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ABSTRACT Filtering problems with oscillatory system dynamics commonly appear in real-life. How-
ever, the existing Gaussian filters, like the unscented Kalman filter (UKF), cubature Kalman filter CKF,
Gauss-Hermite filter (GHF) and cubature quadrature Kalman filter (CQKF), are accurate for the nonlinear
systems with a particular order of polynomials only. This manuscript introduces a new Gaussian filter,
which is accurate for oscillatory systems with 2π-period of oscillation. The proposed method is named
as Szegő Quadrature Kalman Filter (SQKF). The SQKF transforms the intractable integrals that appear
during the filtering over a unit circle. The transformed integral is approximated using the univariate Szegő
quadrature rule. The univariate quadrature rule is extended in a multivariate domain using the product rule.
Simulation results reveal an improved estimation accuracy for the SQKF in an oscillatory environment. The
computational burden of the SQKF is similar to the GHF and higher than the UKF, CKF and CQKF.

INDEX TERMS Nonlinear filtering, Gaussian filtering, oscillatory system, intractable integral, Szegő
quadrature rule.

I. INTRODUCTION
Estimation is a stochastic method for computing the hidden
states of a system from noisy measurements. A recursive
implementation of estimation is called filtering. The esti-
mation and filtering problems appear in several domains of
science and technology, like the defense system [1], space
technology [2], financial and biomedical modeling [3], [4],
weather forecast [5], industrial diagnosis and prognosis [6],
etc. Bayesian framework [7]–[9] is a commonly accepted
filtering approach among practitioners. It interprets the esti-
mation problem in terms of prior and posterior probability
density functions (pdf).

An optimal Bayesian filter for linear systems with Gaus-
sian noises was developed in the sixties, popularly known as
Kalman filter [7], [10]. However, its application is severely
restricted due to the nonlinear nature of practical problems.
A derivative-based nonlinear extension of the Kalman filter,
named as extended Kalman filter (EKF) [7], was devel-
oped soon after the ordinary Kalman filter. However, it suf-
fers from several drawbacks, like the poor accuracy and
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stability, due to derivative computation and local lineariza-
tion of nonlinear system models. Despite all the drawbacks,
the EKF and its variants [11]–[13] were the only alternatives
for more than three decades. Post the EKF era, the literature
on derivative-free filtering can be broadly divided into two
categories: particle filtering [14], [15] and Gaussian filter-
ing [16]–[18]. The particle filter (PF) approximates the true
pdfs with a large number of samples, called particles, and
their associated weights. In general, it is difficult, or even
impossible, to generate samples from the true pdf. Thus,
an alternative pdf, known as importance density [14], [15],
is selected for generating the particles. It is a highly accurate
filtering method for nonlinear and non-Gaussian systems,
which is the most practical scenario. However, its computa-
tional demand is significantly high due to a large number of
particles. Thus, it is often inapplicable to practical filtering
problems. The Gaussian filters, however, approximate the
true pdfs as Gaussian and characterize them with mean and
covariance. The Gaussian filters are computationally efficient
and most commonly used for practical applications, though
their accuracy is relatively weak compared to the particle
filters. The research is ongoing to improve the estimation
accuracy of the Gaussian filtering further.
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The Gaussian filters encounter intractable integrals of the
form ‘nonlinear function×Gaussian distribution’ [16]–[18].
The intractable integrals are approximated numerically, and
the accuracy of a filter depends on the accuracy of numeri-
cal approximation. The literature witnesses several Gaussian
filters developed by using different numerical approxima-
tion methods. Some popular Gaussian filters are unscented
Kalman filter (UKF) [18], cubature Kalman filter (CKF) [16]
and its extensions [19], [20], and Gauss-Hermite filter
(GHF) [17] along with several extensions [21]–[23].

The UKF utilizes an unscented transformation based
numerical approximation [18]. Although it attracts the prac-
titioners significantly, the unscented transformation based
numerical approximation is not a very accurate method,
which leaves scope for further development. With this moti-
vation, the CKF is developed by using spherical-radial
rule [16], which is more accurate than the unscented trans-
formation based numerical approximation. In the spherical-
radial rule, the desired integral is decomposed into spherical
and radial integrals. The spherical integral is approximated
using spherical cubature rule and the radial integral is approx-
imated using Gauss-Laguerre quadrature rule. The CKF is
further extended in [19] and [20] by using advanced numeri-
cal approximation methods providing a higher-order approx-
imation to the spherical and radial integrals. In a further
development, the GHF is introduced, which is possibly the
most accurate among all the Gaussian filters. It utilizes uni-
variate Gauss-Hermite quadrature rule [17], [22] for approx-
imating the intractable integrals. In the case of multivariate
systems, it utilizes product rule [17] for extending the uni-
variate quadrature rule in the multivariate domain. The GHF
is further extended in [21] and [22] by replacing the product
rule with computationally efficient methods of extending
the univariate quadrature rule in the multivariate domain.
These extensions reduce the computational burden without
harming the accuracy significantly. Although the GHF and
its extensions are possibly the most accurate Gaussian filters,
an N -point Gauss-Hermite quadrature rule is accurate only
for integration with polynomials of order up to 2N − 1.
Therefore, the GHF suffers from poor accuracy for oscillatory
systems. Note that the scope of increasing N is limited for
multivariate systems as the computational burden increases
exponentially. Similarly, all the existing Gaussian filters are
accurate for polynomial-type systems only.

The literature witnesses several extensions of Gaussian
filtering, which can be applied to any of the Gaussian filters
to enhance the estimation accuracy further. Some of the pop-
ular extensions are Gaussian-sum filtering [24] and iterated
filtering [25]. The Gaussian-sum filtering [24] approximates
the unknown pdf with multiple Gaussian components instead
of a single Gaussian in the case of the ordinary Gaussian
filtering. The multiple Gaussian approximates the true pdf
more accurately, which results in an improved estimation
accuracy. On the other hand, the iterated filtering [25] per-
forms the crucial measurement update step recursively with a
predefined termination criteria to stop the recursive process.

It should be mentioned that these extensions are applicable to
any of the Gaussian filters. Moreover, the accuracy ultimately
depends on the accuracy of the fundamental Gaussian filters,
such as the UKF, CKF and GHF, to which the extension is
applied. Therefore, the inefficacy of the existing Gaussian
filters for oscillatory systems remains a concern.

This paper focuses on improving the estimation accuracy
of the Gaussian filtering for oscillatory systems. As discussed
above, the existing filters are inaccurate due to the inefficacy
of the numerical methods in approximating the integrals with
oscillatory functions. This paper introduces a new numeri-
cal approximation method, named as Szegő quadrature rule,
which is accurate for oscillatory functions. The Szegő quadra-
ture rule is defined over a unit circle in a complex plane.
Thus, the desired intractable integral is first transformed over
a unit circle in a complex plane. The transformed integral is
approximated using the Szegő quadrature rule, which gener-
ates the sample points and weights using orthogonal Szegő
polynomials [26], [27]. The Gaussian filter developed with
Szegő quadrature rule is named as Szegő Quadrature Kalman
Filter (SQKF). The Szegő quadrature rule is again a univariate
quadrature rule; hence, the product rule is used for extending
the univariate rule in multivariate domain. The simulation
results reveal an improved estimation accuracy for the SQKF
compared to the existing Gaussian filters in the oscillatory
environment.Moreover, the aforementioned extensions of the
Gaussian filtering, such as the Gaussian-sum filtering and
iterated filtering, can be applied over the proposed SQKF as
well, to enhance the estimation accuracy further.

II. GAUSSIAN FILTERING METHOD
This section briefly reviews the Gaussian filtering method,
which is simplification of Bayesian filtering framework. Con-
sider a nonlinear systemwith the following state spacemodel:

xk = φk (xk−1)+ ηk , (1)

yk = γk (xk )+ vk , (2)

where xk ∈ <n and yk ∈ <d are state and measurement
variables at k th instant, k = {1, 2, · · · }, φk : xk−1 → xk
and γk : xk → yk are nonlinear functions, ηk ∈ <

n and vk
∈ <

d are process and measurement noises, respectively. The
process noise encounters modeling error, while the measure-
ment noise compensates for the sensor uncertainties. ηk and
vk are assumed to follow zero-meanGaussianwith covariance
Qk and Rk , respectively.

The Bayesian framework consists of two steps: predic-
tion and update. The prediction step determines the prior
pdf P(xk |y1:k−1) using the Chapman-Kolmogorov equa-
tion. However, the update step determines the posterior
pdf P(xk |y1:k ) using Bayes rule based on the information
received from yk . In the Gaussian filtering, the condi-
tional pdfs are approximated as Gaussian: P(xk |y1:k−1) ≈
N (xk ; x̂k|k−1,Pk|k−1) and P(xk |y1:k ) ≈ N (xk ; x̂k|k ,Pk|k ),
where x̂k|k−1 (x̂k|k ) andPk|k−1 (Pk|k ) aremean and covariance
of xk |y1:k−1 (xk |y1:k ), and N denotes Gaussian distribution.
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Subsequently, the problem of characterizing the conditional
pdfs is simplified as the problem of computing the respective
mean and covariance. The computation of mean and covari-
ance involves multivariate Gaussian weighted integrals of the
form

In =
∫
∞

−∞

f (x)N (x; x̂,P)dx, (3)

where f : <n → <
n is a general nonlinear function.

Such integrals are mostly intractable, and approximated
numerically using quadrature rules. The quadrature rules are
designed for N (x; 0, In) with In being identity matrix of
dimension n. Therefore, In concerningN (x; 0, In) is approx-
imated as

In0 =
∫
∞

−∞

f (x)N (x; 0, In)dx ≈
Ns∑
j=1

Wjf (ξ j), (4)

where ξ j and Wj ∀ j ∈ {1, 2, · · · ,Ns} are sample points
and weights, respectively, while Ns is the number of sam-
ple points. The same quadrature rule can be extended for
N (x; x̂,P) by transforming the sample points by mean x̂ and
covariance P, hence

In ≈
Ns∑
j=1

Wjf (x̂ + Sξ j), (5)

where SST = P.
The Gaussian filtering method based on numerical approx-

imation of intractable integrals can be summarized as fol-
lowed [16], [20].

A. PREDICTION

x̂k|k−1 =
Ns∑
j=1

Wjξ j,k|k−1, (6)

Pk|k−1 =
Ns∑
j=1

Wj

× (ξ j,k|k−1 − x̂k|k−1)(ξ j,k|k−1 − x̂k|k−1)
T
+ Q,(7)

where ξ j,k|k−1 = φk (x̂k−1|k−1 + Sk−1|k−1ξ j).

B. UPDATE

x̂k|k = x̂k|k−1 +Kk (yk − ŷk|k−1), (8)

Pk|k = Pk|k−1 −KkP
yy
k|k−1K

T
k , (9)

where

Kk = Pxyk|k−1(P
yy
k|k−1)

−1, (10)

ŷk|k−1 =
Ns∑
i=1

Wiξ
γ

i,k|k−1, (11)

Pyyk|k−1 =
Ns∑
i=1

Wi(ξ
γ

i,k|k−1−ŷk|k−1)(ξ
γ

i,k|k−1−ŷk|k−1)
T
+Rk ,

(12)

Pxyk|k−1 =
∑
i

Wi(ξ i,k|k−1 − x̂k|k−1)(ξ
γ

i,k|k−1 − ŷk|k−1)T ,

(13)

with ξ
γ

i,k|k−1 = γk (Sk|k−1ξ i + x̂k|k−1) and
ξi,k|k−1 = Sk|k−1ξ i + x̂k|k−1.

III. Szegő QUADRATURE KALMAN FILTER
The proposed SQKF is a Gaussian filter; hence, it follows
the same filtering structure described in the previous section.
However, it uses Szegő quadrature rule for generating a new
set of ξ and W . The Szegő quadrature rule is accurate for
oscillatory systems with 2π-period of oscillation. It trans-
forms the desired integral over a unit circle, and approximates
the transformed integral with ξ andW generated over this unit
circle.

A. INTEGRAL TRANSFORMATION
The Szegő quadrature rule is defined for univariate systems.
For a univariate system with zero-mean and unity covariance,
In0 can be simplified as

I10 =
1
√
2π

∫
∞

−∞

f (x)e−
x2
2 dx,

where x is a univariate random variable and f (x) is an oscil-
latory function with 2π -period. The Szegő quadrature rule
transforms I10 over a unit circle. Hereafter, the unit circle is
denoted as U = {z ∈ C : |z| = 1}, where z = eiθ and C is set
of all circles.
Lemma 1: For a 2π-periodic function f (x),

1
√
2π

∫
∞

−∞

f (x)e−
x2
2 dx =

∫ π

−π

f (θ )w(θ )dθ, (14)

where θ is phase angle with respect to a point on U, and

w(θ) =
1
√
2π

∞∑
j=−∞

e−
(θ−2π j)2

2 (15)

is weight function on [−π, π] with respect to e−x
2/2.

Proof: For any θ ∈ [−π, π], it follows from [28] that
∞∑

j=−∞

f (θ )e−(θ−2π j)
2/2

≤ arg max
θ∈[π,π ]

|f (θ )|

1+ 2
∞∑
j=1

e−
(2π(j−1))2

2

 . (16)

It can also be observed that

lim
j→∞

e−(2π(j−1))
2

e−(2π(j−2))2
= 0 < 1. (17)

Eq. (16) and (17) conclude that
∑
∞

j=−∞ f (θ )e−(θ−2π j)
2/2 is a

convergent series. Let us now replace w(θ) from Eq. (15) into
the expression in the right-hand side of Eq. (14):∫ π

−π

f (θ )w(θ )dθ =
1
√
2π

∫ π

−π

f (θ )
∞∑

j=−∞

e−
(θ−2π j)2

2 dθ.
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As
∑
∞

j=−∞ f (θ )e−(θ−2π j)
2/2 a convergent series, the summa-

tion and integration can be interchanged. Therefore,∫ π

−π

f (θ )w(θ )dθ =
1
√
2π

∞∑
j=−∞

∫ π

−π

f (θ )e−
(θ−2π j)2

2 dθ.

Substituting x = θ − 2π j in the right-hand side, we get∫ π

−π

f (θ )w(θ )dθ =
1
√
2π

∞∑
j=−∞

∫ π−2π j

−π−2π j
f (x + 2π j)e−

x2
2 dx.

As f (x) is 2π-periodic, the above equation can be further
simplified as∫ π

−π

f (θ )w(θ )dθ =
1
√
2π

∫
∞

−∞

f (x)e−
x2
2 dx.

�

B. INTEGRAL APPROXIMATION USING Szegő
QUADRATURE RULE
The Szegő quadrature rule is defined over unit circle for
approximating the integrals of the form

∫ π
−π

f (θ )w(θ )dθ
using Szegő polynomials. Subsequently, it approximates
the desired univariate integral I10 . The Szegő polynomials
{ϑm(z)}∞m=1 are orthonormal on U with respect to a weight
function ω(θ ), i.e.〈

ϑm, ϑm
〉
ω
=

∫ π

−π

ϑm(z)ϑm(z)ω(θ )dθ = δm,m,

where
〈
ϑm, ϑm

〉
ω
represents the inner product of ϑm(z) and

ϑm(z) induced by ω(θ ), ϑm(z) is conjugate of ϑm(z), and δ
represents Kronecker delta. Explicit expressions of ϑm(z) are
available only for exceptional ω(θ ). They are generally con-
structed from their monic sequence obtained from iterative
solution of Szegő forward recurrence relation. If {ρm(z)}∞m=1
denotes the monic sequence of ϑm(z), then the recurrence
relation is given as [26], [27][

ρm(z)
ρ∗m(z)

]
=

[
z αm
αmz 1

] [
ρm−1(z)
ρ∗m−1(z)

]
; m ≥ 1,

where ρ∗m(z) is reciprocal of ρm(z) computed as ρ∗m(z) =
zmρm(1/z), and αm = ρm(0) ∀ m ≥ 0 is Verblunsky coef-
ficient for ω(θ ). The initial condition is taken as ρ0(z) =
ρ∗0 (z) = 1. Moreover, α0 = 1 and |αm| < 1 ∀ m ≤ 1.
The author refers to [26], [27] for a detailed discussion on
ρm(z), αm and the resultant polynomials. The solution of
recurrence relation concerning ω(θ ) = w(θ ) generates the
Szegő polynomials of our interest.

The Szegő quadrature rule is based on an extended form
of Szegő polynomials, where ρm(z) is generated using q-
binomial coefficient. This extended form is also known as
Rogers-Szegő polynomial [29]. The q-binomial coefficient
for 0 < q < 1 is defined as

(m)q =
m∏
j=1

(1− qj),(
m
j

)
q

=
(m)q

(j)q(m− j)q
=

∏m
k=m−j+1(1− q

k )∏j
k=1(1− q

k )
,

(18)

where

(0)q =
(
m
0

)
q
=

(
m
m

)
q
= 1.

An explicit form of monic and Rogers-Szegő polynomials
concerning the weight function w(θ) is derived in [28] as

ρm(z) =
m∑
j=0

(−1)m−j
(
m
j

)
s
s
m−j
2 zj (19)

and

ϑm(z) =
1
√
(m)s

ρm(z), (20)

where s = e−1 is the parameter q for ω(θ ) = w(θ ).
For the above monic and Rogers-Szegő polynomials,

the univariate quadrature points and associated weights are
derived in [28]. If ξj ∀ j ∈ {1, 2, · · · ,Ns} represent the
univariate quadrature points with Ns be the desired number
of quadrature points, then ξj can be obtained as roots of

Ns∑
j=0

Cj
(
1+ (−1)Nss(j−Ns/2)

)
zj = 0, (21)

where the coefficient Cj is given as

Cj = (−1)Ns−j
(
Ns
j

)
s
s
Ns−j
2 .

The weight associated with a univariate point ξj is given as

Wj =
(s)Ns

2Re
[
ξjρ′m(ξj)ρm(ξj)

]
− Ns|ρm(ξj)|2

, (22)

where Re[·] represents the real part of complex number and
ρ′m(z) represents the first derivative of ρm(z).

The roots of Eq. (21), i.e. ξj, are obtained on a unit
circle, and represented in a complex plane. Note that the
desired quadrature points are analogous to angle, which can
be obtained as phase angle of ξj. Subsequently, the desired
quadrature points are: ζj = 6 ξj ∀ j ∈ {1, 2, · · · ,Ns} i.e.
ζj ∈ [−π, π]. As ξj is a point on a unit circle, |ξj| = 1.
The values of univariate quadrature points and weights, ζj and
Wj, are shown in Table 1 for Ns = 10. Based on ζj and Wj,
the integral I10 can be approximated as

I10 =
1
√
2π

∫
∞

−∞

f (x)e−
x2
2 d

=

∫ π

−π

f (θ )w(θ )dθ ≈
Ns∑
j=0

Wjf (ζj). (23)

C. MULTIVARIATE EXTENSION OF Szegő
QUADRATURE RULE
The Szegő quadrature rule approximates the univariate inte-
gral I10 . However, the desired integral In0 is multivariate
extension of I10 . The SQKF utilizes product rule for extend-
ing the univariate rule in multivariate domain. With ζj and
Wj (∀ j ∈ {1, 2, · · · ,Ns}) being the univariate quadrature
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TABLE 1. Ns = 10: Univariate quadrature points in complex plane (ξj ),
Univariate quadrature points in terms of phase angle in radian (ζj ), and
the weights (Wj ) associated with ξj and ζj .

points and weights, respectively, the product rule approxi-
mates In0 as

In0 ≈
Ns∑
j1=1

Ns∑
j2=1

· · ·

Ns∑
jn=1

f
( [
ζj1 , ζj2 , · · · , ζjn

]T )Wj1Wj2 · · ·Wjn .

Subsequently, the desired multivariate intractable integral In

with respect to N (x; x̂,P) can be approximated as

In ≈
Ns∑
j1=1

Ns∑
j2=1

· · ·

Ns∑
jn=1

f
(
x̂ + S

[
ζj1 , ζj2 , · · · , ζjn

]T )
×Wj1Wj2 · · ·Wjn . (24)

Therefore, the multivariate quadrature points and weights
can be obtained as: ξ =

[
ζj1 , ζj2 , · · · , ζjn

]T and W =

Wj1Wj2 · · ·Wjn ∀ j1, j2, · · · , jn ∈ {1, 2, · · · ,Ns}. Note that the
number of multivariate quadrature points are (Ns)n. The pro-
posed SQKF can be implemented by using the steps shown
in Eq. (6) to (13), with ξ and W as derived above.
The existing Gaussian filters, such as the UKF, CKF, and

GHF, utilize the numerical approximation methods accurate
only for polynomials up to particular orders. Subsequently,
they suffer from poor estimation accuracy for the oscillatory
systems. Note that the Szegő quadrature rule approximates
the integrals of the form

∫ π
−π

f (θ )w(θ )dθ . As derived in
Lemma 1, this form of integral also represents the univariate

integral I10 =
1
√
2π

∫
∞

−∞
f (x)e−

x2
2 dx (for zero mean and

unity covariance systems), if f (x) is an oscillatory func-
tion. Moreover, applying the product rule and the trans-
formation of x with mean x̂ and covariance P, the same
rule can be extended to approximate the desired integral
In =

∫
∞

−∞
f (x)N (x; x̂,P)dx for an oscillatory form of f (x).

Thus, the Szegő quadrature rule can approximate the desired
integrals for oscillatory systems with better accuracy. Subse-
quently, the proposed SQKF is expected to outperform the
existing filters in an oscillatory environment.

It should be mentioned that the Szegő quadrature rule
is specifically designed for oscillatory systems. Therefore,
the SQKF does not apply to the systems without periodic
oscillation. Moreover, it should also be mentioned that a
wide range of nonlinear filtering problems involve oscilla-
tion. Thus, the practical applicability of the SQKF remains
wide.
Remark 1: Number of multivariate quadrature points

required for implementing the SQKF is (Ns)n. Therefore,

the computational burden of the SQKF increases exponen-
tially with increasing dimension. Moreover, the computa-
tional burden is similar to the GHF, and higher than the UKF
and CKF.
Remark 2: Smolyak rule [21] and adaptive sparse-grid

rule [22], used in SGHF and ASGHF, respectively, can
replace the product rule to reduce the computational burden.

IV. SIMULATION AND RESULTS
In this section, the proposed SQKF is simulated for two non-
linear filtering problems with oscillatory state dynamics. The
simulation is performed in Matlab over a personal computer
with Intel Core i7, 1.89 GHz processor, 8 GB RAM, and 64-
bit operating system. The performance of SQKF is compared
with the existing nonlinear Gaussian filters, UKF, CKF, GHF
and cubature quadrature filter (CQKF), as well as the PF and
related techniques. The performance analysis is based on root
mean square error (RMSE).

A. PROBLEM 1
The first problem is a parameter estimation problem concern-
ing Duffing oscillator [30], [31]. The state dynamics follows
a nonlinear second-order differential equation of form

ẍ + 2bεẋ + ε2x + ax3 = u(t), (25)

where x is displacement, a and b are stiffness coefficient and
damping coefficient, respectively, and ε is angular velocity.
u(t) = Acosλt is harmonic input, where A is amplitude and λ
is frequency. From Eq. (25), we can formulate the following
state dynamics [30], [31]

dx1 = x2dt,

dx2 = (−2 bεx2 − ε2 x1 + x3x31 + Acosλt)dt + σdB1(t),

dx3 = dB2(t),

where x1, x2 and x3 are displacement, velocity and the stiff-
ness coefficient a, respectively, while B1 and B2 are indepen-
dent Brownian motions. The discretized form of above state
dynamics is shown in Eq. (26), as shown at the bottom of the
next page, where

c2(k) = −2 bεx2(k)− ε2 x1(k)− x3(k)x1(k)3 + A cos λtk ,

and [I1, I10, I100, I2]T is zero-mean Gaussian with covariance

6 =


T

T 2

2
T 3

6
0

T 2

2
T 3

3
T 4

8
0

T 3

6
T 4

8
T 5

20
0

0 0 0 T


.

Please note the sufficiently large value of 6 over a given
sampling interval T to introduce a sufficiently large noise.
The measurement equation follows yk = xk +σmIm = [x1(k)
x2(k) x3(k)]T + σmIm.
A simulated dataset of x is generated by assuming the true

initial state as x0 = [0.5,−1, 1]T . The filtering is performed
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over 200 time-steps with the initial estimate generated from
N (x0,P0|0) with P0|0 = In being the initial error covariance.
For the given initial condition and state dynamics, a suffi-
ciently large input is taken by considering the input sinusoidal
amplitude as A = 10. A small damping coefficient is taken
as b = 0.04 to cause high oscillation, which further causes
higher nonlinearity to make the filtering more challenging.
The angular velocity of the oscillator is assigned with a rea-
sonable value, ε = 1.15π . The angular velocity of the input
is considered to be smaller than the angular velocity of the
oscillator, and assigned with a value λ = .75ε. The sampling
time is considered to be small enough to characterize the
oscillation, and taken as T = π/(80λ). Considering that the
noise coefficients should be sufficiently large to character-
ize the practical difficulties of filtering, they are chosen as
σ = A/10, σα = 0.00158 and σm = 0.23.
Hereafter, SQKFNs denotes the proposed SQKF with

Ns-point univariate quadrature rule. The UKF is generally
implemented with a positive integer value of κ to ensure
that all the weights are non-negative. Thus, it is taken as
κ = 2 for the implementation. Other values can also be
chosen, however, the estimation accuracy may not change
significantly. The number of multivariate points for the GHF
is exponential to the number of univariate quadrature points.
Therefore, the number of univariate quadrature points is gen-
erally chosen to be small, such as 3 to 4, to restrict the
computational burden. Thus, a 4-point GHF (with 4 univariate
quadrature points) is considered for simulation. For a fair
comparison, the proposed method is also applied with 4-point
univariate Szegő quadrature rule, i.e. SQKF4. Moreover,
the performance of SQKF is separately compared for varying
number of univariate quadrature points. Please note the non-
oscillatory nature of the measurement equation, where the
SQKF applies ordinary Gauss-Hermite quadrature rule.

Fig 1 shows the true variation of velocity against the
position, and the same estimated from SQKF4. The esti-
mated trajectory closely matches the true values, which inter-
prets a successful estimation for the SQKF. Furthermore,
Fig. 2 shows RMSE plots for the SQKF (implemented with
Ns = 4) and the existing filters, UKF, CKF, GHF and CQKF.
The RMSE for the SQKF is lower than the existing filters,
which indicates an improved estimation accuracy. The rela-
tive computation time is observed as 1, 0.94, 8.64, 1.82 and
8.76 for the UKF, CKF, GHF, CQKF and SQKF, respectively.
It indicates an increased computational burden for the SQKF
compared to the UKF, CKF and CQKF, though similar to

FIGURE 1. Problem 1: True and estimated plots of velocity against the
position.

TABLE 2. Problem 1: Average RMSE of SQKF with number of univariate
quadrature points.

the GHF. The average RMSE obtained from the SQKF for
variousNs is shown in Table 2. The table concludes a decreas-
ing RMSE, so that an improving estimation accuracy, as the
number of univariate quadrature points increases up to 6.
However, the RMSE increases as the univariate quadrature
points increase further from 6 to 8. This may be due to
several possible reasons, such as the saturation of numerical
approximation method, an inaccurate Gaussian being a closer
approximation of the true pdf and numerical instability of the
quadrature rule [28]. The relative computational time for Ns
being 2, 4, 6 and 8 are 1, 7.36, 25.71 and 55.53, respectively,
which shows an exponentially increasing computational time
as Ns increases.

B. PROBLEM 2
For the second problem, the dynamic state space model of the
system is given as

xk = |20 cos(xk−1)| + ηk , (27)

yk =
√
(1+ xTk xk )+ vk . (28)

For the simulation purpose, the system dimension is consid-
ered as 2. The initial state is taken as x0 = [1, 2]T . The initial
estimate and covariance are considered as x̂0|0 = [3, 4]T

and P0|0 = In, respectively. Note that the peak values of x

x1(k + 1) = x1(k)+ x2(k)T + c2(k)
T 2

2
−Aλ sin λtk

T 3

6
− ε2x2(k)

T 3

6
− x3(k)x1(k)2x2(k)

T 3

2
+ σ I10 + 2bεσ I100,

x2(k + 1) = x2(k)+
A
λ
(sin λtk+1 − sin λtk )− 2bε

(
x2(k)T + c2(k)

T 2

2

)
− ε2

(
x1(k)T + x2(k)

T 2

2

)
− x3(k)

(
x1(k)3T

+ 3x1(k)2x2(k)
T 2

2

)
+ σ I1 − 2bεσ I10,

x3(k + 1) = x3(k)+ σαI2. (26)
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FIGURE 2. Problem 1: RMSE plots for the SQKF and the existing filters,
UKF, CKF and GHF. The SQKF is implemented with 4-points univariate
quadrature rule.

and y are 20 and 20
√
2 (approximated value for n = 2),

respectively. The noise covariances are assigned to restrict the
noises mostly within 10% of the peak values. Subsequently,
they are taken as: Qij = 0.5 ∀ i = j and 0.05 otherwise,
and R = 1. The parameters of the UKF, GHF and SQKF are
assigned with the same values as the previous problem.

The RMSE plots for the SQKF and the existing Gaussian
filters are shown in Fig. 3. The RMSE obtained from the
SQKF is lowest, which concludes an improved accuracy
for the SQKF compared to the existing filters. The relative
computational time is observed as similar to the Problem 1.
Furthermore, the effect of increasing the number of univariate
quadrature points is studied in Table 3. The table concludes
a decreasing RMSE for an increasing number of univariate
quadrature points, except for 8 univariate quadrature points
which observed an increased average RMSE similar to the
Problem 1. The possible reasons for this increased RMSE
are the same as those discussed in Problem 1. Please note
that the RMSE of the proposed SQKF is similar to the
CQKF for the second state. However, Table 3 shows that the
RMSE of the SQKF further reduces with increased univariate

FIGURE 3. Problem 2: RMSE plots for the SQKF and the existing filters,
UKF, CKF and GHF. The SQKF is implemented with 4-points univariate
quadrature rule.

TABLE 3. Problem 2: Average RMSE of SQKF with number of univariate
quadrature points.

quadrature points. Thus, the claim that the proposed SQKF
is the most accurate for oscillatory systems among all the
considered Gaussian filters remains intact.

The relative computational time of the SQKF is observed
as 1, 2.44, 4.71 and 8.01 for Ns being 2, 4, 6 and 8, respec-
tively. Note that the relative increase in computational time
with every increment in Ns is lesser for this problem com-
pared to Problem 1 due to the smaller system dimension.

C. COMPARISON WITH PARTICLE FILTER AND
RELATED TECHNIQUES
The performance of the proposed SQKF is further compared
with PF and related techniques, unscented PF (UPF) and
cubature PF (CPF). The PF and related techniques gener-
ally give high accuracy but require a large computational
load. Thus, the comparison is based on the relative changes
in RMSE for PF and related techniques (compared to the
SQKF) with relative changes in computational time. The
relative changes are shown in Table 4 for Problem 1 and
Table 5 for Problem 2. As the computational burden of the
SQKF increases exponentially, SQKF4 is chosen for Prob-
lem 1 (gives 64 three-dimensional points); however, SQKF6
is implemented for Problem 2 (gives only 36 two-dimensional
points). The comparison is limited to 500 particles for the PF
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TABLE 4. Problem 1: Relative RMSE and computational time for SQKF, PF, UPF and CPF.

TABLE 5. Problem 2: Relative RMSE and computational time for SQKF, PF, UPF and CPF.

and related techniques, as the computational time becomes
extensively large (compared to the SQKF) for this limit itself.

Table 4 shows an increased RMSE, i.e. poor accuracy, for
the PF and related techniques with up to 200 particles in the
case of Problem 1. The computational time for 200 particles
itself is increased almost three times for the PF and more than
25 times for the UPF and CPF compared to the SQKF. The
RMSE for the PF and related techniques improveswhen using
500 particles. However, the computational burden, in this
case, becomes extensively larger than the SQKF.

Table 5 shows that the ordinary PF gives a higher RMSE,
i.e. poor accuracy, in all cases, even as the computational
burden increases thirteen times (for 500 particles). The UPF
and CPF underperform the SQKF for the first state and
outperform for almost all the chosen particles for the sec-
ond state. The overall performance (collectively for the first
and second states) of the UPF and CPF may be concluded
as similar or marginally improved than the SQKF even as
the computational burden increases as high as 100 times
of the SQKF.

The overall analysis of Table 4 and 5 concludes that the
proposed SQKF outperforms the PF and related techniques if
the computational time of the two is comparable. The perfor-
mance of the SQKF remains better even as the computational
time of the PF and related techniques increase a few times to
that of the SQKF. Moreover, the PF and related techniques
may outperform the SQKF when their computational time
is extensively larger than that of the SQKF. It should be
mentioned that the sampling interval is usually small in the
filtering with oscillatory systems to appropriately character-
ize the fast swings in the state dynamics due to the oscillation.
Thus, a large computational time may not be ensured for PF
and related techniques. Therefore, the SQKF may become
a better choice than the PF and related techniques for the
practical applications involving oscillation.

V. DISCUSSION AND CONCLUSION
Nonlinear estimation and filtering problems appear in sev-
eral domains of science and technology, like target tracking,

stochastic modeling, diagnosis and prognosis of industrial
equipment, signal characterization, etc. Many of these prob-
lems are based on oscillating system dynamics. However,
the existing Gaussian filters are accurate only for the sys-
tems represented by polynomials of particular orders. Sub-
sequently, the development of an advanced Gaussian filter,
accurate for the oscillatory systems, is a timely research
problem. The inefficacy of the existing Gaussian filters for
the oscillatory systems is mainly due to the inefficacy of
their numerical approximation methods for the oscillatory
functions. The proposed SQKF uses Szegő quadrature rule,
which is accurate for Gaussian weighted integrals with oscil-
latory functions. Subsequently, it offers high estimation accu-
racy when filtering with oscillatory systems. The simulation
results conclude the improved accuracy of the SQKF com-
pared to the existing Gaussian filters in the oscillatory envi-
ronment. The computational burden of the SQKF is similar
to the GHF, which is higher than the UKF, CKF and CQKF.
Moreover, the PF and related techniques perform poorer or
comparable to the SQKF unless their computational time
is not extensively larger than the SQKF. With an efficient
solution to the filtering problems with oscillatory system
dynamics, the SQKF can be a key Gaussian filter for future
applications.
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