where τ ic = [τ ic,1 · · · τ
i
c,k ]

T denotes the control torque vector
for the ith manipulator, β i = [βT(J i1) β

T(J i2) · · ·β
T(J ini )]

T

and bi = [bT(J i1) b
T(J i2) · · · b

T(J ini )]
T, yielding

β(J ik ) =
[

ω(J ik−1)
×hik θ̇

i
k

ω(J ik−1)
×ω(J ik−1)

×l ik−1

]
b(J ik ) =

[
ω(J ik )

×(I ik − m
i
ka

i×
k ai×k )ω(J ik )

mikω(J
i
k )
×ω(J ik )

×aik

]
(6)

in which ω(J ik ) denotes the angular velocity of joint J ik and
l ik = aik+b

i
k . On the other hand, the spacecraft body dynamics

can be given by(
M0 +

N∑
i=1

Gi0M
i(Gi0)

T

)
V̇0 +

N∑
i=1

(
Gi0M

i(Gi0)
TH i

)
2̈
i

+ b0 +
N∑
i=1

(
Gi0M

i(Gi)Tβ i + Gi0b
i
)
= 0 (7)

It can be seen that (5) and (7) constitute a chain-form
explicit dynamic formulation of the total system, yet it is
necessary to make a further derivation in an explicit way
in order to 1) derive the system matrices satisfying the
skew-symmetric property held in dynamic equations derived
by the Euler-Lagrange method [24]–[27], and 2) clearly
reveal the dynamic couplings between the motions of space-
craft body and the mounted manipulators. To this end, two
vector factorizations are proposed for β(J ik ) and b(J

i
k ) as

β(J ik ) = Ḣ
i
k θ̇

i
k + Ġ

T
(l ik−1)V0 + Ġ

T
(l ik−1)H̄

i
k−12̇

i

b(J ik ) = B(J ik )H
i
k θ̇

i
k + B(J

i
k )V0 + B(J ik )H̄

i
k−12̇

i
(8)

and hence vectors β i and bi can be summarized as

β i = Ḣ2̇
i
+ (Gil)

TV0 + (GiL)
TH̄

i
k−12̇

i

bi = BVV0 + Bi(H̄
i
+H i)2̇

i
(9)

which simplifies the dynamics composed of (5) and (7) as

HbbV̇0 +Hbm2̈+ CbbV0 + Cbm2̇ = 0

HT
bmV̇0 +Hmm2̈+ CmbV0 + Cmm2̇ = τ c (10)

Moreover, given explicit terms in Appendix A, it can
be proved that the system matrices in (10) hold the
skew-symmetric property as follows.

xT(Ḣbb − 2Cbb)x = 0, ∀x ∈ R6

xT(Ḣmm − 2Cmm)x = 0, ∀x ∈ Rn1+···+nN

Ḣbm − CT
mb − Cbm = O (11)

Remark 1: It can be concluded that two proposed vector
factorizations in (8) successfully incorporates the recursive
Newton-Euler and the Euler-Lagrange methods, and hence
the resulting dynamics (10) possesses an explicit form and
holds the skew-symmetric property, capable of coveringmore
complicated scenarios with multiple manipulators.

C. CONTROL PROBLEM
Asmentioned in Section I, the control objective of the present
paper is to enable integrated translation and rotation stabi-
lization of spacecraft by appropriate motions of mounted
manipulators. Meanwhile, unknown system parameters are
considered herein. Specifically, to cover more practical sit-
uations, besides the mass property parameters of spacecraft
body and mounted manipulators, the position parameters
of mass center of all manipulator links are also regarded
as the unknowns. Meanwhile, this makes the initial system
momentum H0 become unknown in view of (3). Therefore,
the control problem can be formulated as follows.
Problem 1: For the system dynamics composed of (2),

(3) and (10), design appropriate control torque τc to actuate
the joint motions of mounted manipulators such that the
position and attitude errors are driven to zero as closely as
possible, in the presence of unknown parameters including
m0,mik , I0, I

i
k and aik , and unknown initial system momen-

tum H0.

III. CONTROL SCHEME
It can be found that the dynamics formulation composed
of (2), (3) and (10) essentially holds a quasi-cascaded struc-
ture, which makes the backstepping philosophy a natural and
preferable method to cope with Problem 1. Before this, a ref-
erence integrated translational and rotational stabilization tra-
jectory is designed ensuring a satisfactory performance by
polynomial method. Then, making full use of the structure of
dynamics in Eq. (10), a second-order filter is proposed such
that the unavailable accelerations are replaced by computable
terms. At last, an appropriate joint control torque together
with adaptation laws are derived within the Laypunov frame-
work, where the regressor matrices are derived in an explicit
way.

A. REFERENCE TRAJECTORY
Two steps are given to determine a reference stabilization
trajectory of the spacecraft.

First, define the reference attitude as qd = [qd0 qTdv]
T and

the vector component qdv can be designed as

qdv(t) =

{∑nq

k=0
aqk tk , t < Tr

0 t ≥ Tr
(12)

where the pre-determined time Tr and the coefficient vectors
aqk are chosen to at least satisfy

qdv(0) = aq0 = qv(0)

q̇dv(0) = aq1 = q̇v(0)

qdv(Tr ) =
∑nq

k=0
aqkT kr = 0

q̇dv(Tr ) =
∑nq

k=1
kaqkT k−1r = 0

q̈dv(Tr ) =
∑nq

k=2
k(k − 1)aqkT k−2r = 0 (13)

and

max
0≤t≤Tr

qTdv(t)qdv(t) ≤ 1 (14)
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which ensure a feasible second-order continuous rotational
stabilization trajectory due to 1) qd (0) = q(0) and q̇d (0) =
q̇(0); 2) the vector function qdv(t) ∈ C2; 3)qdv(Tr ) = 0 and
q̇d (Tr ) = 0; and 4) ||qdv|| ≤ 1, and meanwhile this requires
the polynomial order should nq ≥ 4. More constraints could
be satisfied by increasing nq and adding extra coefficient vec-
tors. And the reference scalar component qd0 is be governed
by

qd0 = sgn(q0(t))
√
1− qTdv(t)qdv(t) (15)

where sgn(·) is the sign function, yielding

sgn(a) =


1, a > 0
0, a = 0
−1, a < 0

∀a ∈ R

moreover, the reference angular velocity can be obtained by
recalling the attitude kinematics in (1) as

ωd (t) = 2NT
q (qd (t))q̇d (t) (16)

Then, the reference position trajectory of the spacecraft can
be designed by

rd (t) =

{∑nr

k=0
ark tk , t < Tr

0 t ≥ Tr
(17)

Similarly, the coefficient vectors ark are chosen to satisfy

rd (0) = ar0 = qv(0)

ṙd (0) = ar1 = q̇v(0)

rd (Tr ) =
∑nr

k=0
arkT kr = 0

ṙd (Tr ) =
∑nr

k=1
karkT k−1r = 0

r̈d (Tr ) =
∑nr

k=2
k(k − 1)arkT k−2r = 0 (18)

and the reference velocity yields

vd (t) = ṙd (t) (19)

B. ADAPTIVE CONTROL LAW
Notice that the designed reference stabilization trajectory
promises a well-behaviored performance with a finite-time
and continuous convergence in the pre-determined time Tr ,
so Problem 1 will be solved if an appropriate control law is
proposed such that the actual position and attitude motion of
the spacecraft is driven to track the reference trajectory. It can
be seen that the stabilization problem described by Problem
1 can be in fact transformed into a reference trajectory track-
ing problem. To deal with this problem, an adaptive trajec-
tory tracking control scheme is developed by backstepping
philosophy.

First, let position and attitude tracking errors be r̃ = r0−rd
and q̃ = q−1d ◦ q = [q̃0 q̃Tv ]

T, respectively, where the
operator ◦ denotes the quaternion multiplication. Here, q̃ is
also a unit quaternion representing the attitude tracking error
and yields ˙̃q = (1/2)Nq(q̃)(ω0 − R(q̃)ωd ), where R(q̃) is the
rotation matrix from the reference attitude to the real one and

satisfies R(q̃) = (q̃20 − q̃Tv q̃v)E3 + 2q̃vq̃
T
v − 2q̃0q̃

×

v . It should
be noticed that, the error quaternion q̃ has two equilibrium
points, i.e., [±1 0 0 0]T, representing the same attitude.
For the sake of simplicity and minimizing the path length,
the equilibrium point of q̃ can be determined by the given
initial condition [2], [44] and thus it is reasonable to assume
the scalar parameter of q̃ does not change sign. Moreover,
without loss of generality, the point [1 0 0 0]T is chosen as
the equilibrium of q̃, ensuring

(q̃0 − 1)2 + q̃Tv q̃v = 2(1− q̃0) ≤ 2(1− q̃20) = 2q̃Tv q̃v (20)

Then, define X̃ = [q̃0 − 1 q̃Tv r̃T]T and Vd =

[(R(q̃)ωd )T vTd ]
T, and thus the error kinematics can be derived

from (2) that

˙̃X = N(q̃)(V0 − Vd ), with NT(q̃)X̃ = 3X̃ r (21)

where X̃ r = [q̃Tv r̃T]T and 3 = diag{0.5E3,E3}. This leads
to that the command velocity V c can be designed as

V c = Vd − KxNT(q̃)X̃ (22)

where Kx is a positive definite matrix to be given. Recalling
that (3) reveals the kinematic couplings between the motions
of spacecraft body and manipulators, it is preferable to design
appropriate joint motion to actuate the spacecraft motion.
By doing so, define the command joint rate as 2̇c and let the
joint tracking error be 2̃ = 2−2c, so (3) can be re-written
as

ĤbbV0 = G(−r0)Ĥ0 − Ĥbm2̇c − Ĥbm
˙̃
2

+H̃bbV0 + H̃bm2̇− G(−r0)H̃0 (23)

where Ĥbb, Ĥbm and Ĥ0 are utilized to represent the
estimates of Hbb,Hbm and H0, respectively, attributing to
containing unknown parameters; H̃bb, H̃bm and H̃0 are the
corresponding estimate errors, defined by ζ̃ = ζ̂ − ζ , ζ =
{Hbb,Hbm,H0}.This expression will be utilized for other
matrices or vectors including unknown parameters through-
out the paper.

The command joint rate 2̇c can be thus designed as

2̇c = −Ĥ
∗

bmĤbbVc + Ĥ
∗

bmG(−r0)Ĥ0 + (E− Ĥ
∗

bmĤbm)η

(24)

where Ĥ
∗

bm is the Moore-Penrose inverse of the matrix Ĥbm,
η is an arbitrary vector existing only if

∑N
i=1 ni > 6. Then,

construct a Lyapunov function W = (1/2)X̃
T
X̃ and its time

derivative can be obtained by using (3), (23) and (24) as

Ẇ = −X̃
T
N(q̃)KxNT(q̃)X̃ − X̃

T
N(q̃)Ĥ

−1
bb Ĥbm

˙̃
2

+ X̃
T
N(q̃)Ĥ

−1
bb (H̃bbV0 + H̃bm2̇− G(−r0)H̃0) (25)

Next, to track the designed command joint rate 2̇c, control
torque will be designed based on the dynamics (10). To avoid
appearance of 2̈ and V̇0 in the control scheme, a second-
order filter is proposed as

ĤbbV̇ c + Ĥbm2̈c + ĈbbV c + Ĉbm2̇c = KbṼ (26)
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where Kv is a positive definite matrix and Ṽ = V0 − V c.
Then, combining (10) and (26) results in

Hbb
˙̃V+ Hbm

¨̃
2+ CbbṼ + Cbm

˙̃
2

= H̃bbV̇ c + H̃bm2̈c + C̃bbV c + C̃bm2̇c − KbṼ (27)

HT
bm
˙̃V +Hmm

¨̃
2+ CmbṼ + Cmm

˙̃
2

= τ c − (HT
bmV̇ c +Hmm2̈c + CmbV c + Cmm2̇c) (28)

The control torque τc can be designed as

τ c = −Km
˙̃
2+ Ĥ

T
bmĤ

−T
bb N

T(q̃)X̃

+ Ĥ
T
bmV̇ c + Ĥmm2̈c + ĈmbV c + Ĉmm2̇c (29)

At last, construct a Lyapunov function U as

W = W1 +
1
2

[
Ṽ
˙̃
2

]T [
Hbb Hbm

HT
bm Hmm

]
︸ ︷︷ ︸

H

[
Ṽ
˙̃
2

]
(30)

and then by using (25), (27)-(29) and the skew-symmetric
property in (11), the time derivative of W can be obtained
as

Ẇ = −X̃
T
N(q̃)KxNT(q̃)X̃ − Ṽ

T
KbṼ −

˙̃
2TKm

˙̃
2

+ X̃
T
N(q̃)Ĥ

−1
bb (H̃bbV0 + H̃bm2̇− G(−r0)H̃0)

+ Ṽ
T
(
H̃bbV̇ c + H̃bm2̈c + C̃bbV c + C̃bm2̇c

)
+
˙̃
2T

(
H̃

T
bmV c + H̃mm2̈c + C̃mbV c + C̃mm2̇c

)
(31)

Remark 2: For cases yielding
∑N

i=1 ni > 6, the vec-
tor η represents the redundant design freedom for solving
command joint rate and can be made full use of to satisfy
various constraints. What’s more, by left multiplying Ĥbm on
both sides of (24), it can be further found that, the vector η
is eliminated in the expression of Ĥbm2̇c and thus has no
impact on the variation of the position and attitude of the
spacecraft, by recalling (23). This implies that the regulation
of the vector η is more effective to handle constraints relevant
to manipulators such as collision avoidance and joint motion
limitation, rather than those relevant to the motion of the
spacecraft body.

C. REGRESSOR MATRIX AND ADAPTATION LAW
To complete the control scheme, adaptive technique is uti-
lized to deal with estimate errors in (31). By doing so, it is
necessary to first determine unknown parameter vector and
regressor matrix based on explicit expressions in Section II.
On the one hand, since m0,mik , I0, I

i
k and aik are unknown,

define ξ0 = H0, ξm0 = m0, ξ im,k = mik , ξ
i
ma,k = mika

i
k , and

ξ I0 =


I0xx
I0yy
I0zz
I0yz
I0xz
I0xy

, ξ
i
I ,k =



I ikxx
I ikyy
I ikzz
I ikyz
I ikxz
I ikxy


, ξ imaa,k = mik



aikxa
i
kx

aikya
i
ky

aikza
i
kz

aikya
i
kz

aikxa
i
kz

aikxa
i
ky


(32)

where aikx , a
i
ky and a

i
kz are the components of the vector aik in

the joint frame of J ik , the components of ξ I0 are the elements
of I0, and the components of ξ iI ,k are the elements of I ik in
the joint frame of J ik . Then, the unknown system parameter
vector is chosen as ξ = [ξTm0 ξ

T
I0 ξ

T
I ξ

T
ma ξ

T
maa ξ

T
m]

T, where
ξ x = [(ξ1x)

T
· · · (ξNx )

T]T with ξ ix = [(ξ1x,1)
T
· · · (ξNx,ni )

T]T,
for x = I ,ma,maa,m. On the other hand, after a complicated
mathematical derivations, it can be developed from (31) that

Ĥ
−1
bb (H̃bbV0 + H̃bm2̇) = Ĥ

−1
bb Yaξ̃

H̃bbV̇ c + H̃bm2̈c + C̃bbV c + C̃bm2̇c = Ybξ̃

H̃
T
bmV̇ c + H̃mm2̈c + C̃mbV c + C̃mm2̇c = Ymξ̃

Ĥ
−1
bb G(−r0)H̃0 = YhH̃0 (33)

where Ya,Yb,Ym and Yh are regressor matrices and the
explicit expressions are given in Appendix B.

By utilizing (33), the adaption law is thus designed as{
˙̂
ξ = −01(YT

a Ĥ
−T
bb N

T(q̃)X̃ + YT
b Ṽ + Y

T
m
˙̃
2)

˙̂H0 = 02YT
hN

T(q̃)X̃
(34)

where 01 and 02 are two positive definite matrices to be
given.

D. STABILITY ANALYSIS
Fig.2 illustrates the closed-loop system structure based on the
aforementioned design and analysis. To handle the stability

FIGURE 2. The structure of the closed-loop system.
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analysis, a composite Lyapunov function of the whole system
is given asU = W2+(1/2)ξ̃

T
0−11 ξ̃+(1/2)H̃

T
00
−1
2 H̃0, which

is proved to satisfy kU x̃
Tx̃ ≤ U ≤ k̄U x̃Tx̃, where x̃ is the

summarized error defined by x̃ = [X̃
T
Ṽ

T ˙̃
2T ξ̃

T
H̃

T
0 ]

T, kU ,
k̄U yield kU = min{1, λmin(H), λmin(0

−1
1 ), λmin(0

−1
2 )}/2 and

kU = max{1, λmax(H), λmax(0
−1
1 ), λmax(0

−1
2 )}/2, respec-

tively. Then, for a compact setBc = {x̃ : U (x̃) ≤ k̄U x̃Tx̃ ≤ c},
an assumption is made as follows to make the control scheme
computable.
Assumption 1: The matrix Ĥbm has full row rank and the

matrix Ĥbb is non-singular for any x̃ ∈ Bc.
Thus, the following theorem is given to solve Problem 1.
Theorem 1: Given the system dynamics described by (2)

and (10), and the reference trajectory governed by (12)-(19),
if Assumption 1 hold, then for any initial states in Bc, the con-
trol torque τc in (29) with the filter in (26) and the adaption
law in (34) enables the tracking error states X̃, Ṽ and ˙̃2
converge to zero as t → +∞, in the presence of unknown
system parameters m0,mik , I0, I

i
k , a

i
k , and unknown initial

system momentum H0.
Proof: Differentiating U with respect to time and

using (31) and (34) lead to that

U̇ = Ẇ + ξ̃
T
0−11
˙̂
ξ + H̃

T
00
−1
2
˙̂H0

= −X̃
T
NKxNTX̃ − Ṽ

T
KvṼ −

˙̃
2TKθ

˙̃
2 ≤ 0 (35)

It is obvious that the set B0 = {x̃ : X̃ = 0, Ṽ = 0, ˙̃2 = 0}
is the largest invariant set in the set of all points in Bc where
U̇ = 0, and therefore, according to LaSalle’s theorem [46],
the states X̃, Ṽ and ˙̃2 approach B0 as t →+∞.
The proof is completed. �

IV. NUMERICAL SIMULATION
This section is to verify the effect of the proposed adap-
tive control scheme via numerical simulations, where a
cubic spacecraft with two 4-DOFmanipulators is considered,
as shown in Fig. 3. The cubic spacecraft is supposed to bewith
side length L = 1.2m, and its mass properties are given as
m0 = 50kg and I0 = diag{12, 12, 12}kg ·m2. Each manipu-
lator link is assumed to be a cylinder type with length of 1.5m,
radius of 0.05m, and mass of 8kg, which implies that, in the
joint frame of J ik ,m

i
k = 8kg, I ik = diag{0.01, 1.5, 1.5}kg·m2,

FIGURE 3. Simulation scenario with a spacecraft with dual 4-DOF
manipulator.

and aik = [0.750 0]T m, for i = A, B, k = 1,2,3,4. These
parameters determine the true value of the parameter vector ξ .
The mounting position vectors of joint 1 for both manipula-
tors are given in the body frame as bA0 = (1/2)[L − L L]T

and bB0 = (1/2)[−L L − L]T. Besides, based on the
given joint layout and manipulator configuration in Fig. 3,
the initial joint angles of two manipulators are set to2A(0)=
[30 120 60−60]T deg and2B(0) = [−60 60 120 −30]T deg,
respectively. The initial joint velocity of twomanipulators are
set to zero, i.e., 2̇

A
(0) = 2̇

B
(0) = 0.

The initial position and attitude error of the spacecraft are
set as r0(0) = [0.2 −0.1 0.2]T m and20(0) = [−10 10 10]T

deg. Notice that the Euler angle form is adopted in illustra-
tions to describe the spacecraft attitude for a clear physical
meaning and the equivalent quaternion is utilized during the
numerical calculation and simulation. The initial spacecraft
velocity and angular velocity are set as v0(0)= 10−3×[1.5 1.5
−1.5]T m/s and ω0(0) = [0.1 −0.1 0.1]T deg/s, respectively.
Furthermore, the initial angular and linear momentums can
be computed out by using (3) as L(0) = [0.625 −0.565
0.723]T kg ·m2/s andP(0)= [0.175 0.280−0.066]T kg ·m/s,
respectively.

As for the adaptive control scheme, choose Kx = 20 E6,
Kb = diag{5E3, E3}, Km = 10 E8, 01 = 100 E135,
and 02 = 10 E6. The initial value of the estimate is set
to be ξ̂ (0) = 0.95ξ . The polynomial order is selected as
nr = nq = 4 for the reference trajectory design. Moreover
the pre-determined time Tr is a key parameter to the system
convergence performance and it will be studied by choosing
Tr = 30, 40, and 50s, respectively.

Fig. 4 shows the time histories of the spacecraft position
and velocity with different Tr . Meanwhile, the time histories
of the spacecraft attitude and angular velocity are illustrated
in Fig. 5. It can be seen from these simulation results that the
spacecraft position and attitude error can be stabilized with
a satisfactory dynamic performance regardless of unknown
system parameters and initial system momentum. Moreover,

FIGURE 4. The time history of spacecraft position and velocity.
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FIGURE 5. The time history of spacecraft attitude and angular velocity.

FIGURE 6. The time history of joint rate of two manipulators.

FIGURE 7. The time history of joint angle of two manipulators.

all components of the translational and rotational motion
of the spacecraft possess a similar performance for differ-
ent Tr , because they obey the same polynomial function once
the polynomial order is determined, by recalling the design

FIGURE 8. The time history of control torque of two manipulators.

FIGURE 9. The estimate and true value of the spacecraft mass property.

FIGURE 10. The estimate and true value of the manipulator link mass.

procedure of the reference trajectory in Section III.A. This
also results in that a larger value of Tr causes a smaller
regulation of spacecraft velocity and angular velocity.
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FIGURE 11. The estimate and true value of the main elements of the
inertia matrix of Manipulator A (Unit: kg · m2).

FIGURE 12. The estimate and true value of the main elements of the
inertia matrix of Manipulator B (Unit: kg · m2).

Figs 6-7 illustrate the time histories of the joint rates and
angles of two manipulators, respectively. It can be found
that the joint angles change in a good performance. Besides,
by comparison, a smaller value of Tr will lead to a larger joint
angle variation, which implies that Tr cannot be set arbitrarily
small due to the physical limit of the joint motion.

Another thing should be noted from Fig. 6 that not all
joint rates of manipulators converge to zero. This is because
that the joint motion of two manipulators should be driven
to continuously compensate for the initial residual system
momentum to keep the position and attitude stabilization of
the spacecraft. It can be also concluded that the joint motion
would be stopped if there is no initial system momentum.

FIGURE 13. The estimate and true value of initial system momentum.

FIGURE 14. System variation at representative times (Tr = 30).

Fig. 8 describes the time histories of joint control torques
for both manipulators. It can be seen from the curves that
the proposed reference trajectory based control scheme not
only guarantees a satisfactory system performance but also a
well-behaviored control variation with less overshoot. More-
over, as shown in the figure, a smaller value of Tr ensures a
fast stabilization, but causes a larger control effort.

Figs. 9-13 illustrate the simulation results of the esti-
mates of the spacecraft mass property, the link mass of both
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FIGURE 15. System variation at representative times (Tr = 40).

FIGURE 16. System variation at representative times (Tr = 50).

manipulators, the inertia matrix of Manipulator A, the inertia
matrix of Manipulator B, and the initial system momentum,
respectively. Due to the length limitation, the estimates of
ξma and ξmaa are omitted here. It can be found from the
simulation results that the estimates are bounded but they
do not converge to the true values, which is mainly due to
sufficient frequency components in the tracked states is not
guaranteed, i.e., the persistent excitation (PE) condition is not
satisfied [34]. Besides, it can be found that the value of Tr
affects the estimation to a little extent.

Figs. 14-16 describe the system component variations at
several representative times in a 3-dimensional manner for
cases with Tr = 30, 40, and 50, respectively. It can be

observed obviously from these figures that 1) the mass center
of the spacecraft reaches the target position; 2) the space-
craft is regulated to the desired attitude via the proposed
manipulator actuation; and 3) both of two manipulators have
conducted a reasonable motion since the joints motion within
their admissible range and there is no possible collision.

V. CONCLUSION
This study deals with the adaptive control problem for manip-
ulator actuated integrated translational and rotational stabi-
lization of spacecraft in proximity operations. By doing so,
the kinematics and dynamics are successively formulated
in an explicit form by incorporating two classic methods.
The kinematic coupling equation in (3) formulated based on
momentum conservation connects the motions of joint and
spacecraft and makes the whole dynamics possess a cas-
caded structure. Then, an adaptive control scheme is proposed
following the backstepping procedure to stabilize the posi-
tion and attitude error of the spacecraft subject to unknown
mass properties of system components and unknown mass
center positions of each manipulator link. The prescribed
reference trajectory is designed by polynomial methods for
a good stabilization performance. The second-order filter
in (26) is constructed based on the structure of spacecraft
dynamics to ensure the control scheme computable. The
general explicit-form regressor matrices of spacemanipulator
dynamics are derived for the first time, and the resulting adap-
tation law is to update the estimate of unknown parameters.
The closed-loop stability analysis guarantees the asymptotic
convergence of the position and attitude error of the space-
craft. Finally, numerical simulations are given to demonstrate
the effect of the designed adaptive control scheme.

APPENDIX
A. EXPLICIT EXPRESSIONS OF MATRICES IN SEC. II.B
The system matrices in kinematic and dynamic formulations
described by (3) and (10) in Sec. II.B have the form as

Hbb = M0 +
∑N

i=1
Gi0M

i(Gi0)
T,Hbm = [H1

bm · · · H
N
bm],

H i
bm = Gi0M

i(Gi0)
TH i, Hmm = diag{H1

mm, . . . ,H
N
mm},

H i
mm = (H i)TGiM i(Gi)TH i (A1)

Cbb = B0 +
∑N

i=1
C i
bb, Cbm = [C1

bm · · · C
N
bm]

Cmb = [(C1
mb)

T
· · · (C1

mb)
T]T,Cmm=diag{C1

mm, . . . ,C
N
mm}

C i
bb = Gi0M

i(Gi)T(Gil)
T
+ Gi0B

i
V

C i
mb = (H i)T(Gi)T(M i(Gi)T(Gil)

T
+ BiV

C i
bm = Gi0M

i(Gi)T(Ḣ
i
+ (GiL)

TH̄
i
)+ Gi0B

i(H̄
i
+H i)

C i
mm = (GiH i)T(M i(Gi)T(Ḣ

i
+ (GiL)

TH̄
i
)+ Bi(H̄

i
+H i))

(A2)

where

M i
= diag{M(J i1), . . . ,M(J ini )}, H

i
=diag{H i

1, . . . ,H
i
ni}

M0= diag{I0,m0E3}, Gi0= [G(l
i
0) G(l

i
1) · · ·G(l

i
0(ni−1))]
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Gi=


E6 G(l i1) · · · G(l

i
1(n−1))

E6
. . .

...

. . . G(l i(n−1))
E6

 , H̄ i
=


H̄
i
0

H̄
i
1
...

H̄
i
ni−1


Gil = [Ġ(l i0) · · · Ġ(l

i
ni−1)],G

i
L=diag{Ġ(l

i
0), . . . , Ġ(l

i
ni−1)}

BiV = [BT(J i1) · · ·B
T(J ini )]

T,Bi = diag{B(J i1), . . . ,B(J
i
ni )}

B(J ik )=

[
ω(J ik )

(
I ik−m

i
ka

i×
k ai×k

)
O

−mik ȧ
i×
k O

]
, B0=

[
ω×0 I0 O
O O

]
M(J ik )=

[
I ik − m

i
ka

i×
k ai×k mika

i×
k

−mika
i×
k mikE3

]
, H i

k =

[
hik
O

]
H̄
i
k−1= [H i

1 · · · H
i
k−1 O6×1 · · · O6×1 ] (A3)

B. EXPLICIT EXPRESSIONS OF MATRICES IN SEC. III.C
Explicit expressions of regressor matrices in Sec. III.C are
given as follows.

(1) The regressor matrix Ya has the explicit form as

Ya =
[

O Yωa,I0 Yωa,I Yωa,ma −Y
ω
a,maa Yωa,m

Y va,m0 O O −Y va,ma O Y va,m

]
(B1)

with

Yωa,I0 = LI (ω0), Yωa,I = LIω(ω0)+ LIu2(2̇,h)

Yωa,ma = Lau(v0)− Llau(ω0)+ Llau2(2̇, h)− Lalu2(2̇,h)

Yωa,maa = Laau(ω0)+ Laau2(2̇,h),

Yωa,m = Llu(v0)− Lllu(ω0)− Lllu2(2̇,h)

Y va,m0 = v0, Y va,ma = Lau(ω0)− Lau2(2̇,h)

Y va,m = Lm(v0)− Llu(ω0)− Llu2(2̇,h) (B2)

where, h = [(h1)T · · · (hN )T]T with hi =

[(hi1)
T
· · · (hini )

T]T; for any u ∈ R3, the matrices LI (u) and
Lm(u) yield

LI (u) =

 ux 0 0 0 uz uy
0 uy 0 uz 0 ux
0 0 uz uy ux 0

, Lm(u) = [ u · · · u ]︸ ︷︷ ︸
n1+···+nN

and moreover, on the one hand, the matrices Lx(u), x = Iω,
au, lau, aau, lu, llu, au, are governed by

Lx(u)=
[
L1Iω(u) · · · L

N
Iω(u)

]
,Lix(u)=

[
Lix,1(u) · · · L

i
x,ni (u)

]
with

LiIω,k (u) = Ri,0Jk LI ((R
i,0
Jk )

Tu), Liau,k (u) = −u
×Ri,0Jk

Lilau,k (u) = −(l
i×
0(k−1)u

×
+ (l i×0(k−1)u)

×)Ri,0Jk

Liaau,k (u) =



(
(u×Ri0Jkex)

×Ri0Jkex
)T(

(u×Ri0Jkey)
×Ri0Jkey

)T(
(u×Ri0Jkez)

×Ri0Jkez
)T(

((u×Ri0Jkez)
×
− (Ri0Jkez)

×u×)Ri0Jkey
)T(

((u×Ri0Jkez)
×
− (Ri0Jkez)

×u×)Ri0Jkex
)T(

((u×Ri0Jkey)
×
− (Ri0Jkey)

×u×)Ri0Jkex
)T



T

Lilu,k (u) = l i×0(k−1)u, Lillu,k (u) = l i×0(k−1)l
i×
0(k−1)u,

Liau,k (u) = −u
×Ri0Jk

in which ex = [1 0 0]T, ey = [0 1 0]T, ez = [0 0 1]T,
andRi0Jk represents the transformationmatrix from joint frame
to the inertial frame; on the other hand, for any two vectors
ϕ ∈ Rn1+···+nN and ρ ∈ R3(n1+···+nN ), comprising the scalar
ϕik ∈ R and the vector ρik ∈ R3 with the structure as

ϕ = [(ϕ1)T (ϕ2)T · · · (ϕN )T]T, ϕi = [ϕi1 ϕ
i
2 · · · ϕ

i
ni ]

T

ρ = [(ρ1)T (ρ2)T · · · (ρN )T]T,

ρi = [(ρi1)
T (ρi2)

T
· · · (ρini )

T]T (B3)

the matrices Ly(ϕ, ρ), y= Iu, lau2, alu2, aau2, llu2, au2, lu2,
are governed by

Ly(ϕ, ρ) =
[
L1y(ϕ

1, ρ1) · · · LNy (ϕ
N , ρN )

]
Liy(ϕ

i, ρi) =
∑ni

k=1
Liy,k (ϕ

i
k , ρ

i
k )

with

LiIu2,k (ϕ
i
k , ρ

i
k )

= ϕik ·
[
O Ri,0Jk LI ((R

i,0
Jk )

Tρik ) · · · R
i,0
JniLI ((R

i,0
Jni )

Tρik )
]

Lilau2,k (ϕ
i
k , ρ

i
k )

= ϕik

[
O l i×0(k−1)ρ

i×
k Ri0Jk · · · l

i×
0(ni−1)

ρi×k Ri0Jni

]
Lialu2,k (ϕ

i
k , ρ

i
k )

= ϕik ·
[
O (ρi×k l ik(k−1))

×Ri0Jk · · · (ρ
i×
k l ik(ni−1))

×Ri0Jni

]
Liaau2,k (ϕ

i
k , ρ

i
k )

=
[
O Liaau,k (ϕ

i
kρ

i
k ) · · · L

i
aau,ni (ϕ

i
kρ

i
k )
]

Lillu2,k (ϕ
i
k , ρ

i
k )

= ϕik

[
O l i×0(k−1)l

i×
k(k−1)ρ

i
k · · · l

i×
0(ni−1)

l i×k(ni−1)ρ
i
k

]
Liau2,k (ϕ

i
k , ρ

i
k )

= ϕik

[
O ρi×k Ri0Jk · · · ρ

i×
k Ri0Jni

]
Lilu2,k (ϕ

i
k , ρ

i
k )

= ϕik

[
O l i×k(k−1)ρ

i
k · · · l

i×
k(ni−1)

ρik

]
(2) The regressor matrix Yb has the explicit form as

Yb =
[

O Yωb,I0 Yωb,I Yωb,ma −Y
ω
b,maa Yωb,m

Y vb,m0 O O −Y vb,ma O Y vb,m

]
(B4)

with

Yωb,I0 = LI (ω̇c)+ ω×0 LI (ωc),Y
v
b,m0 = v̇c

Yωb,I = LIω(ω̇c)+ LIu2(2̈c,h)+ LIω5(ωc)

+LIu2(2̇c, ḣ)+ LIu6(2̇c, ḣ)

Yωb,ma = Lau(v̇c)− Llau(ω̇c)+ Llau2(2̈c,h)+ Llau2(2̇c, ḣ)

+Llau5(ωc)+ Llau6(2̇c, ḣ
i
k )− Lalu2(2̈c,h)

−Lalu2(2̇c, ḣ)+ Lalu5(ωc)− Lalu6(2̇c, ḣ)

Yωb,maa = Laau(ω̇c)+ Laau2(2̈c,h)+ Lmaa5(ωc)
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+Laau2(2̇c, ḣ)+ Laau6(2̇c,h)

Yωb,m = Llu(v̇c)− Lllu(ω̇c)− Lllu2(2̈c,h)− Lllu2(2̇c, ḣ)

+Lllu5(ωc)− Lllu6(2̇c,h)

Y vb,ma = Lau(ω̇c)− Lau2(2̈c,h)− Lau5(ωc)

−Lau2(2̇c, ḣ)− Lau6(2̇c,h)

Y vb,m = Lm(v̇c)− Llu(ω̇c)− Llu2(2̈c,h)+ Llu5(ωc)

−Llu2(2̇c, ḣ)− Llu6(2̇c,h) (B5)

where, for any u ∈ R3, the matrices Lx(u), x = Iω5, maa5,
lau5, alu5, lu5, llu5, au5, are governed by

Lx(u) =
[
L1Iω(u) · · · L

N
Iω(u)

]
,

Lix(u) =
[
Lix,1(u) · · · L

i
x,ni (u)

]
with

LiIω5,k (u) = ω
×(J ik )R

i0
JkLI (R

i0,T
Jk u),

Lillu5,k (u) = (l̇
i×
0(k−1)u)

×l i0(k−1)

Limaa5,k (u) = ω
×(J ik )L

i
aau,k (u), L

i
alu5,k (u) = (l̇

i×
0(k−1)u)

×Ri0Jk

Lilau5,k (u) = l i×0(k−1)u
×ω×(J ik )R

i0
Jk , L

i
lu5,k (u) = u× l̇

i
0(k−1)

Liau5,k (u) = u×ω×(J ik )R
i
Jk

and, for any two vectors ϕ ∈ Rn1+···+nN and ρ ∈

R3(n1+···+nN ), comprising the scalar ϕik ∈ R and the vector
ρik ∈ R3 with the structure in (B3), the matrices Ly(ϕ, ρ), y
= Iu6, lau6, alu6, aau6, llu6, au6, lu6, are governed by

Ly(ϕ, ρ) =
[
L1y(ϕ

1, ρ1) · · · LNy (ϕ
N , ρN )

]
Liy(ϕ

i, ρi) =
∑ni

k=1
Liy,k (ϕ

i
k , ρ

i
k )

with

LiIu6,k (ϕ
i
k , ρ

i
k )

= ϕik ·
[
Oω×(J ik )R

i0
JkLI (R

i0,T
Jk ρik ) · · ·ω

×(J ini )R
i0
JniLI (R

i0,T
Jni ρ

i
k )
]

Lilau6,k (ϕ
i
k , ρ

i
k )

= ϕik ·
[
O l i×0(k−1)ρ

i×
k ω
×(J ik )R

i0
Jk · · · l

i×
0(ni−1)

ρi×k ω
×(J ini )R

i0
Jni

]
Lialu6,k (ϕ

i
k , ρ

i
k )

= ϕik ·
[
O (ρi×k l̇

i
k(k−1))

×Ri0Jk · · · (ρ
i×
k l̇

i
k(ni−1))

×Ri0Jni

]
Liaau6,k (ϕ

i
k , ρ

i
k )

= ϕik ·
[
O ω×(J ik )L

i
aau,k (ρ

i
k ) · · · ω

×(J ini )L
i
aau,ni (ρ

i
k )
]

Lillu6,k (ϕ
i
k , ρ

i
k )

= ϕik

[
O l i×0(k−1) l̇

i×
k(k−1)ρ

i
k · · · l

i×
0(ni−1)

l̇
i×
k(ni−1)ρ

i
k

]
Liau6,k (ϕ

i
k , ρ

i
k )

= ϕik ·
[
O ρi×k ω

×(J ik )R
i0
Jk · · · ρ

i×
k ω
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i0
Jni

]
Lilu6,k (ϕ

i
k , ρ

i
k )

= ϕik

[
O l̇

i×
k(k−1)ρ

i
k · · · l̇

i×
k(ni−1)ρ

i
k

]
(3) The regressor matrix Ym has the explicit form as

Ym =
[
O O Ym,I Ym,ma −Ym,maa −Ym,m

]
(B6)

with

Ym,I = LI3(ω̇c)+LI4(2̈c)− LI8(ωc)+LI9(2̇c)

Ym,ma = Lma3(ω̇c, v̇c)+Lma4(2̈c)+Lma8(ωc)+Lma9(2̇c)

Ym,maa = Lmaa3(ω̇c)+Lmaa4(2̈c)− Lmaa8(ωc)+Lmaa9(2̇c)

Ym,m = Lm3(ω̇c, v̇c)+Lm4(2̈c)+Lm8(ωc)+Lm9(2̇c)

(B7)

for any u,w ∈ R3, the matrices Lx(u), x = I3, maa3, I8,
ma8, maa8, m8, and Ly(u, w), y = ma3, m3, are governed by

Lx(u) = diag{L1x(u), . . . ,L
N
x (u)}

Ly(u,w) = diag{L1x(u,w), . . . ,L
N
x (u,w)}

Lix(u) = [(Lix,1(u))
T
· · · (Lix,ni (u))

T ]T

Liy(u,w) = [ (Lix,1(u,w))
T
· · · (Lix,ni (u,w))

T ]T

with

LiI3,k (u)= u
TRi0JjL

i
Iu2,k (1, (R

i0
Jk )

Thik )

Lima3,k (u,w)= u
T(Lilau2,k (1,h

i
k )− L

i
alu2,k (1,h

i
k ))

+wTLiau2,k (1,h
i
k )

LiI3,k (u)= u
TRi0JjL

i
Iu2,k (1, (R

i0
Jk )

Thik )

Lima3,k (u,w)= u
TLilau2,k (1,h

i
k )

−uTLialu2,k (1,h
i
k )+ w

TLiau2,k (1,h
i
k )

Limaa3,k (u)= u
TLiaau2,k (1,h

i
k )

Lim3,k (u,w)= u
TLillu2,k (1,h

i
k )+ w

TLilu2,k (1,h
i
k )

Lima8,k (u)= u
T
[
O l̇ i×0(k−1)h

i×
k Ri0Jk+(l

i×
k(k−1)h

i
k )
×ω×(J ik )R

i0
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· · · l̇ i×0(ni−1)h
i×
k Ri0Jni+(l
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k(ni−1)
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Jni

]
Lim8,k (u)= u

T
[
O l̇ i×0(k−1)l
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i
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l i×k(ni−1)h
i
k

]
LiI8,k (u)= u

T
[
O Ri0JkLI (R
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Jk ω×(J ik )h

i
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· · · Ri0JniLI (R
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Limaa8,k (u)= u
T [O Liaau,k (ω

×(J ik )h
i
k )

· · · Liaau,ni (ω
×(J ini )h

i
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]

and, for any two vectors ϕ ∈ Rn1+···+nN comprising the scalar
ϕik ∈ Rwith the structure in (B3), the matrices Lz(ϕ), z = I4,
maa4, ma4, m4, I9, maa9, ma9, m9 are governed by

Lz(ϕ) = diag{Liz(ϕ
1), . . . ,LNz (ϕ

N )},

Liz(ϕ
i) =

∑ni

k=1
Liz,k (ϕ

i
k )

Liz,k (ϕ
i
k ) = ϕ

i
k



O

Liz,k [1, k] · · · Liz,k [1, ni]
...

. . .
...

Liz,k [k − 1, k] · · · Liz,k [k − 1, ni]

O

Liz,k [k, k] · · · L
i
z,k [k, ni]

. . .

O Liz,k [ni, ni]
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where L iz,k [j, r] is the element at the jth row and the r th
column of the matrix L iz,k (ϕ

i
k ), j = 1,. . . , ni, r = k,. . . ,ni, and

satisfies

LiI4,k [j, r]= h
i,T
j Ri0JrLI (R

i0,T
Jr hik )

Limaa4,k [j, r]= h
i,T
j Liaau,j(h

i
k )

Lima4,k [j, r]= h
i,T
j

(
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i×
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i
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×
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i
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i
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×(J ir )R
i0
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Jr hik )

)
Limaa9,k [j, r]= h
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j
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i
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