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ABSTRACT Computing derivatives of noisy measurement data is ubiquitous in the physical, engineering,
and biological sciences, and it is often a critical step in developing dynamic models or designing con-
trol. Unfortunately, the mathematical formulation of numerical differentiation is typically ill-posed, and
researchers often resort to an ad hoc process for choosing one of many computational methods and its param-
eters. In this work, we take a principled approach and propose a multi-objective optimization framework for
choosing parameters that minimize a loss function to balance the faithfulness and smoothness of the deriva-
tive estimate. Our framework has three significant advantages. First, the task of selecting multiple parameters
is reduced to choosing a single hyper-parameter. Second, where ground-truth data is unknown, we provide a
heuristic for selecting this hyper-parameter based on the power spectrum and temporal resolution of the data.
Third, the optimal value of the hyper-parameter is consistent across different differentiation methods, thus
our approach unifies vastly different numerical differentiation methods and facilitates unbiased comparison
of their results. Finally, we provide an extensive open-source Python library pynumdiff to facilitate easy
application to diverse datasets (https://github.com/florisvb/PyNumDiff).

INDEX TERMS Numerical differentiation, derivatives, optimization, data-driven modeling.

I. INTRODUCTION
Derivatives describe many meaningful characteristics of
physical and biological systems, including spatial gradients
and time rates-of change. However, these critical quantities
are often not directly measurable by sensors. Although com-
puting derivatives of analytic equations is straightforward,
estimating derivatives from real sensor data remains a signif-
icant challenge because sensor data is invariably corrupted
by noise [1]. More accurate estimation of derivatives would
improve our ability to produce robust diagnostics, formulate
accurate forecasts, build dynamic or statistical models, imple-
ment control protocols, and inform policy making. There
exists a large and diverse set of mathematical tools for
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estimating derivatives of noisy data, most of which are formu-
lated as an ill-posed problem regularized by some appropriate
smoothing constraints. However, the level and type of regu-
larization are typically imposed in an ad hoc fashion, so that
there is currently no consensus ‘‘best-method" for producing
‘‘best-fit" derivatives.

One particularly impactful application of estimating deri-
vatives is the use of time-series data in modeling complex
dynamical systems. These models are of the form dx/dt =
ẋ = f (x), where x is the state of the system. Models of
this kind have been integral to much of our understanding
across science and engineering [2], including in classical
mechanics [3], electromagnetism [4], quantum mechan-
ics [5], chemical kinetics [6], ecology [7] epidemiology [8],
and neuroscience [9]–[11]. In some cases, even higher
order time derivatives are also crucial for understanding the
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dynamics [12]. A recent innovation in understanding com-
plex dynamical systems uses data-driven modeling, where
the underlying dynamics are learned directly from sensor
data using a variety of modern methods [13]–[15]. For this
application in particular, a derivative with both small and
unbiased errors is crucial for learning interpretable dynamics.

In principle, the discrete derivative of position can be
estimated as the finite difference between adjacent measure-
ments. If we write the vector of all noiseless positions in time
measured with timestep 1t as x, then

ẋk =
xk+1 − xk

1t
, (1)

where k indexes snapshots in time. In reality, however, only
noisy measurements y are available,

y = x+ η,

where η represents measurement noise. Here we will assume
η is zero-mean Gaussian noise with unknown variance. Even
with noise of moderate amplitude, a naïve application of
Eq. (1) produces derivative estimates that are far too noisy
to be useful (Fig. 1A). Thus, more sophisticated methods
for data smoothing and/or differentiation of noisy time series
measurements of position y are required.
Although smoothing mitigates the errors, it can also intro-

duce biases. Our goal in this article is to develop a general
approach for methodically choosing parameters that balance
the need to minimize both error and bias. We use x̂ and ˆ̇x to
denote the smoothed estimates of the position and its deriva-
tive computed from y, respectively. To evaluate the quality
of these estimates, we compare these estimates to the true
discrete time position and its derivative, x and ẋ. Developing
approaches for estimating ˆ̇x from noisy measurements y has
been the focus of intense research for many decades. Despite
the diversity of methods that have been developed, only a few
studies have performed a comprehensive comparison of their
performance on different types of problems [1], [16], [17].

In this article, we tackle the challenge of parameter selec-
tion by developing a novel, multi-objective optimization
framework for choosing parameters to estimate the derivative
of noisy data that balances two independent metrics. Our
approach minimizes a loss function consisting of a weighted
sum of two metrics computed from the derivative estimate:
the faithfulness of the integral of the derivative and its
smoothness.We suggest thesemetrics as proxies forminimiz-
ing the error and bias of the estimated derivative, andwe show
that sweeping through values of a single hyper-parameter γ
produces derivative estimates that generally trace the Pareto
front of solutions that minimize error and bias. Importantly,
this optimization framework assumes no knowledge of the
underlying true derivative and reduces the task of selecting
many parameters of any differentiation algorithm to solv-
ing a loss function with a single hyper-parameter. Further-
more, we show that the value of the hyper-parameter is
nearly universal across four different differentiation methods,
making it possible to compare the results in a fair and

unbiased way. For real-world applications, we provide a
simple heuristic to determine a value of γ that is derived from
the power spectrum and temporal resolution of the data. All
of the functionality described in this article is implemented
in an open-source Python toolkit pynumdiff, which
is found here: https://github.com/florisvb/
PyNumDiff.

II. MOTIVATION FOR ERROR METRICS
What is a ‘‘good’’ estimate of a derivative? Let us start
by considering a toy system with synthetic measurement
noise, where we are able to evaluate the quality of an esti-
mated derivative by comparing to the true, known derivative.
We consider twometrics for evaluating the quality of a deriva-
tive Fig. 1B–D; later, we use these same metrics to evaluate
the performance of our optimization framework, which does
not have access to the ground truth.

First, the most intuitive metric is how faithfully the esti-
mated derivative ˆ̇x approximates the actual derivative ẋ.
We can measure this using the root-mean-squared error,

RMSE( ˆ̇x, ẋ) = ‖( ˆ̇x− ẋ)‖2, (2)

where ‖·‖2 is the vector 2-norm. If the data are very noisy,
a small RMSE can only be achieved by applying significant
smoothing. However, smoothing the data often attenuates
sharp peaks in the data and results in underestimating the
magnitude of the derivative.

To measure the degree to which the derivative estimate
is biased due to underestimates of the actual derivative,
we calculate the square of the Pearson’s correlation coeffi-
cient,R2, between the errors ( ˆ̇x−ẋ) and the actual derivative ẋ.
We refer to this metric as the error correlation, which is
bounded between 0 and 1. Small error correlations imply
that the imposed dynamics of the differentiation method
(e.g. filtering) minimally influenced the derivative estimate;
therefore, the method of estimating derivatives would have
minimal impact on any models that are constructed using
these estimates. Conversely, large error correlations imply
that the estimate is significantly influenced by the dynamics
of the differentiation method and typically correspond to very
smooth estimates. In the limit where the derivative estimate
is a horizontal line, the error correlation takes on a value
of unity. Other metrics that measure the smoothness, for
example the total variation or tortuosity, may be substituted
for error correlation [1]; however, these metrics are harder to
interpret. For instance, if the true derivative is very smooth,
a low total variation is desired, whereas if the true derivative
is quite variable, a high total variation would correspond to
an accurate derivative. In contrast, a low error correlation is
desirable for any true derivative.

For many datasets, the RMSE and error correlation metrics
define a Pareto front, where no single parameter choice mini-
mizes both values (Fig. 1B). Furthermore, theminimal RMSE
can be achieved with a variety of different error correlations.
The most suitable parameter set depends on the applica-
tion of the estimated derivative: is a non-smooth derivative
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FIGURE 1. Choice of parameters leads to a diversity of derivative estimates. A. Noisy time series data, from a Lorenz system, and the corresponding
finite difference derivative. B. To evaluate the quality of a derivative estimate relative to the ground truth, we consider two metrics: Root Mean
Square Error (RMSE), and the Pearson’s correlation coefficient (R2) between the error and the true value of the derivative. Gray dots show the
values of these metrics for 5,481 different sets of parameter choices for a smoothed Savitzky-Golay filter. The violet line is the result of our
multi-objective optimization framework and nearly traces the Pareto front of the metrics. The derivative estimates and metrics for the five colored
points along the Pareto front are shown in C and D, respectively.

TABLE 1. Summary of the four differentiation methods highlighted in this article.

with minimal bias preferred (Fig. 1B-D: teal), or one that is
smooth, but biased (Fig. 1B-D: brown). We suggest that, for
most purposes, the estimated derivative that balances these
metrics (Fig. 1B-D: blue and red) serves as a reasonable
starting point.

III. METHODS FOR NUMERICAL DIFFERENTIATION
A large variety of methods for numerical differentiation exist,
and a complete review of them all is beyond the scope of this
article. Instead, we have selected four differentiation methods
(Table 1), which make different assumptions and represent
different approaches to computing the derivative including

both global and local methods [1], to showcase the universal
application of our optimization framework.

One common approach to manage noisy data is to apply
a smoothing filter to the data itself, followed by a finite dif-
ference calculation. In this family of differentiation methods,
we chose to highlight the Butterworth filter [18], which is a
global spectral method with two parameters: filter order and
frequency cutoff.

The second family of methods relies instead on build-
ing a local model of the data through linear regression.
A common and effective approach involves making a sliding
polynomial fit of the data [19], often referred to as locally
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estimated scatterplot smoothing (LOESS) [20]. An efficient
approach for accomplishing the same calculations is the
Savitzky-Golay filter, which builds the polynomial model
in the frequency domain [21], [22]. The Savitzky-Golay filter
has two parameters: window size and polynomial order. By
default, a Savitzky-Golay filter provides a jagged derivative
because the polynomial models can change from one win-
dow to the next, so here we also apply some smoothing by
convolving the result with a Gaussian kernel. This smoothing
adds a third parameter: a smoothing window size.

The third family we consider is the Kalman filter
[23]–[25]. The Kalman filter is most effective when models
of the system and of the noise characteristics are known.
Our focus here is the case where neither is known, so we
chose to highlight a constant acceleration forward-backward
Kalman smoother [26] with two parameters: the model and
noise covariances.

Finally, we consider an optimization approach to com-
puting derivatives with the total variation regularization
(TVR)method [27], [28]. One advantage of the TVRmethods
is that there is only a single parameter, which corresponds to
the smoothness of the derivative estimate. TVR derivatives
are not as widely used as the other three methods we high-
light, so we provide a brief overview here. Solving for the
TVR derivative involves first finding x̂ and its corresponding
finite-difference derivative ˆ̇x (calculated according to Eq. 1)
that minimize the following loss function,

L = ‖y− x̂‖2 + γ ∗ TV ( ˆ̇x). (3)

Here TV is the total variation,

TV ( ˆ̇x) =
1
m

∥∥∥ ˆ̇x0:m−1 − ˆ̇x1:m∥∥∥
1
, (4)

where ‖·‖1 denotes the `1 norm and m is the number of time
snapshots in the data. The single parameter for this method
is γ , and larger values result in smoother derivatives. If γ is
zero, this formulation reduces to a finite difference derivative.

Solutions for TVR ˆ̇x can be found with an iterative
solver [28]. Because both components of the loss function
Eq. (3) are convex, we can also solve for ˆ̇x using convex opti-
mization tools, such as cvxpy [29], and with a convex solver,
such as MOSEK [30]. The two methods are equivalent, if the
iterative solver is repeated sufficiently many times.

The convex solution to penalizing the first order differ-
ence in time, as in Eq. (4), results in a piece-wise constant
derivative estimate. By offloading the calculations to a convex
optimization solver, however, we can easily penalize higher
order derivatives by replacing the 1st order finite differ-
ence derivative ˆ̇x in Eq. (3) with a 2nd order ( ˆ̈x) or 3rd

order (
.̂..
x ) finite difference derivative. Penalizing higher-order

time derivatives results in smoother derivative estimates. For
example, penalizing the 2nd order derivative results in a
piece-wise linear derivative estimate, whereas penalizing the
3rd order derivative, also known as the jerk, results in a
smooth estimate. In this article, we will use the total variation
regularized on the jerk (TVRJ). For large datasets, solving

for the TVRJ derivative is both computationally expensive
and can accumulate small errors. To manage the size of the
optimization problem, it is possible to solve for the TVRJ
derivative in slidingwindows. In practice, we found that using
window sizes of 1000 sufficiently reduces the error accumu-
lation, and using a stride of 200 ensures smooth transitions
from one window to the next.

IV. COMPUTING DERIVATIVES OF NOISY DATA WITH NO
GROUND TRUTH
With noisy data collected in the real world, no ground
truth is accessible. The RMSE and error correlation met-
rics described in the previous section cannot be calculated
and used to optimize parameter choices, so the parame-
ter selection is an ill-posed problem. Even so—somehow—
parameters must be chosen. In this section, we propose a
general approach for choosing parameters and show that for
a wide range of problems, noise levels, time resolutions, and
methods, our approach yields reasonable derivative estimates
without the need for hyper-parameter tuning.

A. OPTIMIZATION FRAMEWORK WITHOUT GROUND
TRUTH DERIVATIVES
Given noisy position measurements y, we seek to estimate
the derivative in time of the dynamical system that underlies
the measurements ˆ̇x. When the ground truth ẋ is unknown,
we propose choosing the set of parameters 8 (for any given
numerical algorithm, including those enumerated in Table 1)
that minimize the following loss function, which is inspired
by Eq. (3),

L = RMSE
(
trapz( ˆ̇x(8))+ µ, y

)
+ γ

(
TV
(
ˆ̇x(8)

))
, (5)

where trapz(·) is the discrete-time trapezoidal numerical inte-
gral, µ resolves the unknown integration constant,

µ =
1
m

m∑
k=0

(
trapz( ˆ̇x(8))− y

)
, (6)

and γ is a hyper-parameter. Note that this formulation has a
single hyper-parameter γ , and a heuristic for choosing γ is
introduced in the following section.

The first term of the loss function in Eq. (5) promotes
faithfulness of the derivative estimate by ensuring that the
integral of the derivative estimate remains similar to the
data, whereas the second term encourages smoothness of the
derivative estimate. If γ is zero, the loss function simply
returns the finite difference derivative. Larger values of γ will
result in a smoother derivative estimate.

This loss function effectively reduces the set of parameters
8 (which ranges between 1 and 3 or more, depending on the
method) to a single hyper-parameter γ . Unfortunately, L is
not convex, but tractable optimization routines can be used
to solve for the set of 8 that minimize L. Here we use the
Nelder-Mead method [31], a downhill simplex direct search
method that works well for nonlinear optimization problems,
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FIGURE 2. Optimal choice of γ is a function of frequency and temporal resolution of the data. A. (Top) Four example sine waves of different frequencies
(note the time scales), temporal resolutions, and noise levels. (Middle) Comparison of the actual derivative (black dashed) with Savitzky-Golay estimates:
lowest achievable RMSE (gray), and the result from our loss function with the optimal choice of γ defined in the bottom panel. (Bottom) Trade-off
between error correlation and RMSE for 5,481 potential parameter choices (gray) and the options provided by our loss function for a sweep through γ
(colored line). The star indicates the optimal choice of gamma, corresponding to the shoulder of the colored curve. (B) The optimal choice of γ (defined in
A) as a function of frequency (Hz), for different temporal resolutions of data (0.001, 0.01, 0.1 sec). Also included in the plot, but not indicated, are
different noise levels (0-mean normally distributed with standard deviations of 0.05%,0.5%,5%, and 25% of the amplitude) and length of the dataset
(1,4,5,25,100,500,1000 sec). The "+" markers indicate results from datasets for which the period was greater than the length of the time series, which
were omitted from the fit. The diagonal lines indicate the empirical heuristics for choosing γ based on a multivariate ordinary least squares model,
provided in Eqn. 8 and Table 3.

as implemented in SciPy [32]. To prevent the optimization
from converging on incorrect minima, we used with multiple
initial conditions.

B. HEURISTICS FOR AUTOMATED HYPER-PARAMETER
TUNING OF γ
The advantages of our loss function in Eq. (5) are that it
does not require any ground truth data, and it simplifies the
process of choosing parameters by reducing all the parame-
ters associated with any given method for differentiation to a
single hyper-parameter γ corresponding to the how smooth
the resulting derivative should be. To understand the qualities
of the derivative estimates resulting from parameters selected
by our loss function, we begin by analyzing the derivative
estimates of noisy sinusoidal curves using the Savitzky-Golay
filter and return to our original metrics, RMSE and error
correlation to evaluate the results.

Interestingly, sweeping through values of γ results in
derivative estimates with RMSE and error correlation values
that generally follow the Pareto front defined by all possible
derivative estimates for that given method (Fig. 2A). Which
of these derivative estimates is best depends on the intended
use of the derivative; nevertheless, we suggest that a good
general purpose derivative is one that corresponds with the
elbow in the lower left corner of the stereotypical curve traced
by a sweep of γ in the RMSE vs. error correlation space
(the star-shaped markers in Fig. 2A). This point often, but
not always, corresponds to the lowest RMSE (for example,
see Fig. 1). Although in many cases a quantitatively better
derivative estimate than the one found by our loss function

does exist (the gray dots in Fig. 2A that lie left of the star),
the qualitative differences between these two derivative esti-
mates are generally small (Fig. 2A middle row).
In practice, the need to choose even a single parameter can

be time consuming and arbitrary. To alleviate these issues,
we derive an empirical heuristic to guide the choice of γ that
corresponds with the elbow of the Pareto front. We found
that the best choice of γ is dependent on the frequency
content of the data. To characterize this relationship, we eval-
uated the performance of derivative estimates achieved by a
Savitzky-Golay filter by sweeping through different values of
γ for a suite of sinusoidal data with various frequencies (f ),
noise levels (additive white (zero-mean) Gaussian noise with
variance σ 2), temporal resolutions (1t), and dataset lengths
(in time steps, L) (Fig. 2A-B).
To describe this empirical relationship between the optimal

choice of γ and quantitative features of the data, we first
considered an all-inclusive multivariate log-linear model,

log(γ )=α1 log(f )+α2 log(1t)+α3 log(σ )+α4 log(L)+α5.

(7)

Fitting the data (Fig. 2B triangles) to this model with
ordinary least squares resulted in an R2 = 0.76, suggest-
ing that, in many cases, it is feasible to use this rule to
determine a reasonable guess for γ . To ensure that our deci-
sion to take the logarithm of each input and output was
appropriate, we tried all possible combinations of linear and
log-transformed inputs and outputs. Taking the logarithm of
each input and output resulted in the highest adjusted R2,
indicating that it explains the largest percentage of variance.
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TABLE 2. Optimal log(γ ) is correlated with frequency and temporal
resolution, but not the noise or length of the dataset. The table provides
the coefficients and associated p-values for a ordinary least squares
model, with an adjusted R2 = 0.78.

Table 2 provides the coefficients (αk ) and associated p-values
for each of the four terms and intercept. From this analysis we
can conclude that the magnitude of measurement noise in the
data is not an important predictor of γ . We note, however, that
here we have assumed that the magnitude of noise does not
change within a time-series dataset.

TABLE 3. Optimal log(γ ) can be determined based on the frequency and
temporal resolution of the data. The table provides the coefficients and
associated p-values for a ordinary least squares model, with an adjusted
R2 = 0.78.

Eliminating the unnecessary terms from our model results
in slightly adjusted coefficients, provided in Table 3. In short,
the optimal choice of γ , assuming that both low RMSE and
low error correlation are valued, can be found according to
the following relationship:

log(γ ) = −1.6 log(f )− 0.71 log(dt)− 5.1. (8)

We analyze the performance of our loss function and
heuristic with respect to a broad suite of representative syn-
thetic problems. Real world data takes on a much greater
diversity of shapes than the sinusoidal timeseries we used to
derive the heuristic for choosing γ given in Eq. (8). Because
it is difficult to define a clear quantitative description of the
range of shapes that real datamight take on (such as frequency
for a sinusoidal function), we first examine differentiating one
component of a non-periodic Lorenz system [33] (Fig. 3) with
four different levels of added noise and temporal resolutions.
From the power spectra, we select a frequency corresponding
to the frequency where the power begins to decrease and the
noise of the spectra increases. Although somewhat arbitrary,
this approach (in conjunction with Eq. (8)) allows us to
use a standard signal processing tool to quickly determine a
choice of γ . Ourmethod produces reliable derivativeswithout
further tuning in each case except high noise and low tem-
poral resolution (Fig. 3, fourth row), which is not surprising
considering the low quality of the data.

Next we consider four other synthetic problems, all with
similarly effective results (Fig. 3). For the logistic growth
problem, the curve traced by our loss function takes on a

more complicated shape, perhaps because the characteristics
of data vary substantially across time. Still, our heuristic
results in a good choice of parameters that correspond to an
accurate derivative. For the triangle wave, the loss function
does a good job of tracing the Pareto front, and the heuristic
selects an appropriate value of γ , yet the resulting derivative
does show significant errors. This is likely due to two rea-
sons. First, the Savitzky-Golay filter is designed to produce
a smooth derivative, rather than a piece-wise constant one.
Second, the frequency content of the data varies between
two extremes, near-zero, and near-infinity. For the sum of
sines problem, selecting the appropriate frequency cutoff
is more straightforward than the previous problems, as we
can simply choose a frequency shortly after the high fre-
quency spike in the spectra. The final problem is a time-series
resulting from a simulated dynamical system controlled by
a proportional-integral controller subject to periodic distur-
bances. This data is a challenging problem for numerical
differentiation, as the position data almost appears to be
a straight line but does contain small variations. Our loss
function does an excellent job of tracing the Pareto front in
this case, and our heuristic results in an appropriate choice
of γ .

C. DIRECT COMPARISON OF DIFFERENTIATION METHODS
We examine how our loss function and heuristic for choosing
γ might perform on other differentiation methods beyond
the Savitzky-Golay filter. Figure 4 shows that for a noisy
Lorenz system, the possible solution space is similar for
all four methods we highlighted earlier, and our loss func-
tion achieves a similar Pareto front in each case. Note that
although the Savitzky-Golay and Butterworth filters both
operate in the frequency domain, the Kalman smoother and
TVRJ methods do not.

Interestingly, for all four differentiation methods, the pos-
sible solutions (the gray dots), and in particular their Pareto
front, are quite similar, with the exception of the TVRJ
method. This deviation may be because the TVRJ method
only contains a single parameter. Our loss function, which
defines the colored curves in the RMSE vs error correla-
tion space, results in similar curves for each method, each
of which follows the Pareto front quite closely. Although
there are some differences in the location along the Pareto
front that our heuristic selects as the optimal choice for each
method, the resulting derivative estimates are qualitatively
quite similar. A close comparison of the curves defined by the
loss function, and the points selected by the heuristic, suggest
that the Kalman and TVRJ methods produce slightly more
accurate derivative estimates with a lower error correlation.
However, looking at the resulting derivatives we see that the
regions where the derivative estimates have high errors, all
four estimates exhibit similar errors, suggesting that these
errors may be a result of the data, not the method.

These results suggest that our optimization framework is
universal across different methods, a claim further supported
by its performance across a range of synthetic problems
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FIGURE 3. Heuristic for choosing γ is effective across a broad range of toy problems, using a Savitzky-Golay filter. The first column
shows raw (synthetic) position data, indicating the shape of the data, degree of noise, and temporal resolution. Next we evaluate
the performance of derivative estimate using the metrics described in the Fig. 1. Gray dots indicate the range of outcomes for
5,481 parameter choices, the violet line indicates the options provided by our loss function, and the red star indicates the
performance using the suggested value of γ according to Eqn. 8. Frequency of the data is evaluated by inspecting the power
spectra; the red line indicates the frequency used to determine γ . The final two columns compare the ground truth and estimates
for position and velocity.
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FIGURE 4. Loss function and heuristic for choosing γ is equally effective for different differentiation methods. A. Synthetic noisy data from
the same Lorenz system as shown in Fig. 3. B. Comparison of metrics, position, and velocity estimates using four differentiation methods,
with the same value of γ , as determined through the spectral analysis in Fig. 3. C. Overlay of the Pareto fronts and velocities for all four
methods.

(Fig. 5. The most significant result of this analysis is that all
four methods, despite being very different in their underlying
mathematics, behave similarly under both our loss function
and heuristic for choosing γ across a wide range of data.
Even in the case where they disagree on a quantitative level
(second row, low temporal resolution Lorenz data), and the
Savitzky-Golay filter appears to provide the estimate with the
lowest error correlation, the resulting derivative estimates are
in fact qualitatively quite similar.

Taking a closer look at the errors in the derivative estimates
across the range of toy problems shown in Fig. 5 reveals
a subtle point about the limitations of the differentiation
methods we highlight here. For all four methods, the errors
in the derivative estimates are largest for the triangle prob-
lem, and to a lesser extent the proportional-integral con-
trol problem. These errors likely stem from two particular
challenges. First, the frequency content of the data is very
heterogeneous: it is near zero between the peaks and val-
leys, and near infinite at the peaks and valleys. Furthermore,
the frequency of the oscillations for the triangle increase with
time. Second, all four of the methods we highlighted here

are designed to provide smooth derivatives, whereas the true
derivative for the triangle problem is piece-wise constant.
If this were known from the outset, it might be more effective
to choose a method that is designed to return piece-wise
constant derivatives, such as the total variation regularized on
the 1st derivative.

V. DEMONSTRATIONS ON REAL-WORLD DATA
The real value of our multi-objective optimization framework
is its straightforward application to real, noisy data where
no ground truth data is available. Here we provide two such
examples: differentiation of the new confirmed daily cases in
the United States of COVID-19, the disease caused by SARS-
CoV-2 (Fig. 6), and differentiation of gyroscope data from
a downhill ski (Fig. 7). In both examples, we examine the
power spectra of the data to choose a cutoff frequency that
corresponds to the start of the dropoff in power. This cutoff
frequency, in conjunction with the time resolution of the data,
are then used as inputs to our heuristic described by Eq. (8) to
determine an optimal value of γ .With γ chosen, weminimize
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FIGURE 5. Loss function and heuristic for choosing γ is equally effective for different differentiation methods across a range of toy
problems. Data plotted as in Fig. 4C, for each of the scenarios presented in Fig. 3.
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FIGURE 6. Numerical differentiation of new confirmed daily cases in the United States of COVID-19 [34] with no parameter tuning. A.
Raw new daily cases. B. Power spectra of the data, indicating the cutoff frequency (red) used for selecting γ = 4.1. C. Smoothed new
daily cases, and their derivative, using a Savitzky-Golay filter (violet), a Butterworth filter (green), a constant acceleration Kalman
forward-backward smoother (light blue), and total variation regularized jerk (orange). Note the similarity between all four methods
except in the very last week, despite the significant differences in how each method works and the automated parameter selection.

our loss function from Eq. (5) to find the optimal parameters
for numerical differentiation.

The year 2020 has seen a dramatic growth of the
prevalence of a novel coronavirus, SARS-CoV-2, which
causes the disease known as COVID-19. Estimating and
understanding the rate of increase of disease incidence is
important for guiding appropriate epidemiological, health,
and economic policies. In the raw data ([34], https://
github.com/CSSEGISandData/COVID-19) for the raw new
confirmed daily cases of COVID-19, Fig. 6A) there is a
clear oscillation with a period of one week, most likely due
to interruptions in testing and reporting during weekends.
As such, we selected a lower cutoff frequency of 2 months,
corresponding to the beginning of the steep drop off in the
power spectra (Fig. 6B). If the weekly oscillations were
important, one could just as easily select a cutoff frequency
of 1/week. Our heuristic for choosing γ was based on sinu-
soidal data with a limited domain of time resolutions ranging
from 0.001 to 0.1 seconds, so we scaled the time step units
of the COVID-19 data to be close to this range, using dt = 1
day, rather than 86,400 seconds. Our chosen cutoff frequency
yielded a value of γ = 4.1.

Using this same value of γ for each of the four differen-
tiation methods under consideration resulted in very similar
smoothed daily case estimates and derivatives, except during

the final 2 weeks (Fig. 6C). In the final week, the raw data
shows a fast decrease in the number of daily cases. Three
out of the four methods follow this quick dive, whereas
the Savitzky-Golay filter is less quick to respond. This is
likely because the Savitzky-Golay filter operates on sliding
windows. At the end of the data stream these sliding windows
are not symmetric about the point being estimated and will
therefore weight the data to the left of the end point more.
Such edge artifacts are common among smoothing methods,
and each method will have its own challenges. One potential
solution would be to include specific boundary conditions,
as has been done recently for spline fits [35]. A more subtle
difference between the methods is that the Butterworth filter
appears to preserve a larger remnant of the weekly oscilla-
tions seen in the raw data, likely due to either a too high a filter
order, or too high of a cutoff frequency. The differences in
estimates highlights an important application of our method,
which facilitates easy and fair comparison between different
smoothing methods.Where these methods disagree, it is clear
that none of the estimates can be trusted.

Finally, we consider angular velocity data collected
from a gyroscope attached to a downhill ski over one
minute of descent (Fig. 7A) (ICM-20948, SparkFun; Wild-
cat Ski, Moment Skis). This type of data is represen-
tative of kinematic data that might be collected during
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FIGURE 7. Numerical differentiation of noisy gyroscope data from a downhill ski during one ski run, with no parameter tuning. A. Data
from one axis of a gyroscope attached to the center of a downhill ski. B. Power spectra of the data, indicating the cutoff frequency (red)
used for selecting γ = 11.5. C. Zoomed in section of the data from A, which was used to optimize parameter selection. D. Smoothed
angular velocities and angular accelerations, calculated using a Savitzky-Golay filter and the optimal parameters determined using our
heuristic and loss function. E-F. Zoomed in sections from D.

experiments with robots or animals, which might be used
to construct data-driven models of their dynamics [36].
From the power spectrum, we chose a cutoff frequency
of 0.2 Hz (Fig. 7B). This selection together with the time
resolution of 0.0009 seconds yielded an optimal value
of γ = 11.5 using our heuristic. We calculated the

smoothed angular velocity and acceleration estimates using
a Savitzky-Golay filter (Fig. 7D–F). The other methods
showed similar results (not shown for visual clarity), though
the total variation method is not recommended for large
datasets like this one due to the compounding computational
costs.
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VI. CONCLUSION
In summary, this article develops a principled multi-objective
optimization framework to provide clear guidance for solving
the ill-posed problem of numerical differentiation of noisy
data, with a particular focus on parameter selection. We
define two independent metrics for quantifying the quality of
a numerical derivative estimate of noisy data: the RMSE and
error correlation. Unfortunately, neither metric can be evalu-
ated without access to ground truth data. Instead, we show
that the total variation of the derivative estimate, and the
RMSE of its integral, serve as effective proxies, as the solu-
tions resulting from these metrics generally trace the pareto
front of the solutions resulting from the actual RMSE and
error correlation (e.g. compare the violet trace and gray dots
in Fig. 3). We then introduced a novel loss function that bal-
ances these two proxies, reducing the number of parameters
that must be chosen for any given numerical differentiation
method to a single universal hyperparameter, whichwe call γ .
Importantly, the derivative estimates resulting from a sweep
of γ lie close to the Pareto front of all possible solutions
with respect to the true metrics of interest. Although different
applications may require different values of γ to produce
more smooth or less biased derivative estimates, we derive an
empirical heuristic for determining a general purpose starting
point for γ given two features that can easily be determined
from timeseries data: the cutoff frequency and time step. Our
method also makes it possible to objectively compare the
outputs for different methods.We found that for each problem
that we tried, the four differentiation methods we explored in
depth, including both local and global methods, all produce
qualitatively similar results.

In our loss function we chose to use the RMSE of the
integral of the derivative estimate and the total variation of the
derivative estimate as our metrics. However, our loss function
can be extended to a more general form,

L = M1( ˆ̇x, ẋ)+ γ2M2( ˆ̇x, ẋ)+ · · · + γpMp( ˆ̇x, ẋ), (9)

where M1,M2, · · · ,Mp represent p different metrics that
could be used, balanced by p − 1 hyper-parameters. Alter-
native metrics include, for example, the tortuosity of the
derivative estimate, the error correlation between the data and
the integral of the derivative estimate, a metric describing the
distribution of the error between the data and the integral of
the derivative estimate. Depending on the qualities of the data
and the specific application, different sets of metrics may be
suitable as terms in the loss function.

Our loss function makes three important assumptions that
future work may aim to relax. The first is that we assume the
data has consistent zero-mean Gaussian measurement noise.
How sensitive the loss function and heuristic are to outliers
and other noise distributions remains an open question. It is
possible that once we include other noise models, we will
find differences in the behavior of differentiation methods.
The second major limitation is that our loss function finds a
single set of parameters for a given time series. For data where
the frequency content dramatically shifts over time, it may

be better to use time-varying parameters. Presently, this is
limited by our current implementation, which relies on a com-
putationally expensive optimization step. Future efforts may
focus on ways to improve the efficiency of these calculations.
Finally, we have focused on single dimensional time-series
data. In principle, our proposed loss function can be used with
multi-dimensional data, such as 2- and 3-dimensional spatial
data, with only minor modifications.

By simplifying the process of parameter selection for
numerical differentiation to the selection of a single hyper-
parameter, our approach makes it feasible to directly com-
pare the performance of different methods within a given
application. One particular application of interest is that of
data-drivenmodel discovery.Methods such as sparse identifi-
cation of nonlinear dynamics (SINDy) [14], for example, rely
directly on numerical derivative estimates, and the character-
istics of these estimates can have an important impact on the
resulting models. Using our method, it is now tractable to sys-
tematically investigate the collection of data-driven models
learned from estimated derivatives of different smoothness
and explore their impact on the models.
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