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ABSTRACT Most of local differential privacy frameworks target statistics on certain privacy behaviors of
users, but not behavior sequence. In this paper, we explore and propose a behavior sequence mining model
that satisfies the local differential privacy requirement to settle the matter. We decompose their potential
behavior sequence into multiple temporal pairs that are computed by the server to infer indirectly behavior
sequence of users, shrinking the statistical sample space with adjacent temporal pairs to reduce statistical
errors. The experiment takes an example, trajectories of users can be inferred by their location information,
to demonstrate the effect our model achieved. It shows that the model can approximate users’ trajectories
under the requirement of local differential privacy.

INDEX TERMS Behavioral sequence, local differential privacy, privacy protection, user trajectory.

I. INTRODUCTION
The data age has spawned a variety of data collecting tech-
nologies that require different data sources, including per-
sonal privacy data. Thus, how to ensure that personal privacy
data is not infringed when collect it has gradually become the
focus of information security. The problem that traditional
differential privacy models require a trusted third party to
centrally deal with individual privacy data is solved by Local
Differential Privacy (LDP), and its privacy protection is the-
oretically more rigorous than the one offered by non-local
different privacy. Meanwhile, LDP also facilitates differential
privacy to be applied gradually in practice.

However, existing LDP models can only acquire event
element frequency of collected users, but not behavior
sequences. For instance, the flow of people can be judged
according to temporal relationships of their position infor-
mation in a certain area; individual browsing routes can be
funded according to the temporal relationships of the time
to visit these websites; buzzwords can be inferred according
to temporal relationships among popular words. Therefore,
an algorithm model that satisfies LDP privacy is designed
in the paper, decomposing users’ behavior sequences into
multiple adjacent temporal pairs represented by a matrix.
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The Server-side could conclude behavior sequences of users
in accordance with the privacy of LDP.

II. RELATED WORK
Differential Privacy [1], [2] is the latest privacy protection
framework proposed by Dwork for the privacy leakage
of a statistical database. It is the strictest privacy pro-
tection framework without consideration of the attacker’s
background knowledge. At the time of Dwork proposed the
differential privacy, he also proposed a basicmethod to imple-
ment differential privacy, namely the Laplace mechanism[2].
After that, McSherry and Talwar[3] proposed an Exponential
mechanism differential privacy framework for non-numeric
data. Releasing data in the form of histograms[4] is also
a hot topic in the field of differential privacy due to its
tiny global sensitivity. For the data mining field, there are
also some mining algorithms based on differential privacy,
Bhaskar et al. [5] presented two efficient algorithms for dis-
covering the k most frequent patterns in a data set of sensitive
records, Li et al. [6] leveraged a novel notion called basis
sets. A θ -basis set has the property that any item set with a
frequency higher than θ is a subset of some basis.

However, the premise of the differential privacy theory
framework is a trusted third-party center, making the differ-
ential privacy theory framework unable to be applied on a
large scale. For this reason, emerges the Local Differential
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Privacy (LDP)[7]. LDP does not require the participation
of the trusted third-party, even assumes that the third-party
will perform a malicious attack. In LDP, the third-party data
processing center can only collect the noisy data for min-
ing valuable information. LDP applies the Laplace mecha-
nism, Exponential mechanism, and Random response[8] to
achieve the requirement as traditional differential privacy
does. Since then, Dwork[9] studied how to make the col-
lection of streaming data based on LDP; To facilitate data
mining, in [10] applied likelihood estimation and EM algo-
rithm to try to restore the probability distribution of original
data on the noisy data processed by Laplace mechanism.
Xiao and Xiong [11] took the user’s temporal series trajec-
tory into account when collecting their location information,
and implement local differential privacy protection under
this condition. First applied RAPPOR[12] technology based
on random response to Google Chrome in 2014. To solve
the problems in which existing trajectory privacy-preserving
models have poor data availability or difficulty to resist com-
plex privacy attacks, Xiao and Xiong [11] devise novel tra-
jectory privacy-preserving method based on clustering using
differential privacy. It is difficult to obtain available statistics,
and the current solutions to privacy protection are ineffi-
cient, costly. To solve these problems, Xiao and Xiong [11]
propose a local differential privacy sensitive data collection
protocol in human-centered computing. A service provider
might require aggregate data from end-users which often
contain sensitive information to perform mining tasks. Xiao
and Xiong [11] propose the first locally differentially private
K -means mechanism under this distributed scenario. Google
engineer Erlingsson et al.A series of algorithms such as CMS
proposed by Apple in 2016, is the first time that differential
privacy is applied to its devices on a large scale.

Differential privacy applies to a wide range of data types,
such as numerical data [2], non-numerical data [3], his-
togram [4], etc. Local differential privacy can better protect
users’ privacy compared with centralized differential pri-
vacy, which has also attracted more scholars’ attention. Local
differential privacy is more suitable for actual production
environment, and the relevant applications include stream
data collection [9], the protection of users’ location infor-
mation [11], [13], the protection of user preference setting
information [12], the protection of user device usage record
information [14], [15], etc. However, Most of local differ-
ential privacy frameworks target statistics on certain privacy
behaviors of users, but not behavior sequences, this is the
issue to be solved in this article.

III. PRELIMINARY KNOWLEDGE
A. DIFFERENTIAL PRIVACY
Definition 1 [1]: A randomized function Q achieve
ε-differential privacy if for all data sets D and D′ differing in
at most one element, and S ⊆ Range(Q) for all the outcome
of Q:

Pr [Q (D) ∈ S] ≤ exp(ε)× Pr[Q
(
D′
)
∈ S] (1)

And ε is known as the privacy budget. Assuming that one
of the data sets is a regular release version while the other is
the attacker’s background knowledge, the hypothetical attack
scene to differential privacy model is that the attacker has
mastered all information except the target client. The pro-
tected of the target client— differential privacy requires that
even in this worst case, the attacker cannot determine the
specific information of the target client, that is, the result of
the operation on the possible different data sets should be
‘‘similar’’ as far as possible, the degree of ‘‘similarity’’ is
reflected in ε. It can be seen that the more similar operation
results with different data sets (the smaller the ε), the better
privacy protection effect achieve, also means the more loss of
information. The ranges of ε are usually from 0.1 to 10.

1) SEQUENTIAL COMPOSITION
Suppose differential privacy algorithms Q1,Q2, . . . ,Qn act-
ing on isolated data sets D1,D2, . . . ,Dn with ε1, ε2, . . . , εn
respectively. The final privacy guarantee is said to be(∑n

i=1 εi
)
-differential privacy.

2) PARALLEL COMPOSITION
Suppose differential privacy algorithms Q1,Q2, . . . ,Qn
acting on non-isolated data sets D1,D2, . . . ,Dn with
ε1, ε2, . . . , εn respectively. The final privacy guarantee is said
to be (max εi)-differential privacy.
Although differential privacy protection framework can be

rigorously proven, the premise is a trusted third-party that
collects and processes user’s private information. However,
users are unwilling to disclose the private information to the
third-party in some cases, while the third-party is unwilling
to obtain row data to increase the cost of data maintenance or
the risk of privacy disclosure either. For this reason, emerges
the concept of local differential privacy. Local differential
privacy ensures that the row data has been added to the
noise before uploading, without the assumption of a trusted
third-party data processing center. Meanwhile, it also should
ensure that the third-party can accurately infer user’s statis-
tic information according to the noisy data. For simplicity,
the third-party data processing center is referred to as the
server-side and the individual user as the client. As shown
in Fig.1 the most obvious difference between the traditional
differential privacy and the local differential privacy is the
time of adding noise. In the traditional differential privacy
model, the row data is uploaded to the server directly, then
the server-side add noise to it. In the local differential privacy
model, the user uploads the noisy data to the server after
adding noise locally.

IV. COLLECTION OF BEHAVIOR SEQUENCE
The behavior sequence in this paper refers to a series of
sequential event element collections that occur on the client-
side. Generally, the data collection process which meets the
requirement of local differential privacy framework can only
ensure the server-side obtain statistical frequency information
of an event element (such as the population density of a
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FIGURE 1. The comparison of the traditional differential privacy model
and the local differential privacy model. In the figure, (a) shows the
traditional differential privacy model while (b) is the local differential
privacy model.

certain place in a certain period, the frequency of access to
the destination website, hot words, etc.), does not reflect the
temporal relationship between event elements, which usually
implies the user’s behavior sequence (such as trajectories,
website browsing routes, hotspot statements, etc.). For this
reason, the article decomposes the user’s behavior sequence
into a set of temporal pairs and infers the user’s behavior
sequence indirectly by a statistic of temporal pairs.

A. PROBLEM MODEL
Let say U be the user set, {u1, u2, . . . , un} be the users partic-
ipating in the data collection; E is the target event consisting
of elements {e1, e2, . . . , em}; M is an arbitrary collection of
permutations and combinations of event elements; d i ∈ M
is the private data generated by the user ui on his/her client
for the event E with sequential temporal relationship; d̂ i is
the noise processing of the d i at the client to meet the
local differential privacy required desensitized data; W is
a set of potential behavior sequences for all users (such
as human trajectories, browsing routes, popular sentences),
W = {m1,m2, . . . ,mk} ,mx ∈ M ; Ŵ is behavior sequence
excavated by the server according to the collected noisy
data set

{
d̂1, d̂2, . . . , d̂n

}
, now, it is required to ensure that

Ŵ ≈W as much as possible.

B. MODEL SIMPLIFICATION
Considering the strict requirement of differential privacy,
the amount of noise added to raw data is linear with the
amount of data collected from a single user, which results
in limited information collection. Therefore, the poten-
tial behavior sequence set W in this paper is decom-
posed into the form of a temporal pair set, mi =((
e1th, e2th

)
,
(
e2th, e3th

)
. . .
)
. Different behavior sequences

may resolve the same temporal pair
(
e1th, e2th

)
after decom-

posing. Now, the problem is simplified to the collection of
temporal series pair

(
e1th, e2th

)
regardless of the relationship

between the decomposed mi temporal pairs (which in some
cases causes a large loss of information). The following
shows how to collect user temporal pairs with the requirement
of differential privacy.

V. TEMPORAL PAIR COLLECTION BASED ON LOCAL
DIFFERENTIAL PRIVACY
This chapter first introduces the concept of temporal matric,
and then shows how to implement the collection of the tempo-
ral pairs of event elements generated by the clients under the
requirement of the local differential privacy framework. The
main method is to apply a matrix to represent the temporal
relationship between the event elements.

A. TEMPORAL MATRIX
For any event element temporal pair

(
ei, ej

)
in event E, apply-

ing an m × m matrix T(m is the number of elements in
event E) which element at Tij is 1 and the rest is 0 represents
a temporal pair

(
ei, ej

)
. The matrix of such interpretation is

referred to below as the temporal matrix T. As shown below.∣∣∣∣∣∣∣∣∣∣∣∣

T11 = 0 T12 = 0 . . . T1j = 0 . . . T 1m = 0
T21 = 0 T22 = 0 . . . T2j = 0 . . . T2m = 0
. . .

Ti1 = 0 Ti2 = 0 . . . T ij = 1 . . . Tim = 0
. . .

Tm1 = 0 Tm2 = 0 . . . Tmj = 0 . . . Tmm = 0

∣∣∣∣∣∣∣∣∣∣∣∣
↔
(
ei, ej

)

1) LOCAL DIFFERENTIAL PRIVACY MODEL
The user behavior sequence collection model consists of
two algorithms—the client-side algorithm and the server-side
algorithm. The client-side algorithm runs locally on each
collected user, responsible for performing noise processing
on the original private data generated by the user to meet the
differential privacy requirement with a certain budget, and
then submitting the noisy data to the server. The server applies
the server-side algorithm to transform and parse the collected
data for valuable information after collecting noisy data from
clients. Since the server collects only the noisy data, it cannot
cause any unexpected privacy leak no matter what kind of
mining it does.

2) CLIENT-SIDE ALGORITHM Aclient
Assuming that the event elements generated by the user
are recorded locally on the client, the client algorithm
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Aclient first randomly selects a sequential pair within the valid
range from the local record set and converts them into a form
of a temporal matrix. Then, inspired by the idea of random
response, each bit in the matrix is flipped independently with
probability P (0 becomes 1, 1 becomes 0), and the temporal
matrix after flipping satisfies 2ln

(
1−P
P

)
− LDP.

Proof: Let T ,T ′ be the temporal pair selected from the
client and the corresponding temporal matrix, T̂ is the flip
matrix. Since theAclient the algorithm runs the client, to prove

that the Aclient satisfies 2ln
(
1−P
P

)
− LDP, it only needs to

prove that for any two raw temporal matrices T ,T ′ and any
flipped matrix T̂ , satisfied (2).∣∣∣∣∣∣ln

 Pr
(
Aclient (T ,P) = T̂

)
Pr
(
Aclient (T ′,P) = T̂

)
∣∣∣∣∣∣ ≤ 2 ln

(
1− P
P

)
(2)

The client algorithm Aclient is independent of each element
of the original temporal matrix, so it is possible to apply the
algorithm Aclient to each matrix element

Pr
(
Aclient (T ,P)= T̂

)
Pr
(
Aclient (T ′,P)= T̂

)=∏m

i,j=0

Pr
(
Aclient

(
Tij,P

)
= T̂ij

)
Pr
(
Aclient

(
T ′ij,P

)
= T̂ij

)
(3)

Since a temporal matrix is only applied to represent an
event element temporal pair (only one bit is set to 1), Let two
original temporal matrix be T ,T ′, and the elements they set
are Trc,T ′r ′c′ . If the positions of the two matrix set elements
are the same (r = r ′, c = c′), then T = T ′, so

∏m

i,j=0

Pr
(
Aclient

(
Tij,P

)
= T̂ij

)
Pr
(
Aclient

(
T ′ij,P

)
= T̂ij

) = 1 (4)

If the positions of the two matrix set elements are dif-
ferent, the elements at the position other than Trc,T ′r ′c′ are
the same (0). So for other arbitrary positions Tij, there

is
Pr
(
Aclient(Tij,P)=T̂ij

)
Pr
(
Aclient

(
T ′ij,P

)
=T̂ij

) = 1, and

∏m

i,j=0

Pr
(
Aclient

(
Tij,P

)
= T̂ij

)
Pr
(
Aclient

(
T ′ij,P

)
= T̂ij

)
=

Pr
(
Aclient (Trc,P) = T̂rc

)
Pr
(
Aclient (Tr ′c′ ,P) = T̂r ′c′

)
Pr
(
Aclient

(
T ′rc,P

)
= T̂rc

)
Pr
(
Aclient (Tr ′c′ ,P) = T̂r ′c′

)
(5)

Algorithm 1 Aclient
// Aclient (E (m) ,P,Tht )
// Input: E(m),P, Tht
// Output: T̂
1: randomly select d1th ∈ E(m)
2: record td1th of d

1th

3: randomly select d2th ∈ E (m) and td2th ∈ [td1th , td1th+Tht ]
4: T : T←

(
d1th, d2th

)
5: for i ∈ [m] do
6: for j ∈ [m] do
7: T̂ij← 2− 2Tij with probability P
8: end for
9: end for
10: return T̂ ;

Now we discuss the possible distribution of T̂rc, T̂r ′c′ , first,
assume that T̂rc = 0, T̂r ′c′ = 0, then (3) is equal to (6), as
shown at the bottom of the page.

Similarly, the above result is also 1 when T̂rc = 1,
T̂r ′c′ = 1. Now consider the case of T̂rc 6= T̂r ′c′ , if T̂rc = 0,
T̂r ′c′ = 1, then (3), (7), as shown at the bottom of the page.
Similarly, (3) = (1−P)2

P2
when T̂rc = 1, T̂r ′c′ = 0.

In summary, we can draw the following conclusions since
P ≤ 0.5.∣∣∣∣∣∣ln

 Pr
(
AAclient (T ,P) = T̂

)
Pr
(
AAclient (T ′,P) = T̂

)
∣∣∣∣∣∣ ≤ 2 ln

(
1− P
P

)
(8)

The steps of Aclient algorithm show in Algorithm 1. And
E (m) represents a fixed sequence of event elements E
(including m elements), d ith ∈ E (m); Flip probability
P(P<0.5); Time interval for defining the temporal pair Tht .

3) SERVER-SIDE ALGORITHM Aserver

The original data is encrypted by the client to achieve the
purpose of protecting privacy. The purpose of the server-side
algorithm is to restore the statistics of the client as a whole
from the collected noise-added data. Therefore, the server-
side algorithm is usually designed according to client algo-
rithms. The above-mentioned client algorithm uses the actual
noise-adding step of the data only to flip each bit of the tem-
poral matrix with the probability of P. Therefore, the server-

side only needs to perform certain offset transform ( T̂ij−P1−2P )
on every bit in the data collected from clients so that the
expectation of the obtained matrix element is equal to the
original matrix. That is to say, let T be the raw matrix, T̂ =
Aclient (T ,P), H = Aserver

(
T̂ ,P

)
it can be proven that for

Pr (Aclient (Trc,P) = 0|Trc = 1)Pr (Aclient (Tr ′c′ ,P) = 0|Tr ′c′ = 0)
Pr (Aclient (Trc,P) = 0|Trc = 0)Pr (Aclient (Tr ′c′ ,P) = 0|Tr ′c′ = 1)

=
P (1− P)
(1− P)P

= 1 (6)

Pr
(
AAclient (Trc,P) = 0|Trc = 1

)
Pr
(
AAclient (Tr ′c′ ,P) = 1|Tr ′c′ = 0

)
Pr (Aclien (Trc,P) = 0|Trc = 0)Pr

(
AAclient (Tr ′c′ ,P) = 1|Tr ′c′ = 1

) = P2

(1− P)2
(7)
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Algorithm 2 Aserver
// Aserver (P, T̂ (1), T̂ (2), . . . , T̂ (n))
// Input: P, T̂ (1), T̂ (2), . . . , T̂ (n)

// Output: H
1: a = 1/(1− 2P)
2: initialize H [m× m]
3: for c ∈ [n] do
4: for j ∈ [m] do
5: for i ∈ [m] do
6: Hij← Hij + a× T

(c)
ij − a× P

7: end for
8: end for
9: end for
10: return H ;

any positioned element in the matrix.

E
(
Hij
)
= Tij (9)

Proof:When the raw matrix element Tij = 0, E
(
T̂ij
)
=

P× 1+ (1-P)× 0 = P, then

E
(

1
1− 2P

× T̂ij −
1

1− 2P
× P

)
=

1
1− 2P

× E
(
T̂ij
)
−

1
1− 2P

× P = 0 (10)

When Tij = 1, E
(
T̂ij
)
= P× 0+ (1-P)× 1 = 1− P, then

E
(

1
1− 2P

× T̂ij −
1

1− 2P
× P

)
=

1
1− 2P

× E
(
T̂ij
)
−

1
1− 2P

× P = 1 (11)

Since Aclient algorithm is independent between clients, it
can be seen that for the data transmitted by

n clients, T̂ (1), T̂ (2), . . . , T̂ (n), we have E
(
Hij
)
= T (1)

ij +

T (2)
ij +, . . . ,+T

(n)
ij . Furthermore, Aclient is independent of

each element in the matrix, therefore, the matrix H generated
by Aserver satisfies E (H) = T (1)

+ T (2)
+, . . . ,+T (n). That

is, the elements of matrix H are the statistical expectation of
the temporal pair of each event element.

The steps of Aserver algorithm show in Algorithm 2.

B. REPLACE RANDOM SELECTION WITH ADJACENT
TEMPORAL PAIR SELECTION
Although the above model can theoretically obtain statistical
information about users’ behavior temporal pairs, however,
the sample space will increase dramatically(m2) with the
growth of the amount of event element, which will make
it difficult to obtain a reliable statistical result. The rea-
son is that the client algorithm takes no restrictions when
randomly select basic event elements after the former has
been randomly selected. Therefore, this paper replaces the
random selection with the selection of adjacent temporal pair
on the premise that the server-side have certain background

knowledge about the ‘‘distance’’ between event elements.
(The ‘‘distance’’ here can be the distance between the actual
location of the user, or the relevance of the content between
the websites), adjacent temporal pair refer to temporal pair
within the ‘‘distance’’ range, the client algorithm selects only
adjacent temporal pair. That is to say, the potential temporal
pairs are further decomposed into adjacent temporal pairs to
reduce the sample space, and the user behavior sequence is
indirectly inferred by statistics on adjacent temporal pairs.
Although it may not be straightforward to infer the user
behavior sequence on the server-side, this method can make
the model applicable to the actual problem compared to the
problem that the statistical result is not reliable due to the
large sample space. Due to the variety of events, this paper
does not intend to give a specific distance calculation method.
The following is an example to show the actual effect of
the model by mining trajectories according to users’ position
information.

C. USER TRAJECTORY ANALYSIS
The algorithm described above is a general model algorithm,
the following describes how to apply the model to infer the
trajectories of users based on the temporal information of
users’ location information.

Since the coordinates of the location are continu-
ous and cannot be directly represented by the temporal
matrix, the map is first divided into m disjoint regions{
Region1,Region2, . . . ,Regionm

}
, and the adjacent area is

called a neighborhood.
Refer to the model in the first section of this chapter,

the users’ location at a certain moment is regarded as an
event element, so behavior sequence is a trajectory. Gen-
erally, the trajectory is continuous. It is assumed that the
user location is accurate recorded at a certain time (you
can use the average to improve the accuracy), so every
trajectory of user can be composed of several adjacent
pairs, called adjacent trajectory, such as the user trajectory{
RegionA,RegionB,RegionC

}
can be represented by adjacent

trajectory (RegionA,RegionB) and (RegionB,RegionC ).
On the other hand, the paper applies the temporal matrix

to represent the temporal pair of any two events. Therefore,
the sample space obtained from users is theoretically m2,
which is limited by the privacy budget. However, the amount
of collected data is limited by the number of users, and the
amount of every basic event will decrease when the sample
space is large, affecting the statistical results. In this paper,
only adjacent trajectory consisting of adjacent pairs with a
distance of 1 in the trajectory is selected (assuming that the
trajectories of all users saved by the clients are continu-
ous, and there are four adjacent trajectories for every region
where each user is located) when analyzing the trajectories
of users. That is, the selection of the adjacent trajectory
replaces random selection inAclient , and the purpose of reduc-
ing the relative error is achieved by reducing the sample
space.
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VI. EXPERIMENTAL RESULTS AND ANALYSIS
The experimental data in this paper is the location-related
data collected by Microsoft Academy of Geology on
182 volunteers within five years (2007∼2012). Due to
the limited participation of volunteers, this experiment
will generate each adjacent pair of volunteers as differ-
ent users. The data was screened in this experiment to
reflect the flow of people. Only the volunteers’ location
data in activity-intensive areas (39.8∼40.1, 116.2∼116.4)
from 6:00 am to 9:00 am were selected. With 0.003 and
0.002 respectively, we divide the area into 10,000 unit areas,
and the experimental data totals 124,292. Fig.2 shows the raw
trajectories of volunteers, For convenience of the display, the
horizontal and vertical coordinates in the figure are obtained
by converting the original longitude and latitude position into
a unit area, for example, the abscissa 20 represents the actual
latitude of 39.8+ 20× 0.003, and the ordinate 15 represents
the actual longitude of 116.2+ 15× 0.002.

FIGURE 2. Original Trajectory.

To improve the accuracy of statistical data, the experiment
sets a threshold (100) for the high occurrence frequency of
displayed trajectories. Figure.3 (a) is the user trajectories
composed of 100 highest frequency of occurrence adjacent
trajectories in the original data (16115 in total). Fig.3 (b) is
the static location information graph of the client that is only
calculated for a single event element (the location information
of the client) by CMS(ε = 5) algorithm. Fig.3 (c) is the
client trajectory map that satisfies P = 0.05 (ε ≈ 5.89)
that is calculated by our model, and Fig.3(d) when P = 0.1
(ε ≈ 4.39). It can be seen that although the overall location
information of the client collected by the CMS algorithm
is able to reflect the overall trajectories of clients to a cer-
tain extent, it depends on the way of reading data, such as
in Fig.3(b), you can draw a variety of roadmaps accord-
ing to these points while the results obtained by our model
can restore the routes more directly: from the perspective
of adjacent trajectories, there are 18,672 times in the high-
est 100 adjacent trajectories (44,826 times in total), which
means that 0.6% of the high-frequency adjacent trajectories
occupy the total of 41.6%, under the protection of our model
with P = 0.01 (ε ≈ 9.19), the high-frequency trajecto-
ries excavated appeared 17439 (39.3%) times in the original

FIGURE 3. High-frequency route calculated by different algorithms and
parameters.

adjacent trajectories and gradually decreased as p increased,
as shown in Fig.4 (a); from the perspective of trajectory,
there are 3228 original trajectories that meet the conditions
mentioned above, of which 1678 trajectories participate in at
least one adjacent trajectory in the original high-frequency
trajectories, under the protection of our model with P = 0.01
(ε ≈ 9.19), there are 1597 original trajectories partic-
ipating in at least one adjacent trajectory in the exca-
vated high-frequency trajectories and gradually decreased as
p increased, as shown in Fig.4(b). It can be seen that themodel
can reflect the users’ activity trajectories to some extent,
and the reduction degree of the original trajectories will be
reduced when the privacy budget is reduced.

The purpose which is unavailable in other local differential
privacy models of the following experiment is to reveal the
user flow of each route from 6:00 is to 9:00 am. In addition
to the privacy budget, this experiment has another threshold
t to determine whether there is an obvious flow between the
two locations. For example, t = 0.75 for two points a and b,
when the occurrences of a to b is three times the occurrences
of b to a, it is considered that there exit user flowing from
a to b. This experiment only shows the trajectory extended
by the route with the ‘‘most’’ user’s flow (first select the
most adjacent route from all the adjacent routes satisfying the
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FIGURE 4. Relationship between the actual number of participants and
the flip probability of frequent routes excavated under different
parameters.

threshold t condition and then start from the start point and the
end point respectively traverse the adjacent route satisfying
the threshold t , thereby obtaining a continuous route of ‘‘most
flow’’ of users). Fig.5 (a) and (c) are the ‘‘most flow’’ routes
in the original data when t = 0.7 and t = 0.8 respectively.
Fig.5 (b) and (d) are the corresponding local difference results
that satisfy the privacy budget of 5.8. Taking Fig.5(d) as an
example, from the actual data, the number of occurrences of
the route is 496, and the reverse is 31. It can be seen that
the statistical route processed by the local differential privacy
framework approximates the original flow, and the larger the
threshold t, the higher the degree of approximation.

In order to simulate real users’ trajectories, this experiment
applies Geolife as the experimental data, however, the data
involved a small number of volunteers while the sample
space is large leads to poor statistical performance. There-
fore, the data was cropped before the experiment and only
the routes with a large amount of data were selected when
displaying the model effect.

As can be seen from Fig. 3., the original trajectory data is
divided into discrete points after our model processing. The
suspected trajectory obtained from these discrete points has
many possibilities. From an accurate trajectory into a series
of confusing discrete point, thus, played a protective effect of
the user trajectory. The LDP model has strict mathematical
theoretical requirements. It can be seen from Fig. 5. that the
statistical information of the user’s track record is highly
similar to the original track, so as to avoid the attackers from

FIGURE 5. The ‘‘most flow’’ mined under different parameters.

using statistical information to infer the user’s privacy. The
model in this paper realizes the privacy protection of users’
behavior sequence information.

VII. CONCLUSION
This paper designs a user behavior sequence mine model that
satisfies the local differential privacy framework and proves
it. The model enables the server-side to mine users’ behavior
sequences while protecting their privacy, and reduce sample
space by using the adjacency pair to improve the accuracy
of the statistics. In order to simulate the real trajectories,
the effect of the model algorithm is finally demonstrated
by using Geolife as the experimental data. results show that
the model can approximate the users’ trajectories under the
requirement of local differential privacy. It is worth men-
tioning that this experiment assumes that the overall activity
trajectories of the users can reflect individual activity tra-
jectory, which may require further research in some special
situations.
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