
Received October 11, 2020, accepted October 21, 2020, date of publication October 27, 2020,
date of current version December 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3034225

Hierarchical Reinforcement Learning for
Autonomous Decision Making and Motion
Planning of Intelligent Vehicles
YANG LU 1, XIN XU 1, (Senior Member, IEEE), XINGLONG ZHANG1, (Member, IEEE),
LILIN QIAN 2, AND XING ZHOU1
1College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
2Unmanned System Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100000, China

Corresponding author: Xin Xu (xinxu@nudt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61751311 and Grant 61825305, and in
part by the National Key Research and Development Program of China under Grant 2018YFB1305105.

ABSTRACT Autonomous decision making and motion planning in complex dynamic traffic environments,
such as left-turn without traffic signals and multi-lane merging from side-ways, are still challenging tasks
for intelligent vehicles. It is difficult to generate optimized behavior decisions while considering the motion
capabilities and dynamic properties of intelligent vehicles. Aiming at the above problems, this article
proposes a hierarchical reinforcement learning approach for autonomous decision making and motion
planning in complex dynamic traffic scenarios. The proposed approach consists of two layers. At the higher
layer, a kernel-based least-squares policy iteration algorithm with uneven sampling and pooling strategy
(USP-KLSPI) is presented for solving the decision-making problems. The motion capabilities of the ego
vehicle and the surrounding vehicles are evaluated with a high-fidelity dynamic model in the decision-
making layer. By doing so, the consistency between the decisions generated at the higher layer and the
operations in the lower planning layer can be well guaranteed. The lower layer addresses themotion-planning
problem in the lateral direction using a dual heuristic programming (DHP) algorithm learned in a batch-mode
manner, while the velocity profile in the longitudinal direction is inherited from the higher layer. Extensive
simulations are conducted in complex traffic conditions including left-turn without traffic signals and multi-
lane merging from side-ways scenarios. The results demonstrate the effectiveness and efficiency of the
proposed approach in realizing optimized decision making and motion planning in complex environments.

INDEX TERMS Autonomous driving, hierarchical reinforcement learning, complex dynamic traffics,
decision making, motion planning.

I. INTRODUCTION
Autonomous driving technology (ADT) has received exten-
sive attention in the past decade and has made much progress.
ADT is an important part of the future intelligent transport
system which is promising to realize transportation safety,
efficiency and energy conservation. However, in complex
traffic conditions such as left-turn without traffic signals and
multi-lane merging from side-ways etc., there are still many
challenges in achieving fully autonomous driving [1]. Among
them, behavioral decision making and motion planning for

The associate editor coordinating the review of this manuscript and

approving it for publication was Michail Makridis .

solving complex dynamic traffic scenarios are two major
challenges.

In a typical decision-making and motion-planning system,
the decision-making module is in charge of generating high-
level orders, such as slow down and speed up; while the
motion planner is to compute the detailed trajectory pro-
file that can be followed by the vehicle using low-level
controllers. There have been fruitful works contributed to
improving the decision-making behaviors in complex envi-
ronment and the motion planning performance in terms of
mobility and smoothness, see for instance [2], [3]. The
above works addressed the decision-making or motion plan-
ning problems respectively. In fact, the performance of the

209776 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-4023-3963
https://orcid.org/0000-0003-3238-745X
https://orcid.org/0000-0002-6227-9970
https://orcid.org/0000-0001-7462-4674

Y. Lu et al.: Hierarchical Reinforcement Learning for Autonomous Decision Making and Motion Planning

decision-making and motion planning are mutually coupled.
As a specific example, the decision-making, if not consider-
ing the motion capability of the vehicle, might lead to a policy
that can not respect the limit of vehicle dynamics. With this
information, the trajectory computed by the motion planner
might not be reachable to the low-level controllers, which
leads to inconsistency issues.

In this article, we develop a hierarchical structure based
on reinforcement learning to address this issue. In contrast
to rule-based approaches that might generate conflict deci-
sions in complex environment, we propose a reinforcement
learning-based algorithm for making decisions in continuous
state space. Also, a high-fidelity dynamical model is utilized
for collecting state samples of the ego and surrounding vehi-
cles, which are then used for generating consistent decision-
making policies via off-line training. Note that, in [4],
a time-efficient motion planning algorithm was developed
for maneuver in urban scenarios. The difference our paper
lies in the following two aspects: i) the decision-making and
motion planning policies are learned and improved in a fully
data-driven way; ii) the online computational issue is not a
major concern since the policy can be learned off-line in a
batch-mode manner.

Hence, the main contributions can be summarized as
follows:
• We propose a hierarchical reinforcement learning algo-
rithm for decision making and motion planning of intel-
ligent vehicles. At the higher layer, a sample-efficient
kernel-based least-squares policy iteration algorithm
with uneven sampling and pooling strategy (USP-
KLSPI) is presented for decision making, while the
motion planner in the lower layer utilizes a batch-mode
dual heuristic programming (DHP) to generate the tra-
jectory in the lateral direction.

• The motion capabilities of the ego vehicle and the sur-
rounding vehicles are considered at the higher layer
in the training process using a high-fidelity vehicle
dynamic model. In this way, the consistency between
the decisions generated at the higher layer and the oper-
ations learned in the lower planning layer can be well
guaranteed.

• Extensive simulations on decision making and motion
planning are conducted in complex traffic conditions
including left-turn without traffic signals and multi-lane
merging from side-ways scenarios. The results demon-
strate the effectiveness and efficiency of the proposed
approach in realizing optimized decision making and
motion planning.

The remainder of this article is arranged as follows. Related
works and research background are given in Section II. The
framework of HRL, decision making in two complex sce-
narios, as well as motion planning for avoiding obstacles are
presented in section III, while Section IV provides simulation,
analyses, and discussion. Finally, the conclusions and future
work are drawn in Section V.

II. RELATED WORKS AND RESEARCH BACKGROUND
A. RELATED WORKS
In the aspect of decision making, rule-based decision-making
methods were generally utilized in earlier research on intel-
ligent vehicles. Among them, the most typical rule-based
decision-making method is finite state machine (Finite State
Machine, FSM) [5], [6]. Rule-based methods were widely
applied in solving decision-making problems of intelligent
vehicles because of the clear logic and strong interpretability.
However, problems such as decision conflicts or discontinu-
ous decisions may occur due to overlapping judgment con-
ditions or discontinuous state divisions. Besides, rule-based
decision-making methods rarely have the ability to deal with
unseen scenarios.

In recent years, applications of machine learning methods
in behavioral decision making have received much attention.
Ngai et al. proposed a tabular reinforcement learning (RL)
framework to learn lane-changing and overtaking behav-
iors [7]. The tabular Q-learning method converges slowly.
In addition, it has computational and storage burdens in
behavioral decisions of continuous space. In [8], kernel-based
approximate policy iteration (API) algorithm was utilized to
deal with the overtaking problems in the highway. Compared
with traditional tabular RL methods in solving decision-
making problems, it improves the learning efficiency. In [9],
the extreme learning machine (ELM) was introduced to
the batch-mode RL for realizing fast and efficient feature
reconstruction, and Liu et al. verified its effectiveness in
the lane-changing decision-making problem. Kernel-based
API in [8] and ELM-API in [9] dealt with simple over-
taking tasks and lane-changing issues without considering
the trajectory planning when there exists the obstacles.
In [10]–[14], deep learning approaches were used for training
the collected raw sensor samples in specific scenarios which
can map the images to actions. The advantages of using
deep neural networks include automatic feature extraction
and feature representation. However, the complex dynamic
scenarios such as left-turn without traffic signals and multi-
lane merging from side-ways were not considered in previous
works. In addition, it is still difficult to generate optimized
behavior decisions while considering the motion capabilities
and dynamic properties of intelligent vehicles.

As a connection between behavior decision and lower-
level control, the motion planning module of intelligent vehi-
cles needs to plan kinematically or dynamically feasible
trajectories for tracking control. Previous motion-planning
methods can be classified into four categories [15]: graph
search based [16]–[21], sampling based [22]–[24], interpola-
tion curve [25]–[28], and numerical optimization [29]–[31].
In [29], Dolgov et al. proposed to use A* search to obtain a
kinematically feasible trajectory and utilized numerical opti-
mization method to smooth the previously calculated trajec-
tory. The computation time of A* search method is expensive
and is suitable for known unstructured low-speed scenar-
ios. As a kind of sequential optimization decision approach,

VOLUME 8, 2020 209777

Y. Lu et al.: Hierarchical Reinforcement Learning for Autonomous Decision Making and Motion Planning

RL has potential in solving the motion-planning problems
of nonlinear systems. In [32], Lian et al. proposed the use
of Heuristic Dynamic Programming (HDP) to avoid obsta-
cles. Experimental tests on wheeled mobile robots verified
the effectiveness of the method. In [33], Al Dabooni et al.
proposed the Dyna-HDP algorithm for vehicle planning tasks
which can find approximate optimal trajectories. HDP in [32]
and Dyna-HDP in [33] were utilized to complete the motion-
planning tasks. The above works are mainly concerned about
the optimization in the planning layer. Nevertheless, since
there is a close coupling relationship between behavioral
decision making and motion planning, in complex dynamic
scenarios, there may be conflicts between the two layers. In a
previous work [34], Qian et al. proposed a decision-making
algorithm using the planning feature in the training process
for performance improvement. However, the planning feature
used cannot completely represent the motion capability of the
vehicles.

B. RESEARCH BACKGROUND
Markov decision processes (MDPs) can provide efficient
mathematical frameworks for RL. As the system model is
unknown or partially known in complex dynamic scenarios,
it is difficult to calculate an accurate solution to solve the
optimal decision-making problems. In RL, approximate pol-
icy iteration and actor-critic algorithms have been studied to
solve MDPs with unknown model and large state spaces.

1) THE MDP MODEL FOR RL
An MDP model can be represented as a quaternion tuple
[S,A,Psa,R], where S andA are the sets of states and actions,
respectively. Psa is the state transition probability from state
st to st+1 after performing an action at . When it occurs state
transition from the state st to the next state st+1 after taking
an action at ∈ A, we can obtain the corresponding reward
R(st , at), i.e. S × A→ R.
In RL, the state-action value function for a given MDP

model is defined as follows:

Qπ (st , at) = Eπ
[
∞∑
t=0

γ tr(st , at) |s0 = st , a0 = at

]
(1)

whereEπ (·) is themean of stationary policyπ which canmap
the state to the action space, that is π : S → A. r(st , at) ∈ R
is the reward, the γ ∈ (0, 1] is the discount factor and the
equation above can be described by

Qπ (st , at) = Eπ [r (st , at)

+γ
∑

at+1∈A

Psa (st+1, at+1)Qπ (st+1, at+1)] (2)

2) APPROXIMATE POLICY ITERATION
In [35], Lagoudakis et al. considered the advantages of least-
squares temporal-difference (LSTD) and approximate policy
iteration (API). Then the least-squares policy iteration (LSPI)
was proposed. LSPI uses a linear weighted combination of

k basis functions
∑k

i=1 φi (st , at) to approximate the state-
action value function Qπ [35].

Q̂π (st , at) =
k∑
i=1

φi (st , at)wπi = φ (st , at)
> wπ (3)

where φ (st+1, at+1) ∈ R1×k . Hence equation (2) can be
rewritten in the format of matrix as follows:

φ (st , at)> wπ = E[r (st , at)

+γ
∑

at+1∈A

Pπsaφ (st+1, at+1)
> wπ] (4)

at+1 = π (st+1). According to [36], the weighted least-
squares solution would be:

wπ = A−1b (5)

According to [35], A and b can be approximated using col-
lected samples. The state-action pair (si, ai) is denoted as si,
and (si+1, ai+1) is denoted as si+1 for convenience. Hence,
the approximated value of A and b are written as:

Â = Â+
T∑
i=1

φ (si)> [φ (si)− γφ (si+1)]

b̂ = b̂+
T∑
i=1

φ(si)>ri (6)

sk = [si, ai, si+1, ri] (k = 1, · · · ,T), where sk represents
the training samples and T is the number of samples. LSPI
utilizes the greedy strategy to choose the action that can
maximize the state-action value function Qπ .
To improve the learning efficiency and convergence speed,

Xu et al. proposed a kernel-based least-squares policy iter-
ation algorithm (KLSPI) which uses a technique of approx-
imate linear dependence (ALD) [37]. The decision-making
policy can be trained by KLSPI with the pre-collected sam-
ples. Due to the ability of non-linear feature representation,
KLSPI has a superiority in dealing with decision-making
problems of large-scale state and action spaces. In addition,
when the number of samples is large, it can still learn the
approximate optimal policy. Comparedwith LSPI, the KLSPI
algorithm has better convergence properties and can obtain an
approximate optimal solution.

3) HRL FOR OPTIMIZING DECOMPOSED SUBTASKS
When intelligent vehicles drive in complex dynamic environ-
ments, the decision making and motion planning have to be
optimized at the same time. One advantage of hierarchical
reinforcement learning is solving complex tasks based on task
decomposition. In [38], a hierarchical-DQN framework was
proposed. The higher layer learns a policy over intrinsic goals
and the lower layer learns a policy that meets the goal from
the atomic actions. In [39], Ding et al. proposed a hierarchical
framework of which the upper layer generates the control
actions by hidden Markov model and the lower layer realizes
the planning for agents’ navigation by deep reinforcement

209778 VOLUME 8, 2020

Y. Lu et al.: Hierarchical Reinforcement Learning for Autonomous Decision Making and Motion Planning

FIGURE 1. The framework of HRLDP: st is the state perceived by the ego
vehicle. vexpect is longitudinal speed and δ is the front steering angle. The
thick arrows indicate the transfer of batch data, and the thin arrows
represent the transfer of matrix or several states.

learning. To the best of our knowledge, there is little work on
hierarchical reinforcement learning for autonomous decision
making and motion planning of intelligent vehicles in com-
plex traffic conditions such as left-turn without traffic signals
and multi-lane merging from side-ways.

III. THE PROPOSED HRL APPROACH FOR OPTIMIZED
DECISION MAKING AND MOTION PLANNING
From the task decomposition perspective, we propose a
hierarchical reinforcement learning approach for solving
decision-making and motion-planning problems, as depicted
in Fig.1.

At the higher layer, we utilize the USP-KLSPI to make
decisions. The process for obtaining decision-making policy
includes four parts: MDP modeling of the decision-making
tasks, uneven sampling, sample pooling strategy, and the
KLSPI algorithm.

At the lower layer, the real-time obstacle avoidance is
solved by the planning policy being trained via a DHP in
a batch-mode way. Finally, the expected longitudinal speed

vexpect and the steering angle δ are transferred to the low-level
controller.

In the both layers, the data samples used for training are
collected using a high-fidelity 14-degree-of-freedom (DOF)
dynamics, which is referred to the previous work in [8], [40].
The dynamics of the built vehicle consists of 3 modules,
which are the steering system, the body suspension model,
and the motion. Also, the effectiveness of the model to the
real vehicle dynamics is verified.

The main steps of HRLDP is shown in Algorithm 1. The
algorithm includes the higher decision-making layer and the
lower motion-planning layer.

Algorithm 1 Hierarchical Reinforcement Learning for Deci-
sion Making and Motion Planning of Intelligent Vehicles
1: \\ The higher layer.

Require: Scenario information, the trained decision-making
policy wπ .

Ensure: The decision considering the longitudinal speed.
2: Obtain the states of the ego vehicle and the ruled-based

surrounding vehicles, i.e. st ;
3: Compute Q̂π at the state st by K>(st)wπ ;
4: Generate the final decision by argmaxat Q̂

π (st , at);
5: \\ The lower layer.

Require: The decision containing the longitudinal speed
information, the trained motion-planning policyWa.

Ensure: Planning results to low-level control.
6: Obstacle detection and obtaining current vehicle state s;
7: Generate the front steering angle for lateral trajectory

planning, i.e. δ = W>a K (s);

A. LEARNING-BASED DECISION MAKING USING
USP-KLSPI IN COMPLEX TRAFFIC ENVIRONMENTS
1) USP-KLSPI
In order to improve the sampling efficiency and reduce the
training time, this article proposes an USP-KLSPI algorithm
for decision making.

Uneven sampling is reflected in collecting more samples
from the interest intervals, while roughly sampling in the
uninterested area. This sampling method is similar to the
attention mechanism of human in life. For instance, when
pedestrians go across the road, they tend to pay attention to
the information of vehicles that are very close. Assuming that
the distance ranges between the ego vehicle and social vehicle
are:

df ∈
[
0, df max

]
, dr ∈ [0, dr max] (7)

where df max and dr max are related to the maximum percep-
tion distance of the ego vehicle. The sampling ranges are
composed by {

Dfi = ωfi · df max, ωfi ≤ 1
Dri = ωri · dr max, ωri ≤ 1

(8)

VOLUME 8, 2020 209779

Y. Lu et al.: Hierarchical Reinforcement Learning for Autonomous Decision Making and Motion Planning

FIGURE 2. Sample pooling process: In the upper part of the figure,
the red point d is a distance element in the sample and the green point is
the corresponding pooling result. In the lower part of the figure, the red
point v is a speed element in the sample and the green point is the
corresponding pooling result.

where ωfi, ωri are the important factors and can be adjusted
by hand according to the heuristic information. We initialize
the distances of social vehicles inDfi andDri while collecting
the i-th sub-sample set. A data sample collection process
is performed by using an exploration policy, which has the
form of [st , at , st+1, rt]. Repeat the above processes until the
desired number of samples are collected for N sub-sample
sets.

To obtain the representative information, we use the pool-
ing strategy to process elements in each sample. The intuitive
pooling process is shown in Fig.2. As seen from it, both d(n)
and v(n) represent the sum of n intervals. They are described
as follows:

d(n) =
n∑
i=1

di, v(n) =
n∑
i=1

vi (9)

where di and vi represent the i-th interval size. For states
d ∈ [d(p), d(q)] and v ∈ [v(w), v(z)], we assume the small
intervals in dq and vz are with constant values (hd and hv).
Elements d and v in a sample can be processed with a max-
pooling manner:

d = d(p)+ d
d − d(p)

hd
+ 1e ∗ hd (10)

v = v(w)+ d
v− v(w)

hv
+ 1e ∗ hv (11)

With the processed samples, we train the KLSPI algorithm
for a decision-making policy. According to [37], KLSPI uses
the way of kernel feature representation to approximate state-
action value function Qπ . To a state si, a vector of basis
functions can be expressed as follows:

K (si) =
(
k̄ (si, s1) , k̄ (si, s2) , . . . , k̄ (si, sc)

)> (12)

where k̄(·, ·) is the kernel function and K ∈ Rc×1. Note
that, the ALD method could produce kernel dictionary with
multiple center points C = {s1 · · · , sc} from the sam-
ple set, where c is number of center points. According to
the equation (5), the following matrices update rule can

be obtained:

Â = Â+
T∑
i=1

K (si)
(
K> (si)− γK> (si+1)

)
b̂ = b̂+

T∑
i=1

K (si) ri (13)

sk = [si, ai, si+1, ri] (k = 1, · · · ,T), where sk represents the
training samples and T is the number of samples.

With the solved least-squares solution wπ by (5),
the approximation of state-action value function at state st
can be obtained:

Q̂π (st) = K>(st)wπ (14)

Hence, the policy that maximizes the state-action value func-
tion is the optimal solution:

π∗ (st) = argmax
at

Q̂π (st , at) (15)

Remark 1: It is highlighted that the time cost required for
the sampling process of Algorithm 2 is T · 1t , where 1t is
the preset time of completing a sampling process and T =
N · Nnum.
Remark 2: The flops required for the computation in equa-

tions (13) and (5) are about 2(T − 1)c2 + (T + 1)c and 2c2,
respectively. The flops required for the computation in the

Algorithm 2 USP-KLSPI for Decision-Making Policy
1: \\ Sampling process

Require: The environment simulated with 14-DOF vehi-
cle dynamics, scenario information, and the decision-
making task.

Ensure: The training samples.
2: for m← 1 to N do
3: Determine the sampling intervals by equation (8);
4: Randomize each state st and collect Nnum samples

[st , at , st+1, rt] by using an exploration policy;
5: end for
1: \\ Training process

Require: The training samples, initialized policy weightwπ1 .
Ensure: policy weight wπ for decision making.
2: \\ Niter is the preset number of iterative learning;
3: \\ ε is the preset small threshold;
4: Use sample pooling strategy to process the samples by

equations (10) and (11);
5: for m← 2 to Niter do
6: Update the weight wπm by KLSPI;
7: if ‖wπm − w

π
m−1‖2 ≥ ε then

8: Continue.
9: else

10: Let wπ = wπm.
11: Output the converged policy weight wπ .
12: end if
13: end for

209780 VOLUME 8, 2020

Y. Lu et al.: Hierarchical Reinforcement Learning for Autonomous Decision Making and Motion Planning

off-line training process of Algorithm 2 are about 2Tc2 +
(T + 1)c. The flops count can be reduced approximately as
Tc2. Thismeans the algorithm complexity grows linearlywith
sample numbers T , and the computation time is also related
to the number of kernel centers c.
Remark 3: When the trained policy is deployed for real-

time decision-making problems, the required flops for com-
puting the optimal policy (i.e. equations (14) and (15)) are
na(2c − 1), where na = 3 is the number of optional actions.
The flops count can be reduced approximately as c. The
number of kernel centers c in scenario-A is with a magnitude
of 102, while is about 103 in scenario-B. Hence it has a
low computation time and is feasible to deal with real-time
planning problems.

The USP-KLSPI algorithm applied for obtaining the
decision-making policy of intelligent vehicles is presented in
the Algorithm 2.

2) DECISION MAKING IN LEFT-TURN WITHOUT TRAFFIC
SIGNALS
With the development of vehicle communication technol-
ogy, the information on surrounding vehicles can be easily
obtained. This article assumes that, within the autonomous
vehicle’s perception range, we can obtain the speed, position,
and current lane information of the social vehicles.

The scenario of left-turn without traffic signals is shown
in Fig. 3. The autonomous vehicle needs to cross with con-
sideration of those coming from the front and rear directions.
The turning radius of the intersection is an arc with a radius
of around 13m (R ≈ 13m). Taking into account the driving
safety and the constraints of vehicle dynamics, a reasonable
longitudinal speed around 10m/s is adopted.

Before sampling, an MDP model needs to be established.
As shown in Fig. 3, in the process of driving through each
lane, the state in MDP is defined as:

st =
[
VEgo Vri dri Vfi dfi

]
i = 1 or i = 2 (16)

Among them, i is the lane information, Vri/Vfi represent the
speed of the nearest rear/front social vehicle; dri and dfi are
the distances from the autonomous vehicle, respectively.

The optional actions of the autonomous vehicle in this
scenario can be expressed as:

at = {Slow,Keep,Acc} (17)

The actions are slowing down, keeping an original speed and
acceleration, respectively. Denote VEgo as the current longi-
tudinal speed of the ego vehicle, where VEgo is set within the
range [0, 13m/s]. Denoting the notation LEgo as the current
lane information of the ego vehicle, a collision is defined
as

(
LEgo == i&&dfi ≤ 5m

)
||
(
LEgo == i&&dri ≤ 15m

)
.

A successful decision-making process means no collision
occurs when XEgo < −25m&&LEgo == 2.

To bridge the gap between simulated and real environ-
ments, social vehicles are considered with 14-DOF vehicle
dynamics [40]. They have different desired velocity and a
corresponding safe tracking distance dfollow. The longitudinal

FIGURE 3. Left-turn without traffic signals (Scenario-A): When the ego
vehicle crosses the 1-th lane, the vehicles on the left are considered as
the rear vehicles. When the ego vehicle crosses the 2-th lane, the vehicles
on the right are considered as the rear vehicles.

planning policies of the τ -th social vehicle can be expressed
as follows: {

vτ_expect dτ j ≥ dfollow
vτ_brake dτ j < dfollow

(18)

where vτ_expect is the expected velocity, vτ_brake represents
the speed that social vehicle should slow down to. dτ j is
the distance between the two social vehicles. Assuming the
τ -th car is following the j-th car, dfollow can be expressed as
follows:

dfollow = vτ ·1T +
v2τ
2aτ
−

v2j
2aj

(19)

where 1T is the reaction time of the drivers. vτ and vj
represent the current speed. aτ and aj are the corresponding
brake accelerations. Hence, dfollow is a guidance for planning
the longitudinal speed of social vehicles.

As shown in Table 1, the detailed parameter settings are
given. In the case of multiple forward/backward vehicles
in the i-th lane, the nearest forward/backward vehicle will
be considered into the state st . When there is no vehicle
forward/backward, dfi,Vfi and dri,Vri are determined by the
following equation.{

dfi = df max,Vfi = Vf max dfi ≥ df max

dri = dr max,Vri = Vr max dri ≥ dr max
(20)

Both the surrounding vehicles and the ego vehicle are
simulated with 14-DOF vehicle dynamics [40]. After the ego
vehicle takes a randomized action at , one sampling process
terminates when the ego vehicle crosses the 1-th lane or waits
at the interaction for 1s, thereby obtaining the next state st+1.
The simulation runs for such preset time mainly because we
have computed the approximate time to complete a sampling
process. The reward function is designed as

rt =

−1000 collision = 1
− 400 YEgo < 0&&collision = 0
−ξ ·1t collision = 0

(21)

VOLUME 8, 2020 209781

Y. Lu et al.: Hierarchical Reinforcement Learning for Autonomous Decision Making and Motion Planning

TABLE 1. Parameter settings of left-turn without traffic signals scenario.

TABLE 2. Parameter settings in multi-lane merging from side-ways scenario.

where ξ is the adjustability coefficients, i.e. the penalty for
the magnitude of the velocity. Variable 1t is the completion
time of each task, and YEgo is the ordinate value. The process
of obtaining a sample [st , at , st+1, rt]: in initial state st , ran-
domized action at was taken, a reward rt was received, and the
resulting state was st+1. Then we train the KLSPI algorithm
based on the samples to obtain a decision-making policy.

One thing to emphasize is that the autonomous vehicle
needs to make continuous decisions in the area of A1 and A2
which are shown in Fig. 3.

3) DECISION MAKING IN MULTI-LANE MERGING FROM
SIDE-WAYS
As shown in Fig. 4, the scenario is composed of three lanes.
The autonomous vehicle has to consider the social vehicles’
motion in three lanes, especially for the social vehicles in the
2-th lane and the 1-th lane. The autonomous vehicle has to
choose a proper occasion to merge into the 1-th lane. In the
meanwhile, longitudinal speed is also given by the decision-
making layer.

FIGURE 4. Multi-lane merging from side-ways (Scenario-B).

As shown in Table 2, the detailed parameter settings are
given. In the case of multiple forward/backward vehicles
in the i-th lane, the nearest forward/backward vehicle will
be considered into the state st . When there is no vehicle
forward/backward, dfi,Vfi and dri,Vri are determined by
equation (20).

TABLE 3. Rule-based policies of the i -th social vehicle.

Before sampling, an MDP model needs to be established.
The 14-dimensional state st is defined as

st =
[
LEgo VEgo Vfi dfi Vri dri

]
i = 1, 2, 3 (22)

The action at is defined as

at ∈ {LCT (0) Acc, LCT (0) Slow, LCT (1)} (23)

where LCT (i) , {i = 0, 1} means a lane-changing maneuver
to the i-th lane, LCT (0) represents driving on the original
ramp, LCT (1) means a lane-changing maneuver to the 1-th
lane. Acc, Slow mean to accelerate and slow down, respec-
tively. As the equation (23) shows, the autonomous vehicle
has a total of three optional actions in this scenario. They
are: acceleration on the ramp, slowing down on the ramp,
and changing to the 1-th lane. A collision is defined as(
LEgo == i&&dfi < 5m

)
||
(
LEgo == i&&dri < 20m

)
.

In Fig. 5, we use the notations Aactions, Bactions, Cactions
to represent the optional actions at the states A,B,C ,
respectively. Under the premise of ensuring driving safety,
the driving policies should conform to the driving habits
of human drivers as much as possible, and the rule-based
policies of social vehicles are presented in Table 3. Through
the above settings, the simulation environment gradually
becomes high-fidelity.

209782 VOLUME 8, 2020

Y. Lu et al.: Hierarchical Reinforcement Learning for Autonomous Decision Making and Motion Planning

FIGURE 5. Decisions of social vehicles in each lane: Solid arrows indicate
the optional decisions of social vehicles. The dotted arrow is a sudden
maneuver merging into the slow lane. Under these potential collision
threats, the ego vehicle needs to make decisions for safe merging.

After the ego vehicle taking a randomized action at , one
sampling process terminates when the ego vehicle merges
into the 1-th lane or drives on the ramp for 5s, thereby
obtaining the next state st+1. The reward function is a quan-
titative evaluation of the behavioral decision. The reward
function is designed as:

rt =

−1000 Collision
max

(
−5 ∗ XEgo,−600

)
Ego.Lane = 0

−|VEgo − Vd | Ego.Lane = 1

(24)

where XEgo represents the current abscissa of the autonomous
vehicle. Due to the limited length of the ramp, a greater
penalty will be given when the autonomous vehicle has a
larger abscissa value. Vd represents the desired maximum
speed of the ego vehicle, and this item is used to force the
autonomous vehicle to reach the desired speed faster.

Samples with the form of [st , at , st+1, rt] can be collected
and the KLSPI algorithm is trained for a decision-making
policy.

B. THE BATCH-MODE DHP ALGORITHM FOR MOTION
PLANNING
At the higher layer, we model the complex dynamic scenarios
and propose a USP-KLSPI algorithm to learn the decision-
making policy. In dealing with the decision-making prob-
lems, the motion data-samples of the ego vehicle and the
rule-based surrounding vehicles are collected with a high-
fidelity dynamic model for the learning process. Hence,
the inconsistency between the decision generated at the
higher layer and the operation in the lower planning layer
can be avoided. The higher layer has considered the lon-
gitudinal speed policy. Therefore, the planning work in the
lower layer can be reduced a lot as we only need to plan
the trajectory in the lateral direction. Generally speaking,
the high-fidelity 14-DOF vehicle model can be employed
in the learning process. However, it will bring a compu-
tation load. We simplify the high-fidelity 14-DOF vehicle
model to the lateral dynamics and utilize DHP algorithm
learning in batch-mode manner to realize motion planning.
The simplified lateral dynamic model includes the following
four-dimensional states s = [eLat ėLat 1ϕ 1ϕ̇]>, where eLat
is the lateral error between the reference point and c.g. of the
vehicle, and the1ϕ represents the heading error between the
vehicle and the expect yaw angle.

Algorithm 3 Sampling Process of Motion Planning
Require: 14-DOF dynamics, NSam, reference y = ψ (x) .
Ensure: {s1, s2, · · · , sM }.
1: for m← 1 to Nsam do
2: State initialization: s = [eLat ėLat 1ϕ 1ϕ̇];
3: for n← 1 to 1000 do
4: Randomize un in the range of [−umax , umax];
5: Obtain the next state sn+1 with the 14-DOF vehicle

dynamics;
6: if ‖sn+1‖ ∈ smax then
7: Save sn+1;
8: else
9: Break;
10: end if
11: end for
12: end for

The algorithm of sampling process in motion planning is
shown in Algorithm 3, where NSam represents the desired
episodes, and the reference y = ψ (x). As seen from it,
the first step is to initialize the state in each state-dimensional
range, smax = [1, 1, π/2, π/2], and the steering angle within
the preset range (umax = π/6) is applied to the 14-DOF
dynamics to obtain the next state. In this way, we can obtain
the desired samples of simulating the dynamics of the real
vehicle.

The learning-basedmotion planning in this article utilizes a
kernel-based DHP [41] to train for a planner. The next state is
obtained by applying the control action to the 14-DOF vehicle
dynamics in the simulated environment.

The reward function is defined as

r = s>Qs+ uTRu+ p · e−‖eLat‖ (25)

The adjustable parameter p is the penalty factor and set as
10. When there are no obstacles, the parameter p is set as 0.
Among them, Q = diag{1, 1, 5, 1} and R = 2. The item
p · e−‖eLat‖ indicates that the reward function is smaller with
the distance increasing. In practical application, it is not
suitable for the ego car to stay too far away from the obstacle
(large lateral error eLat does not meet the requirements of
the planning task.). Therefore, we hope to keep a balance.
A solution is to set proper penalty matrix Q. The item s>Qs
can limit the lateral error from too large. The other idea is to
set the penalty factor p = 0 and adopt the reference trajectory
changing strategy for realizing obstacle avoidance when it is
a structured road.

The batch-mode DHP planner can be trained by data col-
lected from real cars or high-fidelity software Carsim. In fact,
collecting training data of decision making through the two
ways requires a lot of resources. Therefore, this article utilizes
14-DOF vehicle dynamics for sampling in the simulation
environment. After collecting about 30000 samples generated
by the 14-DOF dynamic model, we train the Algorithm 4 for
a planning policy. When the policy is deployed to real-time

VOLUME 8, 2020 209783

Y. Lu et al.: Hierarchical Reinforcement Learning for Autonomous Decision Making and Motion Planning

Algorithm 4 The Training Process for Motion-Planning
Policy
Require: 14-DOF dynamics, initialized weights of actor and

critic modules, i.e.W [0]
a , W [0]

c .
Ensure: motion-planning policyWa.
1: Obtain the desired training samples by Algorithm 3;
2: Set the reward functions by the equation (25);
3: \\ Combine the samples and simplified 14-DOF

dynamic model to train the DHP algorithm;
4: \\ Niter is the preset number of iterative learning;
5: for m← 1 to Niter do
6: Process the samples in a batch-mode learning manner;
7: Update the weightW [m]

a ;
8: end for
9: LetWa = WNiter

a ;

planning tasks, the lateral steering angle can be expressed as

u = W>a K (s) (26)

where u is the front steering angle, i.e. δ, Wa is the weight
of the actor module, K (s) can be computed by the format of
equation (12). Based on the 14-DOF vehicle dynamics and
trained motion-planning policy, we can plan a trajectory of
vehicle motion.
Remark 4: In this note, we construct the feature by the

format of equation (12). Denote the number of samples and
kernel centers as Tm and cm, respectively. Through approxi-
mation, the algorithm computation complexity in the training
process is Tmc2m.
Remark 5: When the offline trained policy is applied

to real-time motion planning problem, the lateral planning
results can be computed by equation (26). As Wa ∈ Rcm×1

and K (s) ∈ Rcm×1, the computational complexity is about
2cm − 1. It can be approximately reduced as dm, where dm
is with a magnitude of 10. Hence it has a low computation
complexity and is feasible to deal with real-time planning
problems.

IV. SIMULATION AND ANALYSIS
In this section, the proposed HRLDP algorithm is applied to
the left-turn without traffic signals and multi-lane merging
from side-ways scenarios. Corresponding simulation results
and analyses are described in the following sections. Further-
more, the discussion is also presented.

A. LEFT-TURN WITHOUT TRAFFIC SIGNALS
The simulation is performed in the Matlab environment by
a Desktop with Intel i7-8700K CPU @ 3.7GHz and 16GB
RAM, and Windows 10 operating system. We obtain the
average time cost of our algorithm in 100 computations, i.e.
tde = 7.32× 10−4s and tpl = 2.98× 10−4s, where tde and tpl
are the average computation time of our decision-making and
motion-planning algorithms, respectively. The simulation
results are shown in the Fig.6. We show the positions of

the vehicles in a time series, thereby obtaining an x-y-t dia-
gram. To present the decision-making and motion-planning
processes better, Fig.7 shows a screenshot of different
moments. As seen from the two figures, the autonomous
vehicle waits for the social vehicles at the intersection firstly.
After the social vehicle (green diamond in Fig.6 and green
cube in Fig.7) just passes, the ego vehicle starts to go across
the intersection. Under normal circumstances, the ego vehicle
will drive to the 2-th lane safely. In Fig.6 and Fig.7, as the red
social vehicle slows down suddenly, the autonomous vehicle
then calls for the motion planning module to avoid obstacle.
From the trajectories in Fig.6, the autonomous vehicle finally
accomplishes the task successfully.

Then this article compares the performance of KLSPI and
USP-KLSPI in left-turn without traffic signals scenario. To
figure out the influence of parameters hd , hv on our decision-
making task, we determine several representative pooling
intervals, i.e. hd ∈ {1, 10, 20} and hv ∈ {1, 5, 10} to obtain an
approximate optimal combination. Then we perform testing
accordingly as seen in Table 4. When both hd and hv are 10,
the combination has a better performance in training time and
obstacle avoidance assistance (OAAR).

TABLE 4. The influence of parameters hd ,hv on decision-making task.

InUSP-KLSPI, the samples are composed of two parts: ini-
tial states in 20000 samples are within the intervals as Table 1,
i.e. Df 1 ∈ [0, 150] and Dr1 ∈ [0, 150]. Initial states in 10000
samples by uneven sampling are within the relatively small
intervals, i.e. Df 2 ∈ [0, 80] and Dr2 ∈ [0, 80]. Hence a
total of 30000 samples consisting of two sub-sample sets are
collected. In addition, ξ in the reward function is set as 10.
Table 5 shows the simulation results and the kernel widths in
the different algorithms are the same, i.e. σ = 20, for a fair
comparison. For the performance of OAAR and average time
cost (ATC) while completing this task, the two algorithms
are similar. Furthermore, the USP-KLSPI performs well in
reducing the training time.

TABLE 5. Performance of two decision-making algorithms.

Under the same test set, we test the USP-KLSPI algorithm
and the expert policy (in Table 6). The corresponding results
are shown in Table 7. As seen from it, the completion rate

209784 VOLUME 8, 2020

Y. Lu et al.: Hierarchical Reinforcement Learning for Autonomous Decision Making and Motion Planning

FIGURE 6. The x-y-t figure of decision making and motion planning in scenario-A: The left and right figures are the two different views of the x-y-t
figure. The blue circles represent the autonomous vehicle, and the rest shapes are the social (non-autonomous) vehicles.

FIGURE 7. Decision making and motion planning in scenario-A: The blue transparent cubes are the autonomous vehicle, and the
black dotted lines are the reference that the autonomous vehicle will track. The thick yellow lines in front of the autonomous vehicle
are the planning results. The rest cubes are the social (non-autonomous) vehicles, and the red arrows are the driving directions.

of expert policy is 82.2%. For USP-KLSPI, about 0.7% of
tests need obstacle avoidance assistance and the completion
rate is 99.6%. In terms of ATC, the USP-KLSPI has a better
performance due to the conservation of the expert policy.
That is to say, the autonomous vehicle using our USP-KLSPI
algorithm is more flexible in complex dynamic environments.

B. MULTI-LANE MERGING FROM SIDE-WAYS
In the same line with scenario-A, an extensive simulation
is conducted in the multi-lane merging from side-ways sce-
nario. The simulation environment is in the same line with
the previous scenario. We obtain the average time cost of our
algorithm in 100 computations, i.e. tde = 4.4 × 10−3s and

tpl = 2.84 × 10−4s. The corresponding results are shown
in Fig. 8. It shows the decision-making and motion-planning
processes with several views. To present the two processes
better, we only highlight the vehicles that directly influence
the motion of autonomous vehicle, i.e. the red triangle and
the green square in Fig.8.

As seen from Fig.8, the blue circles represent the posi-
tions of the autonomous vehicle. The initial position of the
autonomous vehicle is (0,−2.5). The autonomous vehicle
slows down for waiting the green vehicle nearby to pass
and prepares to merge into the 1-th lane. Then a red vehicle
changes lane from the 2-th lane to the 1-th lane suddenly.
The autonomous vehicle cancels the original decision and

VOLUME 8, 2020 209785

Y. Lu et al.: Hierarchical Reinforcement Learning for Autonomous Decision Making and Motion Planning

FIGURE 8. The x-y-t figure of decision making and motion planning in scenario-B: The left and right figures are the two different views of the x-y-t
figure. The blue circles represent the autonomous vehicle, and the rest shapes are the social (non-autonomous) vehicles. The social vehicles with red
triangle and green square that are highlighted for influencing the decision making of the autonomous vehicle.

TABLE 6. Expert Policy in scenario of left-turn without traffic signals
while crossing the i -th lane.

TABLE 7. Comparison of USP-KLSPI and expert policy in left-turn without
traffic signals scenario.

TABLE 8. The influence of parameters hd ,hv on decision-making task.

continues to drive on the original ramp. After the red vehicle
passes, the autonomous vehicle merges into the 1-th lane
and accomplishes the merging task. To present the processes
better, Fig.9 shows a screenshot of different moments and the
states information are attached.

Then this article compares the performance of KLSPI and
USP-KLSPI in this scenario. To figure out the influence of
parameters hd , hv on our decision-making task, we determine
several representative pooling intervals, i.e. hd ∈ {1, 10, 20}
and hv ∈ {1, 5, 10} to obtain an approximate optimal

TABLE 9. Performance of two decision-making algorithms.

TABLE 10. Expert Policy in scenario of multi-lane merging from
side-ways.

combination. Then we perform testing accordingly as seen
in Table 8. When hd and hv are set as 1, the combination has a
better performance in lower training time and ATC. In USP-
KLSPI, the samples are composed of two parts: The initial
states of 20000 samples are within the intervals as Table 2,
i.e. Df 1 ∈ [0, 150] and Dr1 ∈ [0, 100]. The initial states of
10000 samples by uneven sampling are within the relatively
small intervals, i.e. Df 2 ∈ [0, 80] and Dr2 ∈ [0, 60]. Thereby
a total of 30000 samples consisting of two sub-sample sets are
collected for training. The decision-making policies trained
by the two algorithms are employed for testing separately in
a total number of 1000. Table 9 shows the simulation results
and the kernel widths in different algorithms are the same,
i.e. σ = 50, for a fair comparison. The OAAR and ATC of
the two algorithms while completing this task are very close.
Furthermore, the proposed USP-KLSPI is useful in reducing
the training time. Compared with KLSPI, the OAAR is lower
and the ATC is longer. The major reason is that a relatively
conservative policy has been learned. While reducing the
OAAR, it also sacrifices ATC to complete the tasks.

Because the green vehicle suddenly slows down ahead,
the autonomous calls for the motion-planning module to
avoid the obstacle. The corresponding results are shown

209786 VOLUME 8, 2020

Y. Lu et al.: Hierarchical Reinforcement Learning for Autonomous Decision Making and Motion Planning

FIGURE 9. Decision making and motion planning in scenario-B: The blue transparent cubes are
the autonomous vehicle, while the remaining color cubes are the social vehicles. Among them,
the red and green cubes are the social vehicles that influence the decision making of autonomous
vehicle, and the rest white cubes are the social vehicles that have little influence on autonomous
vehicle’s decision-making. Correspondingly, the red arrows are the driving directions of
the vehicles, and the yellow thick lines are the planed trajectories at current states.

TABLE 11. Comparison of USP-KLSPI and expert policy in multi-lane
merging from side-ways scenario.

in Fig.10. As seen from it, a maneuver to the 2-th lane is
generated and the autonomous vehicle avoids the obstacle by
lateral trajectory planning.

Comparisons with expert policy (as in Table 10) were per-
formed, and the corresponding results are shown in Table 11.
The results show the ATC of USP-KLSPI method is much
shorter than that of expert policy. In terms of the completion
rate, the expert policy has a higher number of failures com-
pared to our proposed method.

C. DISCUSSION
The algorithms in the two layers are both trained off-line and
then deployed to real-time environments. From the analyses
of computing performance in remarks 3 and 5, our pro-
posed approach is potential in realizing real-time decision-
making and motion planning. To bridge the gap between the
simulated and real environment, the data samples used for
training are collected using a high-fidelity 14-DOF dynamics
in the both layers, and the consistency can be guaranteed.
In summary, our algorithm is feasible in dealing with
decision-making and motion planning problems in real
environments.

As to the applications in real environments, we need to
obtain the state information, i.e. st as in equation (16) or (23).
Then we use the trained policy wπ to make real-time deci-
sions by equations (14) and (15). In the aspect of motion
planning, as the decisions have included the longitudinal
speed information, we only concern about the lateral trajec-
tory planning by equation (26), i.e. W>a K (s). The real-time

VOLUME 8, 2020 209787

Y. Lu et al.: Hierarchical Reinforcement Learning for Autonomous Decision Making and Motion Planning

FIGURE 10. Motion planning in scenario-B: The blue transparent cube is the autonomous vehicle, and the green cube is the one of
the social vehicles. Correspondingly, the red arrows are the direction of the social vehicle and the yellow thick lines are the planned
trajectories.

decision-making and motion-planning processes are depicted
in the lower part of Figure.1 and in Algorithm 1.

V. CONCLUSION
In this article, a hierarchical reinforcement learning approach
is proposed for autonomous decision making and motion
planning in complex dynamic traffic scenarios. The motion
data-samples of the ego vehicle and the rule-based surround-
ing vehicles are collected by a high-fidelity 14-DOF dynam-
ics for the learning process in the decision-making problems.
In addition, the decision-making layer considers the opti-
mization of longitudinal speeds. The motion capabilities of
the ego vehicle and the surrounding vehicles are evaluated
with a high-fidelity dynamic model in the decision-making
layer. Therefore, the consistency between the decisions gen-
erated at the higher layer and the operations in the lower
planning layer can be well guaranteed.

The simulation results on two complex traffic scenar-
ios show the effectiveness and efficiency of our proposed
hierarchical reinforcement learning approach. Moreover,
comparisons with KLSPI was conducted, and the test results
indicate that the proposed USP-KLSPI can reduce the train-
ing time obviously. The corresponding results indicate that
the autonomous vehicle using the USP-KLSPI algorithm
is more flexible in complex dynamic environments. Future
work will be focused on efficient feature learning, and we
will pay more attention to handling integrated decision and
planning problems under complex constraints.

REFERENCES
[1] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, ‘‘A survey of

autonomous driving: Common practices and emerging technologies,’’
IEEE Access, vol. 8, pp. 58443–58469, 2020.

[2] G. Xiong, Z. Kang, H. Li, W. Song, Y. Jin, and J. Gong, ‘‘Decision–
making of lane change behavior based on RCS for automated vehicles in
the real environment,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2018,
pp. 1400–1405.

[3] I. Batkovic, M. Zanon, M. Ali, and P. Falcone, ‘‘Real-time constrained
trajectory planning and vehicle control for proactive autonomous driving
with road users,’’ in Proc. 18th Eur. Control Conf. (ECC), Jun. 2019,
pp. 256–262.

[4] A. Artuãedo, J. Villagra, and J. Godoy, ‘‘Real-time motion planning
approach for automated driving in urban environments,’’ IEEE Access,
vol. 7, pp. 180039–180053, 2019.

[5] M. Montemerlo, ‘‘Junior: The stanford entry in the urban challenge,’’ J.
field Robot., vol. 25, no. 9, pp. 569–597, 2008.

[6] A. Kurt and Ü. Özgäner, ‘‘Hierarchical finite state machines for
autonomous mobile systems,’’ Control Eng. Pract., vol. 21, no. 2,
pp. 184–194, Feb. 2013.

[7] D. C. K. Ngai and N. H. C. Yung, ‘‘A multiple-goal reinforcement learning
method for complex vehicle overtaking maneuvers,’’ IEEE Trans. Intell.
Transp. Syst., vol. 12, no. 2, pp. 509–522, Jun. 2011.

[8] X. Xu, L. Zuo, X. Li, L. Qian, J. Ren, and Z. Sun, ‘‘A reinforcement
learning approach to autonomous decision making of intelligent vehicles
on highways,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 50, no. 10,
pp. 3884–3897, Dec. 2019.

[9] J. Liu, L. Zuo, X. Xu, X. Zhang, J. Ren, Q. Fang, and X. Liu, ‘‘Efficient
batch-mode reinforcement learning using extreme learning machines,’’
IEEE Trans. Syst., Man, Cybern. Syst., early access, Aug. 14, 2019,
doi: 10.1109/TSMC.2019.2926806.

[10] D. A. Pomerleau, ‘‘Alvinn: An autonomous land vehicle in a neural net-
work,’’ in Proc. Adv. Neural Inf. Process. Syst., 1989, pp. 305–313.

[11] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, ‘‘Off-road obstacle
avoidance through end-to-end learning,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2006, pp. 739–746.

[12] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, ‘‘End to end learning for self-driving cars,’’ 2016,
arXiv:1604.07316. [Online]. Available: http://arxiv.org/abs/1604.07316

[13] H. Xu, Y. Gao, F. Yu, and T. Darrell, ‘‘End-to-End learning of driving
models from large-scale video datasets,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 2174–2182.

[14] Z. Bai, B. Cai, W. ShangGuan, and L. Chai, ‘‘Deep learning based motion
planning for autonomous vehicle using spatiotemporal LSTM network,’’
in Proc. Chin. Autom. Congr. (CAC), Nov. 2018, pp. 1610–1614.

[15] D. González, J. Pérez, V. Milanés, and F. Nashashibi, ‘‘A review of motion
planning techniques for automated vehicles,’’ IEEE Trans. Intell. Transp.
Syst., vol. 17, no. 4, pp. 1135–1145, Apr. 2016.

[16] E. W. Dijkstra, ‘‘A note on two problems in connexion with graphs,’’
Numerische Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[17] N. J. Nilsson, ‘‘A mobile automaton: An application of artificial intelli-
gence techniques,’’ in Proc. 1st Int. Joint Conf. Artif. Intell. (IJCAI), 1969,
pp. 509–520.

[18] A. Stentz, ‘‘Optimal and efficient path planning for partially-known envi-
ronments,’’ in Proc. IEEE Int. Conf. Robot. Autom., vol. 4, May 1994, pp.
3310–3317.

[19] D. Ferguson and A. Stentz, ‘‘Using interpolation to improve path planning:
The field D* algorithm,’’ J. Field Robot., vol. 23, no. 2, pp. 79–101, 2006.

[20] A. Nash, K. Daniel, S. Koenig, and A. Felner, ‘‘Theta: Any-angle path
planning on grids,’’ in Proc. AAAI, vol. 7, 2007, pp. 1177–1183.

[21] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, ‘‘Anytime
search in dynamic graphs,’’ Artif. Intell., vol. 172, no. 14, pp. 1613–1643,
Sep. 2008.

[22] L. E. Kavraki, P. Svestka, J.-C. Latombe, andM.H.Overmars, ‘‘Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,’’
IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, Dec. 1996.

[23] S. M. LaValle and J. J. Kuffner, ‘‘Randomized kinodynamic planning,’’ Int.
J. Robot. Res., vol. 20, no. 5, pp. 378–400, May 2001.

[24] S. Karaman and E. Frazzoli, ‘‘Optimal kinodynamicmotion planning using
incremental sampling-based methods,’’ in Proc. 49th IEEE Conf. Decision
Control (CDC), Dec. 2010, pp. 7681–7687.

[25] J. Reeds and L. Shepp, ‘‘Optimal paths for a car that goes both forwards
and backwards,’’ Pacific J. Math., vol. 145, no. 2, pp. 367–393, Oct. 1990.

[26] T. Fraichard and A. Scheuer, ‘‘From reeds and Shepp’s to continuous-
curvature paths,’’ IEEE Trans. Robot., vol. 20, no. 6, pp. 1025–1035,
Dec. 2004.

[27] P. Petrov and F. Nashashibi, ‘‘Modeling and nonlinear adaptive control for
autonomous vehicle overtaking,’’ IEEE Trans. Intell. Transp. Syst., vol. 15,
no. 4, pp. 1643–1656, Aug. 2014.

209788 VOLUME 8, 2020

http://dx.doi.org/10.1109/TSMC.2019.2926806

Y. Lu et al.: Hierarchical Reinforcement Learning for Autonomous Decision Making and Motion Planning

[28] J. P. Rastelli, R. Lattarulo, and F. Nashashibi, ‘‘Dynamic trajectory gen-
eration using continuous-curvature algorithms for door to door assis-
tance vehicles,’’ in Proc. IEEE Intell. Vehicles Symp. Proc., Jun. 2014,
pp. 510–515.

[29] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, ‘‘Path planning
for autonomous vehicles in unknown semi-structured environments,’’ Int.
J. Robot. Res., vol. 29, no. 5, pp. 485–501, Apr. 2010.

[30] J. Ziegler, ‘‘Making bertha drive—An autonomous journey on a historic
route,’’ IEEE Intell. Transp. Syst. Mag., vol. 6, no. 2, pp. 8–20, May 2014.

[31] A. Liniger, A. Domahidi, and M. Morari, ‘‘Optimization-based
autonomous racing of vol. 1, p. 43scale rc cars,’’ Optim. Control
Appl. Methods, vol. 36, no. 5, pp. 628–647, 2015.

[32] C. Lian and X. Xu, ‘‘Motion planning of wheeled mobile robots based on
heuristic dynamic programming for WCICA 2014 proceedings published
by IEEE,’’ in Proc. 11th World Congr. Intell. Control Autom., Jun. 2014,
pp. 576–580.

[33] S. Al Dabooni and D. Wunsch, ‘‘Heuristic dynamic programming for
mobile robot path planning based on dyna approach,’’ in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Jul. 2016, pp. 3723–3730.

[34] L. Qian, X. Xu, Y. Zeng, and J. Huang, ‘‘Deep, consistent behavioral deci-
sion making with planning features for autonomous vehicles,’’ Electronics,
vol. 8, no. 12, p. 1492, Dec. 2019.

[35] M. G. Lagoudakis and R. Parr, ‘‘Least-squares policy iteration,’’ J. Mach.
Learn. Res., vol. 4, pp. 1107–1149, Dec. 2003.

[36] J. A. Boyan, ‘‘Technical update: Least-squares temporal difference learn-
ing,’’ Mach. Learn., vol. 49, nos. 2–3, pp. 233–246, 2002.

[37] X. Xu, D. Hu, and X. Lu, ‘‘Kernel-based least squares policy iteration
for reinforcement learning,’’ IEEE Trans. Neural Netw., vol. 18, no. 4,
pp. 973–992, Jul. 2007.

[38] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, ‘‘Hier-
archical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 3675–3683.

[39] W. Ding, S. Li, H. Qian, andY. Chen, ‘‘Hierarchical reinforcement learning
framework towards multi-agent navigation,’’ in Proc. IEEE Int. Conf.
Robot. Biomimetics (ROBIO), Dec. 2018, pp. 237–242.

[40] R. Zheng, C. Liu, andQ.Guo, ‘‘A decision-makingmethod for autonomous
vehicles based on simulation and reinforcement learning,’’ in Proc. Int.
Conf. Mach. Learn. Cybern., Jul. 2013, pp. 362–369.

[41] J. Liu, Z. Huang, X. Xu, X. Zhang, S. Sun, and D. Li, ‘‘Multi-kernel
online reinforcement learning for path tracking control of intelligent vehi-
cles,’’ IEEE Trans. Syst., Man, Cybern. Syst., early access, Feb. 7, 2020,
doi: 10.1109/TSMC.2020.2966631.

YANG LU received the B.S. degree in automation
from the School of Mechanical, Electrical and
Information Engineering, Shandong University,
Weihai, China, in 2018. He is currently pursuing
the M.S. degree in control science and engineer-
ing with the College of Intelligence Science and
Technology, National University of Defense Tech-
nology, Changsha, China. His research interests
include reinforcement learning, model predictive
control, trajectory planning, behavior decision,

and autonomous vehicles.

XIN XU (Senior Member, IEEE) received the B.S.
degree in electrical engineering from the Depart-
ment of Automatic Control, National University of
Defense Technology (NUDT), Changsha, China,
in 1996, and the Ph.D. degree in control science
and engineering from the College of Mechatronics
and Automation, NUDT, in 2002.

He has been a Visiting Professor with The
Hong Kong Polytechnic University, the University
of Alberta, the University of Guelph, and the Uni-

versity of Strathclyde, U.K. He is currently a Professor with the College
of Intelligence Science and Technology, NUDT. He has coauthored more
than 160 papers in international journals and conferences and coauthored
four books. His research interests include intelligent control, reinforcement
learning, approximate dynamic programming, machine learning, robotics,
and autonomous vehicles.

Dr. Xu is a member of the IEEE CIS Technical Committee on Approx-
imate Dynamic Programming and Reinforcement Learning (ADPRL) and
the IEEE RAS Technical Committee on Robot Learning. He received the
Fork Ying Tong Youth Teacher Fund of China, in 2008, and the Second
Class National Natural Science Award of China, in 2012. He serves as
the Co-Editor-in-Chief for Journal of Intelligent Learning Systems and
Applications and the Associate Editor-in-Chief for CAAI Transactions on
Intelligence Technology (Elsevier). He is an Associate Editor of Information
Sciences, Intelligent Automation and Soft Computing, and Acta Automatica
Sinica. He was a Guest Editor of the International Journal of Adaptive
Control and Signal Processing andMathematical Problems in Engineering.

XINGLONG ZHANG (Member, IEEE) was born
in Anhui, China, in 1990. He received the Ph.D.
degree in system and control from the Politecnico
di Milano, in 2018. He is currently an Assistant
Professor with the National University of Defense
Technology, China. His research interests include
adaptive dynamic programming, model predictive
control, and learning-based control.

LILIN QIAN received the B.S. degree in electrical
engineering and automation from PLA Air Force
Aviation University, China, in 2015, and the Ph.D.
degree in control science and engineering from the
College of Intelligence Science and Technology,
NUDT, in 2020. He is currently a Lecturer with the
Unmanned System Technology Research Center,
NIIDT. His research interests include reinforce-
ment learning, trajectory planning, behavior deci-
sion, and autonomous vehicles.

XING ZHOU received the B.Eng. degree in com-
puter science from Hunan University, Chang-
sha, China, in 2012, and the M.S./Ph.D. degrees
in computer science/software engineering from
the College of Computer, National University of
Defense Technology (NUDT), in 2014 and 2019,
respectively. He is currently an Assistant Pro-
fessor with NUDT. He has published more than
ten articles in recent years. His research inter-
ests include robotics, optimization, and artificial
intelligence.

VOLUME 8, 2020 209789

http://dx.doi.org/10.1109/TSMC.2020.2966631

