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ABSTRACT The characteristic of a flexible system with weak damping is that the amplitude characteristics
show a large change, and the situation on the Nyquist chart is extremely complicated. Due to the existence
of weak damping, the perturbation range of the flexible modal parameters allowed by the system is greatly
compressed, and the robust stability is reduced, which brings challenges to the control design. To deal with
this problem, the traditional H-inf loop shaping method often leads to the controller instability and poor
robustness. In order to improve the stability margin of the system, increase the robustness and stability, and
solve the problem of the instability of H-infcontrollers, this paper proposes a robust comprehensive design
method based on phase control. In this method, by using the closed-loop pole configuration corresponding
to the flexible mode at low frequency, the phase control is realized. Through the phase control, the apex
of the Nyquist curve of the weakly damped mode of the system is limited to the Right half plane. The H-
inf weighting function relaxes the pole configuration requirements, reduces the conservativeness of strict
positive real, and combines the phase control with the H-inf optimization solution to obtain a robust and
self-stable H-inf controller. A specific design example is given. The simulation results show that this control
method has extremely high robustness. This design example can provide a certain degree of robust design
for other weakly damp.

INDEX TERMS Robust stability, weakly damped flexible systems, phase control, H-inf optimization.

I. INTRODUCTION
With the constant seeking of precision and efficiency, a large
number of flexible systems have been put into industrial
production, ranging from the read/write heads of computer
hard disks to all kinds of spacecraft, such as Space tele-
scopes with Solar array or high-gain antennas [1]–[4], large
truss structure satellites [5], etc. The uncertainties of flexible
systems include structural uncertainties and non-structural
uncertainties. Therefore, the designed control system should
be able to make these two uncertainties robust, which means
performance indicators can still be achieved when the sys-
tem has certain parameter perturbations or has unmodeled
dynamics at high frequencies. Adaptive control can also solve
the control problem of systems with uncertainties [6], [7].
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H-inf control is widely used in the control problem of this
kind of flexible system with uncertainty [8]–[10]. For the
widely existing flexible system with weak damping, because
it is more convenient to use coprime factor perturbations to
describe this system so the H-inf loop forming method based
on coprime factor perturbations is often used for weakly
damped flexible system. But existing studies only give simple
examples of the application of the H-inf loop forming method
in weakly damped flexible systems, without in-depth analysis
[11], [12].

The weak damping of the system is manifested in the
frequency characteristic of crossing the 0dB line multiple
times, which makes the situation surrounding (−1, j0) on the
Nyquist chart more complicated. Reference [13] conducted
a research on the H-inf loop shaping design of a weakly
damped flexible system, and found that the parameter (fre-
quency) perturbation range of the flexible mode was greatly
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compressed due to the existence of weak damping, which
caused the system to lose its robustness. For this reason,
reference [14] proposes to combine H-inf loop shaping and
µ synthesis to solve the problem of robust design under
parameter perturbation. However, reference [15] shows that
this method does not achieve the expected effect through
example analysis. The addition of µ synthesis in the H-inf
loop shaping design only affects the stability margin value,
and cannot improve the allowable perturbation range. There-
fore, weak damping is the difficulty in the design of flexible
systems using the H-inf loop forming method.

When the weakly damped flexible system is designed with
the H-inf loop shaping method, in addition to the above-
mentioned robustness deterioration, there is also a problem
of an unstable controller. H-inf control design is mainly about
structure problems and weight function selection. The struc-
tural problems include two-block, four-block problems and
µ synthesis, etc. At present, H-inf control has a satisfactory
control effect in solving the problems of model uncertainty,
model nonlinearity, actuator saturation limitation, vibration
suppression and so on [16]–[19]. However, no matter what
the structure is, an unstable H-inf controller will be produced
for a weakly damped flexible system [14], [20]–[22]. This
‘‘unstable controller’’ means that the closed-loop system is
stable, but the designed H-inf controller is unstable. There
are relatively few studies on unstable controllers. In fact, it is
difficult to invest in unstable controllers [20]. For example,
the H-inf controller with high frequency components omitted
is an unstable controller in [21].

In order to solve the problem of unstable controllers
using H-inf control for weakly damped flexible systems and
improve the robustness of the system, the phase control of the
system must be considered. Taking a weak damping system
with one flexible mode as an example, the Bode diagram is
shown as crossing the 0dB line repeatedly, and the Nyquist
diagram is shown as a large circle. When the parameters
are perturbed, the situation surrounding the (−1, j0) point
is more likely to change, which leads to a reduction in the
allowable perturbation range of the system. Whereas phase
control requires that the vertices of the Nyquist curve of the
weakly damped mode are all located on the positive real
axis [23]. In this way, the system has better robustness when
perturbation occurs. However, in the actual controller design
process, there are design difficulties to achieve local regular-
ization. Therefore, this paper starts from the theoretical basis
of H-inf control, through theoretical derivation, obtains the
mathematical expression of local regular design, which has a
certain degree of innovation.

In this paper, the H-inf design research for changing
the phase-frequency characteristics of the system. It com-
bines the phase control idea with the H-inf control design
to solve the unstable controller and poor robustness of the
weakly damped flexible system. A specific design exam-
ple is given, and a robust H-inf controller based on phase
control of the flexible manipulator is designed. The control
design has very high robustness. The simulation results show

that the designed control system makes allowable parameter
(damping) perturbation range of the device reaches more
than 60%.

In the first section of this paper, the progress of H-inf
control theory is briefly introduced, and the two problems of
H-inf loop shaping method in the design of weak damping
system are analyzed. The second section gives the theoretical
basis of H-inf control based on phase control and the proof
of related formulas. In the third section, the effectiveness of
the method is illustrated by a simulation example of flexible
system control with three weak damping modes. The fourth
section summarizes the design difficulties and innovation of
this method.

II. H-INF ROBUST CONTROL THEORY BASED ON PHASE
CONTROL
The H-inf loop shaping method based on the theory of small
gain only pays attention to the amplitude-frequency charac-
teristics of the system, not the phase-frequency characteris-
tics, and pays little attention to the Nyquist diagram. In fact,
the phase information of the system is also very important.
According to the Nyquist diagram drawn by the McFarlaned
method proposed in [21], the unstable controller makes the
closed-loop system stable by going around (−1, j0). But when
the resonant frequency of the system is slightly perturbed,
the enclosing circle may move up or down, and cannot go
around the (−1, j0) point, and the closed-loop system cannot
be stabilized. The McFarlaned method is used for H-inf loop
shaping to control the weakly damped flexible system. The
parameter perturbation range of the system is small and the
robustness is poor.

If the strict positive real design is carried out, that is,
the vertices of the Nyquist curve are all located on the positive
real axis [24], as shown in Fig.1, the robust performance of the
systemwill be greatly improved. But in fact, for a systemwith
multiple weakly damped flexible modes, this strictly positive
design is too conservative. Even if the controller is obtained
by the H-inf loop shaping method, the order of the controller
is often higher. It cannot be physically realized.

Therefore, this paper relaxes the strict positive real design
requirements and proposes a local positive real design,
as shown in Fig.2, that is, the vertices of the Nyquist curve
of the weakly damped mode are all located on the right
half plane. The digital display parameters of the system are
perturbed, and the Nyquist curve of the system will not cross
the critical point and cause instability.

The open loop Nyquist diagram of the system can reach
the style shown in Fig.2 through the optimization design with
H-inf. Compared with the [25], the controller obtained by
this method has a low order and is easy to implement while
ensuring robustness.

H-inf optimal design is a control theory based on coprime
factor. so, the flexible controlled object G(s) and the con-
troller K (s) are respectively written in the form of coprime
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FIGURE 1. Strict positive real design.

FIGURE 2. Local positive real design.

factors, refer to (1) and (2):

G(s) =
ng(s)/df (s)
dg(s)/df (s)

. (1)

K (s) =
Nk (s)
Dk (s)

=
nk (s)/dc(s)
dk (s)/dc(s)

. (2)

where, df (s) and dc(s) are polynomials related to the char-
acteristic equation of the system, and the coefficient of
the highest order term is 1 [13]. According to (1) and
(2), the closed-loop transfer function of the system can be
obtained:

T (s) =
Ng(s)Dk (s)

Ng(s)Nk (s)+ Dg(s)Dk (s)
. (3)

Let the denominator of T (s) be P(s), then P(s) can be
expressed as shown in (4):

P(s) =
ng(s)nk (s)+ dg(s)dk (s)

df (s)dc(s)
. (4)

where, the numerator of P(s), ng(s)nk (s) + dg(s)dk (s), is the
closed-loop characteristic polynomial of the system, and the
denominator, ng(s)nk (s)+dg(s)dk (s), is the desired character-
istic polynomial.

Therefore, only when P(s) = 1, can the closed-loop char-
acteristic polynomial of the system be equal to the expected
characteristic polynomial. If the desired characteristic poly-

nomial is given in the design, the controller, K (s) =
nk (s)
dk (s)

,

can be solved according to the condition of P(s) = 1. How-
ever, this condition cannot be met in all frequency ranges,
so this article proposes the weighted design idea to solve the
problem:

min
K (s)
‖W (s)[1− P(s)]‖∞. (5)

where, W (s) is the weighting function selected to satisfy the
low frequency characteristics.

According to the above analysis, by solving the optimiza-
tion problems of (4) and (5), it can be satisfied that the
dominant pole of the flexible mode of the system is equal
to the expected pole at the low frequency band, but the high
frequency is different. In this way, P(jw)→ 1 can be realized
in the frequency band of the dominant pole. It can be seen that
this method is much more flexible than the pole configuration
method in the classic control theory, and it can combine the
pole configuration with the optimization solution.

The optimization problem shown in (5) can be solved
according to the bounded real lemma in H-inf control theory.
Use

[
Awp Bwp Cwp 0

]
to represent the state space form of

W (s)[1 − P(s)], then according to the bounded real lemma,
the necessary and sufficient condition ofW (s)[1−P(s)] < γ

is the existence of X = XT > 0 makes the following matrix
inequality holds. The proof is shown in Lemma 5.3 in [26].
Which is:ATwpX + XATwp XBwp CT

wp
BTwpX −γ I 0
Cwp 0 γ

 < 0. (6)

When transformed into the state space form shown in (6),
it will be found that nk (s) and dk (s) in the controller K (s)
only appear in Cwp and are linear. So (6) is a linear matrix
inequality, and its optimization problem is equivalent to the
solution of γ under the restriction of linear matrix inequality.
Reger to (7):

γm = min
K (s)

γ (7)

The above analysis shows that the main idea of the H-inf
robust design method based on phase control to solve the
control problem of weakly damped flexible system is:

(1) At low frequencies, make the closed-loop pole corre-
sponding to the weakly damped mode have a negative real
part while increasing the damping ratio.

(2) The high-frequency pole configuration can be appro-
priately relaxed through the weighting function in H infinity
optimization.
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(3) For other closed-loop pole configurations, it is hoped
that the open-loop characteristics can be far away from the
critical stable point to the right half plane.

III. ROBUST CONTROL DESIGN OF WEAKLY DAMPED
FLEXIBLE SYSTEM
A. MATHEMATICAL MODEL OF WEAKLY DAMPED
FLEXIBLE SYSTEM
The mathematical model of a flexible system can usually be
expressed by the sum of a rigid body mode and an infinite
number of flexible models, as shown in (8) [27]:

G(s) =
∞∑
i=0

Ki
s2 + 2ζiωis+ ω2

i

(8)

where, i = 0 corresponds to the rigid body mode, and all sub-
sequent modes are all flexible modes. Generally, the higher
the frequency of the flexible mode, the amplitude is often
smaller. Therefore, multiple low-frequency flexible modes
are often used to represent the flexibility of the entire con-
trolled object. At the same time, the damping ζi in (8) is
often small, and the system exhibits typical weak damping
characteristics. On the open-loop Bode diagram, it appears to
cross the 0dB line multiple times, and on its Nyquist diagram
it appears as multiple great circles close to the (−1, j0) point.
Therefore, when the parameters are perturbed, it is very likely
that the original surrounding (−1, j0) point will be changed
and the system will be unstable.

In this section, a general control example of a flexible
manipulator with three weak damping modes is given to
verify the effectiveness of the robust H-inf phase control
method. The relevant parameters of this flexible manipulator
are shown in Table.1:

TABLE 1. The relevant parameters of this flexible manipulator.

The Bode diagram of the system is shown in Fig.3. It can be
seen from Fig.3 that the flexible manipulator exhibits typical
weak damping characteristics. Due to the existence of 3 weak
damping modes, it crosses the 0dB line 6 times.

B. ROBUST CONTROLLER DESIGN
According to the theoretical basis in the chapter 2, firstly,
according to the control target requirements, determine the
desired closed-loop pole, that is, the root of df (s)dc(s) = 0.

Where, the root of df (s) = 0 represents the closed-loop
pole formed by the pole of the controlled object through
feedback. The first term of the controlled object (9) is dou-
ble integral, which corresponds to the dominant pole of
the closed-loop system. The remaining three flexible modes

FIGURE 3. Bode diagram of the flexible controlled object.

affect the stability of the system, so the damping ratio corre-
sponding to the dominant pole can be set to ζ = 1. According
to the requirements of design indicators, the dominant pole
can be selected as (s + 1)2. The poles corresponding to
the remaining three weakly damped modes in the transfer
function are located near the imaginary axis. After the loop
is closed, they should be avoided entering the right half
plane. However, combined with the theory of control design,
it can be known that if they are set to a farther left position,
the control input will be too big again. In summary, choose
df (s) as follows:

df (s) = (s+ 1)2(s2 + 1.2s+ 25)(s2 + s+ 100)

× (s2 + s+ 400) (9)

The root of dc(s) = 0 in (4) is the closed-loop pole cor-
responding to the controller. Therefore, the order of dc(s)
is determined by the controller. The flexible manipulator
shown in (9) has a non-minimum phase zero point s2 −
7.932s + 36.54 = 0. The non-minimum phase zero point
make the phase lag of the system, which is beneficial for the
Nyquist curve to enter the right half plane. The zero point
s2 + 9.038s + 36.64 = 0 in (9) is completely different.
Therefore, an appropriate controller pole can be designed for
pole-zero cancellation. So, dc(s) can be taken as:

dc(s) = (s2 + 9s+ 36)(s+ 25) (10)

where, the pole, s = −25, is set to further lag the phase
angle. From (10), it can be seen that the designed controller
is a 3-order controller. In order to meet the low-frequency
characteristics of the system, take the weighting function:

W (s) =
0.01

s2 + 0.25s+ 0.01
(11)

After determining the desired pole and weighting func-
tion, according to the optimization problem of (4) and (5),
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the obtained controller is:

K (s) =
3.715(s+ 0.375)

(
s2 + 0.63s+ 46.4

)
(s+ 5.65)

(
s2 + 8.82s+ 36.2

) (12)

It can be seen from (12) that the controller is stable, indicating
that the design method can solve the unstable controller prob-
lem in the control design of weakly damped flexible systems.
Finally, the closed-loop transfer function of the system is:

T (s) =

17.6(s + 0.375)(s2 + 9.04s + 36.6)(s2 −
7.93s + 36.5)(s2 − 0.629s + 46.4)(s2 −
0.429s+ 223.1)
(s + 2.467)(s + 1)(s + 0.99)(s2 + 8.7s +
35.2)(s2 + 1.11s + 407.8)(s2 + 0.9s +
101.4)(s2 + 1.2s+ 25.4)

(13)

it is easy to know from (13) that the closed-loop pole is not
completely consistent with the expected pole. This is due to
the introduction of the weighting function W (s), which also
reflects the flexibility of the method.

FIGURE 4. The open-loop characteristics of the system.

From the open-loop characteristics of the system shown
in Fig.4, it can be seen that the three flexible modes of
the controlled object correspond to the three circles whose
vertices are on the right half of the Nyquist diagram, and
these three circles all satisfy the preceding proposed local
positive design requirements. From the Bode diagram of the
closed-loop system shown in Fig.5, it can also be seen that the
amplitudes corresponding to the three flexible modes do not
exceed 0dB, which is also consistent with Fig.4. It shows that
by configuring the closed-loop poles corresponding to the
weakly damped mode in the flexible system, the open-loop
characteristics of the system are far away from the critical
stable point and the stability is improved.

C. SIMULATION ANALYSIS
The controller obtained in the previous section shows that the
self-stable controller of (12) can stabilize the system. Next,
analyze the robustness of the system.

FIGURE 5. The Bode diagram of the closed-loop system.

FIGURE 6. Nyquist diagram of the open loop of the system when the
frequency decreases.

Fig.6 is the Nyquist diagram of the open loop of the system
when the frequency decreases. It can be seen from Fig.6 that
as the frequency decreases, the position of the circle formed
by the Nyquist curve does not change, only the diameter of
the circle increases. But when the frequency is reduced by
20%, the Nyquist curve of the system is still far away from
the critical stability point, and the closed-loop system can still
be stable.

Fig.7 is the open-loop Nyquist diagram of the systemwhen
the frequency increases. It can be seen from the figure that as
the frequency decreases, the position of the circle formed by
the Nyquist curve does not change much, only the diameter
of the circle decreases, as to further away from (−1, j0) point,
so that the closed-loop system is stable.

Fig.8 shows the adjustment process of the system in the
time domain under different frequency changes. When the
frequency is reduced by 20%, the system error is relatively
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FIGURE 7. Nyquist diagram of the open loop of the system when the
frequency increases.

FIGURE 8. The adjustment process of the system in the time domain
under different frequency changes.

large at the initial stage of system adjustment, but the final
error can tend to zero. When the frequency increases, the sys-
tem can eventually run stably. The only difference is that there
are small vibrations of different frequencies at the initial stage
of adjustment, which is related to the diameter change of the
circle shown in Fig.7. In summary, for the parameter pertur-
bation of frequency, the system has a parameter perturbation
range of at least 20%, and has certain robustness.

Fig.9 is the Nyquist curve diagram with damping reduced
by 30% and 60% respectively. From this figure, it can be
concluded that the reduced damping makes the diameter of
the circle formed by the Nyquist curve larger, and the distance
from the critical stability point is reduced. But when the
damping is reduced by 60%, the open-loop Nyquist curve of
the system is still on the right side of the 0dB line, which has
good robust stability.

FIGURE 9. Nyquist diagram of the open loop of the system when the
damping decreases.

Fig.10 is the Nyquist diagram of the system when the
damping increases. It is easy to know that the increase in
damping is just the opposite of the decrease in damping. The
upward perturbation of dampingmeans that its weak damping
characteristic is weakened, and it becomes more stable.

FIGURE 10. Nyquist diagram of the open loop of the system when the
damping increases.

Fig.11 shows the time-domain adjustment process of the
system under different damping perturbations. It can be seen
that when the damping increases, the time-domain adjustment
process of the system does not change much compared to
the purple original mathematical model, and is even better
than the original system, which is consistent to the Nyquist
diagram in Fig.10. When the damping is reduced, the adjust-
ment time of the system is increased, and there is a small
amplitude vibration in the initial stage of adjustment, but
when the damping is reduced to 60%, the system can still
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FIGURE 11. Time-domain adjustment process of the system under
different damping perturbations.

operate stably recently. This is consistent with the Nyquist
diagram shown in Fig.9.

In summary, for the parameter perturbation of damping,
the system has at least 60% parameter perturbation range.
The controller obtained by this method has good robustness
to weakly damped flexible systems.

IV. CONCLUSION
The existing H-inf design is researched on the basis of gain
control. In this paper, the phase condition is used in the
H-inf design to ensure the stability and control performance
of the closed-loop system. Aiming at the problem of how
to design the positive real phase control with H-inf the-
ory, an H-inf optimization method with pole placement and
weighting function is given, which relaxes the strict positive
real requirements, and uses the advantages of non-minimum
phase zeros, making the designmore flexible. A design exam-
ple of a controlled plant with multiple weak damping modes
shows that using this method to control the weakly damped
system, the obtained controller is stable, and the robustness
of the closed-loop system is significantly better than the
H-inf loop forming method. Because this method is based
on H-inf optimization method, and the controlled object in
the design example has generality, this method can also be
used in the control design of other weakly damped flexible
systems.
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