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ABSTRACT Relative pose estimation refers to estimate the relative attitude and translation betweenmultiple
platforms. For mobile platforms, tracking the relative pose with pairwise range is challenging for highly
nonlinear associations between measurement and state. This article proposes a promising framework using
pairwise range to estimate the relative pose parameterized with Lie algebra. It is compatible with the existing
Gauss-Newton method and the Levenberg–Marquardt method. We analyze the existence of the optimal
solution based on the rank of the Hessian matrix, which turns into a discussion of sensors placement. The
associated unconstrained Cramer-Rao Lower Bound with fewer variables is presented. To track moving
platforms, we derived a novel and accurate relative kinematics without angular accelerations. An extended
Kalman filter incorporating the measurement of an IMU is designed to generate smooth poses. A simplified
version of the optimizer with less dimension is introduced to the application of aerobridge, which is also
compatible with other multilink devices. Simulations verify the proposed algorithm and the comparisons
with the existing popular methods prove its novelty.

INDEX TERMS Cramer-Rao lower bound, extended Kalman filter, nonlinear optimization, relative pose
estimation, wireless sensors network.

I. INTRODUCTION
Pose estimation (rigid body localization), i.e. guessing the
attitude and translation, is a well-studied subject in the robotic
field and Astronautics community for several decades. It is
widely applied in military, industry, and civilian applications,
such as guidedmissiles, unmanned aerial vehicles, floormop-
ping robot, etc. It has been challenging since the pose asso-
ciates with measurements nonlinearly in general and follows
some quadratic constraint [1].

Absolute and relative pose estimation are two branches
and they differ in whether the reference frame is moving.
Absolute pose estimation is conventionally solved with a set
of GPS, accelerometers, and magnetometers, which can work
in a long-distance circumstance but rarely perform indoor for
the degeneration of GPS and the magnetic-field interference.
Relative pose estimation usually occurs in a short-distance
circumstance (indoor and outdoor) where camera and wire-
less sensors network (WSN) are capable. Since every frame
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move, the inertial measurement unit (IMU) is used to capture
the high dynamic character.

The traditional approaches separately estimate attitudes
and positions [3], [4]. Most closed-form solutions of attitude
consider solving the least-square problem, named Wahba’s
problem [5], to minimize the deviation of the line-of-sights
measurements and its prediction. Typical methods including
closed-form quaternion [6], TRIAD algorithm [7], q-method
[8], etc. Then the optimal translation is the displacement
between the centroid of the coordinates in one frame and
the rotated and scaled centroid of the coordinates in the
other frame [6]. Recently, advanced WSN prompts high
accuracy localization. For example, theWSNwith ultrawide-
band (UWB) sensors can generate centimeter-level measure-
ment and therefore produce a precise pose estimation [9].

Most rigid bodies are not standstills [1] in practice, so pose
tracking attracts considerable attention. Chepuri et al. pro-
posed Kalman filters (KFs) incorporating the range measure-
ments, angular and translational velocity to estimate the pose.
The unitary constraint causes the attitude and translation to be
estimated separately and measuring the translational velocity

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 196979

https://orcid.org/0000-0003-0513-3665


R. Xia, H. Pei: Relative Pose Estimation Based on Pairwise Range With Application to Aerobridge

directly is impractical in general [4]. Chen and Ho present a
divide and conquer (DAC)method to estimate the pose, angu-
lar velocity, and translational velocity using Doppler mea-
surements [1]. In [2], they developed a specialized DAC with
less complexity but the performance is not better than [1].
Recently, Jiang et al. propose a robust semidefinite relax-
ation (SDR) to harsh localization scenarios over a large range
of noise levels [15]. Furthermore, the convex semidefinite
program (SDP) is formulated and the SDR method is used
to obtain the pose estimation with fewer optimization vari-
ables [16]. They all choose all elements of the attitude matrix
as the state, which increases the computational complexity
and the uncertainty of the state became complicated to obtain.
In the community of aerospace, researchers prefer to choose
the quaternion as a global characterization and the Rodrigues
vector parameterization as a local state to track the trajectory
[10]–[12], which has a concise and efficient presentation.
Fosbury and Crassidis proposed relative navigation extended
KF (EKF) to track the relative trajectory [13]. Whereas it
needs the angular acceleration calculated using the inertial
matrix of the rigid body and applied torque to propagate
the state, which is impractical to realize. We instead derive
a promising relative kinematic function without the angular
acceleration.

This article focuses on the WSN-based relative pose esti-
mation with some novelties. Considering an attitude matrix
is locally homeomorphic to an unconstrained Lie algebra
and the pairwise distances contain information of the attitude
and the translation, we derive an iterative solver to estimate
the pose parameterized with Lie algebra using distance mea-
surements. The proposed solver can adopt the Gauss-Newton
(GN) method or Levenberg-Marquardt (LM) method and the
associated unconstrained Cramer-Rao Lower Bound (CRLB)
is also derived to serve as a benchmark, which is more con-
cise compared to the constrain CRLB [14]. We also derive
a novel relative kinematic to prevent the angular acceler-
ation and propagate the state in high accuracy with only
the measurement from an IMU. The innovative kinematics
formulation and the pairwise distance measurement model is
introduced to the extended Kalman filter (EKF) framework
to track the relative trajectory of multiple platforms. We also
derive a simplified solver for rigid bodies with a degree of
freedom (DOF) less than six. To show the practicability of
the modified estimator, we introduce a specific application
of pose estimation for the aerobridge, which only has four
DOFs.

The paper is organized as follows. Section II reviews the
matrix Lie group, specifically the special orthogonal group,
and the associated Lie algebra. Section III derives the Jaco-
bian matrix of the pairwise distance w.r.t. the pose for the
GN and LM solver. We discuss the existence of the optimal
solution in terms of sensor placement and derive the uncon-
strained CRLB. The innovative relative navigation of two
moving rigid bodies is deduced in section IV using only the
measurement of IMU and pairwise distance. The aerobridge
application of the modified solver is introduced in section V.

Section VI contains three simulations. Firstly, we compare
the presented solver with the q-method, the SCLS, and CLS
in [14], and the proposed CRLB serves as a benchmark.
Secondly, we testify the accuracy of the presented GN solver,
LM solver, and the EKF. Finally, the proposed algorithm for
the application of aerobridge is validated. Section VII serves
as the conclusion of this article.

II. REVIEW OF LIE GROUP AND LIE ALGEBRA
The pose of a rigid body can be parameterized using dual
quaternion [18], homogeneous transformation, etc. Among
these, Lie group representation is substantially used in the
field of robot navigation. This section reviews the most fre-
quently used Lie group and its homeomorphism Lie algebra,
i.e. the special orthogonal group SO(3) and the equivalent
rotation vector so(3) which is used to describe the attitude
and its local characteristic.

A Lie group is an analytic manifold where any function
on it can be expanded in a convergent Taylor series at any
point [17]. The specific Lie group described in this article
is the matrix Lie group whose element is represented as
a squared matrix with identity matrix as identity element
and the matrix multiplication and inversion are respectively
the composition and inversion of the Lie group. Among the
matrix Lie group, SO(3) is substantially used to describe the
attitude. The definition and basic properties of SO(3) and its
associated Lie algebra are presented as follows.

The SO(3) is a set of the orthogonal matrix [17], i.e.
SO(3) =

{
R ∈ R3×3

| RTR = RRT = I, detR = 1
}
repre-

senting rotation and has three degrees of freedom. An asso-
ciated Lie algebra is attached to the identity element of the
matrix Lie group and it describes the tangent space. It maps
the element of SO(3) to a Euclidean space so that we can do
differentiation. Specifically, the Lie algebra associated with
SO(3) is expressed as so(3) =

{
8 = φ∧ ∈ R3×3

| φ ∈ R3
}
,

where

φ∧ =

φ1φ2
φ3

∧ =
 0 −φ3 φ1
φ3 0 −φ2
−φ1 φ2 0

 (1)

is the cross product matrix and the inverse operation is
8∨
= φ. We also denote the vector φ as Lie algebra when the

context is clear. The tangent space so(3) is a vector space over
the real field with the same dimensions as that of the manifold
and it completely expresses the local feature at the identity.
Exponential mapping associates SO(3) and so(3), which is
defined as

R = exp
(
φ∧
)
=

∞∑
n=0

1
n!

(
φ∧
)n (2)

and the closed-form solution is the Rodrigues formulation,
i.e.

R = cosφI + (1− cosφ)aaT + sinφa∧ (3)
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where φ = |φ| and a = φ/φ. The Lie algebra associated
with SO(3) has an obvious physical significance, namely the
equivalent rotation vector associated with the rotation matrix.

The global attitude of a rigid body is expressed as a nonsin-
gular rotation matrixR and the local state as an unconstrained
rotation vector φ. Because SO(3) is a topological space with
a differential structure, i.e. the local charts are mutually com-
patible [19], we can involve so(3) in an optimization problem
and iteratively obtain the optimal attitude. Generally, the local
state φ is a small quantity so it is nonsingular and functions
on it can be linearized by omitting the higher-order team.
We defined the perturbation form on SO(3) as

R = exp
(
φ∧
)
Rop (4)

where Rop is the rotation on the operating point. For small
angle rotation, the exponential map can be approximated by

exp
(
φ∧
)
= I + φ∧ (5)

where I is the identity matrix. The Jacobian matrix of a vector
v ∈ R3 rotated by R w.r.t. φ is [20]

∂(Rv)
∂φ
= −(Rv)∧ (6)

which is the gradient direction and it is crucial in the follow-
ing sections.

III. POSE ESTIMATION WITH PAIRWISE DISTANCE
In this section, we present a method to estimate the rela-
tive pose of rigid bodies using pairwise distance and derive
the associated covariance. Instead of estimating attitudes
and translations sequentially, we obtain the optimal solution
of the both simultaneously and the associated uncertainty.
We exploit the unconstrained Lie algebra to construct the
optimization variable, which is more efficient and superior
than the CLS present in [13]. We derive the associated CRLB
to numerically validate the optimality. We also discuss in
which situation the optimal solution exists by considering the
placement of the sensors network.

A. GAUSS-NEWTON SOLVER
To describe the relative pose between each pair of rigid bodies
we define the body frames Bk (k = 1, 2, 3, . . .), as shown
in Fig.1. Without loss of generality, we consider estimating
the relative pose of B2 w.r.t. B1. We mount sensors on each
body to measure pairwise distances. The sensors on B1 and
the sensors on B2 are denoted by ai(i = 1, 2, 3, . . . ,N ) and
bj(j = 1, 2, 3, . . . ,M ), where N and M are the numbers of
sensors. We denote aki|j(b

k
i|j) as the coordinate vector of ai(bi)

w.r.t. the frame Bj expressed in the frame Bk ,R
j
i as the attitude

of the frame Bi w.r.t. the frame Bj and tki|j as the translation
of the frame Bi w.r.t. the frame Bj expressed in the frame
Bk . So, the coordinate of bj w.r.t. B1 expressed in B1 can be
formulated as

b1j|1 = R1
2b

2
j|2 + t

1
2|1 (7)

FIGURE 1. Relative motions of rigid bodies and sensors’ configuration.

and the distance between ai and bj is

dij =‖ ai − bj ‖ (8)

where ‖· ‖ represents the Euclidean norm, ai, and bj are
coordinate vector w.r.t. the same frame and expressed in the
same frame.

Each ai − bj sensor pair from two rigid bodies can output
range measurement. Generally, the measurement model is
defined as

d̃ij = d̃
(
ai, bj

)
= dij + eij (9)

where eij is the i.i.d. zero-mean Gaussian white noise with
variance σ 2

ij .
Considering (7)-(9), we can extract the pose information

from range measurement. The SCLS method present in [13]
uses an orthogonal projection matrix to obtain the linear
function of the attitude, solve it with singular value decompo-
sition, and further estimate the translation. It is not the optimal
pose since the uncertainty of the attitude is introduced to the
translation. Besides, the uncertainties of the pose estimations
are not derived. We instead propose a solution based on
the Gauss-Newton (GN) method to estimate the attitude and
translation simultaneously without linearization and derive
the covariance. Since the optimal variable is represented by
Lie algebra, the complexity is mitigated and the optimization
is unconstrained.

We desire to estimate the relative pose of the rigid bodies
to minimize the cost function

min
R,t

∑
i,j

(
d̃ij − dij(R, t)

)2
, s.t. R ∈ SO(3) (10)

which is a nonlinear constrained least squared (LS) optimiza-
tion where R is the attitude matrix and t is the translation and
we remove the superscript and subscript to make the equation
concise. Substituting (7) in (8), we have

dij =

√(
‖ai‖2 − 2aTi Rbj − 2aTi t +

∥∥Rbj + t∥∥2) (11)

Assuming that the global initial estimation is known and
denoted as Rop and top and we define the local parameter as
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x = [1φT 1tT ]T . We expand dij with Taylor series and keep
the first-order term of the local parameter as

dij(1φ,1t) ≈ dij
(
Rop, top

)
+
∂dij
∂φ

1φ +
∂dij
∂t
1t (12)

According to (6), the derivative of distance dij w.r.t. the local
parameter is

∂dij
∂φ
=

1
dij

(
Rbj

)∧
(−ai + t) (13)

∂dij
∂t
=

1
dij

(
−ai + Rbj + t

)
(14)

Consider (10) and (12), we have

L(x) = z− Jx (15)

where z = d̃ − d is the residual vector, d = [dT1 . . . d
T
M ]T ∈

RNM , d j = [d1j . . . dNj]T ∈ RN (j = 1, . . . ,M ) and J is the
Jacobian matrix with the form

J =


∂dT1
∂φ

· · ·
∂dTM
∂φ

∂dT1
∂t

· · ·
∂dTM
∂t


T

∈ RNM×6 (16)

So, the original constrained optimization problem is con-
verted to calculate the local parameter x so that the norm of
L(x) is minimized, which is an unconstrained LS problem.
We can solve 15 with the GN method given as

x = −
(
JTWJ

)−1
JTWz (17)

where W is the information matrix, i.e. the inversion of the
covariance matrix of the distance observation d̃ .

We iteratively optimize the global estimation Rop =
exp(1φ)Rop and top = top +1t until the norm of x conver-
gent to a small neighbourhood of zero or the iterations reach
a given number then the covariance of the estimation is

Px = (JTWJ)−1. (18)

Although the GNmethod is simple to implement, the Hessian
matrix may be rank-deficient. We discuss the existence of a
solution in terms of the placement of sensors in the following
subsection.

B. SOLUTION EXISTENCE AND SENSOR PLACEMENT
To ensure the optimal solution converges, the Hessian matrix
H = JTWJ must be positive definite [21]. The rank of
JTWJ and J are identical because they share the same null
space. So, the Hessian matrix is reversible if the Jacobian
matrix is column full rank, which will be ensured by con-
figuring the sensor network topology properly.

Taking the block ∂dT1 /∂t of Jacobian matrix in (16) into
account. if we only have three independent sensors ai(i =
1, 2, 3) and b1 happens to locate in the plane constructed
by these ai, the block is rank deficient, which is two. It is
consistent with the reason that we can not uniquely locate
a moving object with three anchors using the trilateration

method. So we need one more non-coplanar sensors a4 to
guarantee the rank of the block is column full rank.

Next, consider the block ∂dT1 /∂φ in (16), because we have
four non-coplanar sensors ai, the rank of all −ai + t vectors
in the block is three. But they cross product with Rb2 cause
the vectors of the block only lay on the plane perpendicular
to Rb2. So, the rank of the block is two. Since b2 and b3 are
independent, their perpendicular planes are not non-coplanar,
Therefore the block of [∂dT2 /∂φ ∂d

T
3 /∂φ]

T is column full
rank.

To sum up, the above discussion induces that we need four
non-coplanar sensors ai(i = 1, 2, 3, 4) and three indepen-
dents bi(i = 1, 2, 3) to ensure the proposed solution is unique
so that the algorithm is convergent. We conclude that the
nonlinear optimization fit relative pose estimation perfectly
with the appropriate sensor network since the Hessian matrix
is always full rank in the motion

To improve the estimated accuracy, it is trivial to add one
more sensor b. Alternatively, we can use the trust-region
methods [21], LM method for example, which can ensure
higher accuracy of the estimation.

C. CRAMER-RAO LOWER BOUND
In this subsection, we establish the unconstrained CRLB in
terms of Lie algebra and translation. The proposed CRLB
is more concise compare to the constrained CRB (CCRB)
in [14].

Based on the measurement model described in (9), we can
derive the CRLB in terms of the true Lie algebra and trans-
lation, which serves as a benchmark to numerically validate
the optimality of the proposed method. The covariance of the
unbiased estimate x satisfies

E
{
(x̂− x)(x̂− x)T

}
≥ F−1 (19)

whereA ≥ BmeansA−B is a positive semidefinite and E {· }
denotes the expectation operation. F is the Fisher information
matrix defined as

F =
N∑
i=1

M∑
j=1

E

∂ ln p
(
d̃ij; x

)
∂x

∂ ln p
(
d̃ij; x

)
∂xT


=

N∑
i=1

M∑
j=1

Fij, (20)

where the probability distribution function (PDF) of the range
measurement is given as

p
(
d̃ij; x

)
=

1
√
2πσij

exp

−
(
d̃ij − dij

)2
2σ 2

ij

 (21)

Taking the first partial derivative of ln p
(
d̃ij; x

)
w.r.t. x yields

∂ ln p
(
d̃ij; x

)
∂x

=

(
d̃ij − dij

)
σ 2
ij

∂dij
∂x

(22)
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Taking the expectation operation gives

Fij =
1

σ 2
ij

∂dij
∂x

∂dij
∂xT

(23)

where the partial derivative is given in (15) and (16).
According to the theorem 2 in [13], any attitude estimator

is biased for its highly nonlinear feature. The bias increases as
themeasurement noises get noisy and themean-squared-error
(MSE) of any attitude estimator will be lower than the CRLB
for high noise levels. Although we choose unconstrained Lie
algebra as the state, its norm is restricted to between 0 to
2π . So the saturate situation state above will still appear.
However, at low noise levels, the bias tends to zero, and the
CRLB still can serve as a reference to measure the optimality
of the estimator.

IV. NOVEL EKF DESIGN FOR TRACKING RELATIVE POSE
In this section, we design an EKF incorporating inertial
measurements and pairwise distances to estimate the state
of relative navigation including relative pose and relative
velocity of the leader w.r.t. the follower and biases of the
gyroscope and accelerometer on the follower. The Jacobian
matrix derived in section III are used as the sensitivity matrix
in the measurement update phase. With IMU measurement,
the estimated relative pose are smoother that that of GN and
LM solver. The propagated process here and those in [13]
differ in the relative angular acceleration which is untrivial
to accurately obtain. In [13], the inertial matrix of the body
and the applied torque have to be known to calculate the rela-
tive angular acceleration using the Euler equation. Generally,
the applied torque can be imprecise and the inertial matrix can
change as the load or the shape of the body change, so it is
difficult to achieve the precise relative angular acceleration in
most vehicles. We instead get rid of the term without adding
other measurements and the performance is at least as good
as that of [13].

We now introduce the measurement model of the IMU,
which can generate linear acceleration and angular velocity.
The output signals are usually corrupted with noise, drifts,
and biases. For the inertial measurement of follower, the mea-
surement model of the accelerator is defined as [10]

ãff = Rfi
(
ẗ if |i + g

i
)
+ βa + ηαv

= aff + βa + ηav (24)

β̇a = ηau (25)

where ẗ if |i is the linear acceleration vector of the follower
w.r.t. the initial origin expressed in the inertial frame, g is the
gravity, βa is the bias, ηav and ηau are supposed to be i.i.d.
zero-mean white random processes with variances σ 2

avI3×3
and σ 2

auI3×3. It is noted that the boldfaced a standards for
linear acceleration instead of coordinate vector in this section.

The measurement of the gyroscope has a similar model:

ω̃
f
f = ω

f
f + βg + ηgv (26)

β̇g = ηgu (27)

where βg is the gyro bias, ηgv and ηgu are i.i.d. zero-mean
white random processes with variances σ 2

gvI3×3 and σ
2
guI3×3.

For the IMU mounted in the leader, the accelerator and gyro
measurement are assumed to be known precisely.

Assuming that the state of absolute navigation of the leader
can be precisely obtained in advance, the state of interest in
relative navigation is the relative attitude Rfl , relative position
t fl|f and relative velocity ṫ fl|f of the leader w.r.t. the follower
and biases on the inertial acceleration βa and angular velocity
measurements βg. We propose a different propagation pro-
cess in the following.

Defining R+f ,k (R
+

l,k ) move the attitude of the fol-
lower (leader) at time k to next moment the discrete prop-
agation of the attitude is

Rfl,k+1 = R+f ,kR
f
l,kR
+T
l,k (28)

where

R+f ,k = exp
(
−ω

f∧
f ,kT

)
,R+l,k = exp

(
−ωl∧l,kT

)
(29)

Consider the equation

t fl|f = Rfi t
i
l|f (30)

Rfi ṫ
i
l|f = ṫ fl|f + ω

f∧
f t fl|f (31)

t il|f ,k+1 = t il|f ,k + ṫ
i
l|f ,kT

+ 0.5×
(
ẗ il|i,k − ẗ

i
f |i,k

)
T 2 (32)

where T is the sampling duration and the superscribe i stan-
dard for the inertial frame, the propagation of the translation
can be derived as

t fl|f ,k+1 = R+f ,k
[(
I + ωf∧f ,kT

)
t fl|f ,k + ṫ

f
l|f ,kT

+ 0.5×
(
Rfl,ka

l
l,k − a

f
f ,k

)
T 2
]

(33)

where we assume the follower and the leader are relatively
close and the gravity term vanishes. Based upon (31)-(33),
along with the equation

Rfi,k ṫ
i
l|f ,k+1 = Rfi,k ṫ

i
l|f ,k +

(
Rfl,ka

l
l,k − a

f
f ,k

)
T (34)

R+f ,kω
f∧
f ,k = ω

f∧
f ,kR

+

f ,k (35)

the propagation of the velocity is

ṫ fl|f ,k+1 =
(
I − ωf∧f ,k+1

)
R+f ,k ṫ

f
l|f

+

(
ω
f∧
f ,k − ω

f∧
f ,k+1 − ω

f∧
f ,k+1ω

f∧
f ,kT

)
R+f ,k t

f
f |l,k

+

(
I − 0.5× Tωf∧f ,k+1

)
R+f ,k

(
Rfl,ka

l
l,k − a

f
f ,k

)
T

(36)

The propagation of the bias is identical with [13]. Using the
above presentation, it is unnecessary to calculate the angular
acceleration, which is more practical to implement and the
estimated state is more accurate. To keep this article concise,
in the following derivation we vanish the f and l in the
subscribe and superscripted for the state of interest and the
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inertial measurement of the follower, i.e. R = Rfl , t = t fl|f ,

ṫ = ṫ fl|f , ω = ω
f
f and a = aff and denote R

+

f as R+. Based on
the truth equations (28), (29), (33), and (36) and considering

ω̂k = ω̃k − β̂g,k , ω̂k+1 = ω̃k+1 − β̂g,k , âk = ãk − β̂a,k
(37)

β̂a,k+1 = β̂a,k , β̂a,k+1 = β̂a,k (38)

the state of interest can be propagated, where the bias is
assumed to be unchanged during the interval for simplicity.
Our next step involves the propagation of the covariance. The
error state of the EKF is chosen as

1x =
[
1φT 1tT 1ṫT 1βTg 1βTa

]T
(39)

where1φ is the small angle error of the relative attitude with
its estimation defined as

1φ =
(
RR̂

T)∨
(40)

The remaining state-error terms are defined generically as
1y = y − ŷ To propagate the covariance, we derive the
discrete kinematics of the error, i.e.

1xk+1 = Fk1xk + Gknk (41)

where the process noise vector consists of the Gaussian noise
terms from the inertial measurement equations is

nk =
[
ηTgv,k ηTgv,k+1 ηTαv,k ηTgu,k ηTau,k

]T
(42)

where ηgv,k+1 is introduced from ω
f
f ,k+1 in (36). Make use

of the prior propagation equation already mention above and
omit the algebra derivation, the final results are given as

F =


R̂
+

k 03×3 03×3 T I3×3 03×3

F21 F22 R̂
+

k T F24 0.5R̂
+

k T
2

F31 F32 F33 F34 F35
03×3 03×3 03×3 I3×3 03×3
03×3 03×3 03×3 03×3 I3×3

 (43)

G =


T I3×3 03×3 03×3 03×3 03×3
G21 03×3 0.5R̂

+

k T
2 03×3 03×3

G31 G32 G33 03×3 03×3
03×3 03×3 03×3 T I3×3 03×3
03×3 03×3 03×3 03×3 T I3×3


(44)

where the general EKF assumption is that the estimate is
close, to within first-order dominant terms, to the truth is
applied. To keep this article concise, we left some lengthy
elements in appendix A. We further derive the update process
of the EKF. The observation equation is defined as

d̃ij,k = dij,k (R, t)+ vij,k (45)

where vij,k is a zero-mean Gaussian white noise with a known
variance.We can derive themeasurement sensitivitymatrix as

hij,k =

[
∂dij,k
∂
(
1φT

) ∂dj,k
∂
(
1tT

) 01×3 01×3 01×3

]
(46)

Based on (12)-(14), the presentation in detail can be evalu-
ated. Then the update process is performed using the residual.
If more than one distance measurement is available, we can
stack the observation to obtain estimation with higher preci-
sion. The Kalman gain computation and covariance update
have the standard Kalman filter forms.

V. APPLICATION ON AEROBRIDGE
In section III, we present relative pose estimators based on
pairwise distance measurement and discuss the existence of
the solution. We can apply the nonlinear optimization to rigid
bodies with six degrees of freedom (DOF) (three for attitude
and three for translation). For rigid bodies with less DOF,
we care about the minimum amount of sensors to ensure a
convergent solution, because the sampling period of a WSN
drops rapidly with an additional sensor.

Specifically, we consider the aerobridge (connector
between an airplane and a terminal building) with only four
DOF in Fig. 2 whose 3D model is shown in Fig. 3. Since
the expensive labor force facilitates its autopilot, it attracts
attention recently.

FIGURE 2. An aerobridge manufactured by CIMC Tianda Holdings Co., Ltd.

We desire to estimate the attitude and position of end
effector w.r.t. the terminal building, i.e. the pose of the body
frame B w.r.t. the inertial frame I . To select the estimated
variable, we analyze the mechanical structure below.We have
three revolute joints denoted as ai(i = 1, 2, 3) where a3 is
an equivalent revolute joint. The end effector rotated around
a3 when it is elevated and descended. Besides, we have a
prismatic joint denoted as l2 which can extend and retract.
The remainder l1 and l3 are the rigid links. Based on the
analysis above, the aerobridge has only four DOF.

We can configure four nodes on the terminal building and
three on the end effector and estimated the pose with the algo-
rithm described in section III. Alternatively, we can instead
estimate the joint parameters and use forward kinematic to
calculated the pose. With less estimated variables, the later
requires less information to guarantee a convergent solution.
So, we prefer to estimate the joint parameters. Because the
end effector is always in front of the terminal building,
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we allocation three anchors (sensors with fixed position)
Ai(i = 1, 2, 3) on the building and two sensors Mj(j = 1, 2)
on the aerobridge (one on the end effector and the other on
the axis a2), as shown in Fig.3.

FIGURE 3. The three-dimension model of an aerobridge.

To use the algorithm framework presented in section III,
we derive the Jacobian matrix of the distances w.r.t. the joints
parameters. We use Denavit-Hartenberg (DH) parameteriza-
tion to construct the aerobridge model, as shown in Fig. 4 and
the DH parameters are shown in table 1. We want to estimate
the joint variable which is defined as x = [ θ1 θ2 d3 θ4 ]T .

FIGURE 4. The DH parametric model of the aerobridge.

TABLE 1. DH parameter of the aerobridge.

As Fig. 4 shows, the mobile sensors M1 and M2 is located
on the origin of frame 3 and 4. The coordinate ofMj(j = 1, 2)

in terms of the joint variables is given as

bI1|I =

−d3c1s2 + a1c1−d3s1s2 + a1s1
−d3c2

 (47)

bI2|I =

 a4 (c1s2s4 − s1c4)− d3c1s2 + a1c1a4 (s1s2s4 + c1c4)− d3s1s2 + a1s1
a4c2s4 − d3c2

 (48)

where the superscript and subscript follow the definition in
section III and si (ci) stands for sinθi (cosθi). Reformulate
(10) as

dij =
∥∥∥aIi|I − bIj|I∥∥∥ (49)

where aIi|I is the coordinate of Ai. Consider (47) and (48),
the partial derivative of distance dij w.r.t. the joint vector x is
given as

Jij =
∂dij
∂xT
=

[
∂dij
∂θ1

∂dij
∂θ2

∂dij
∂d3

∂dij
∂θ4

]
(50)

where the mathematical calculation is left in the appendix
B. According to (15) and (17), we construct the residual
and Jacobian matrix to iteratively calculate the local joint
variables until the loss function reaches a given threshold.
The covariance matrix PJ of the joint vector is calculated
with (18).

The next step involves the propagation from joint variables
to the pose of the end effector and the associated covariance
using forward kinematic. Consider the DH parametric model,
the relationship between attitude and joint variables can be
expressed using a rotation matrix, i.e.

R(x) =

 c1s2s4 − s1c4 c1s2c4 + s1s4 c1c2
s1s2s4 + c1c4 s1s2c4 − c1s4 s1c2

c2s4 c2c4 −s2

 (51)

Introducing the error of joint variables, we have

R(x+1x) = R(x)+1RA (52)

where 1x = [1θ1 1θ2 1d3 1θ4 ]T , the additive error rota-
tion matrix is

1RA =

 r11 r12 −s1c21θ1 − c1s21θ2
r21 r22 c1c21θ1 − s1s21θ2
r31 r32 −c21θ2

 (53)

r11 = (−s1s2s4 − c1c4)1θ1 + c1c2s41θ2
+ (c1s2c4 + s1s4)1θ4 (54)

r12 = (−s1s2c4 + c1s4)1θ1 + c1c2c41θ2
− (c1s2s4 + s1c4)1θ4 (55)

r21 = (c1s2s4 − s1c4)1θ1 + s1c2s41θ2
+ (s1s2c4 − c1s4)1θ4 (56)

r22 = (c1s2c4 + s1s4)1θ1 + s1c2c41θ2
− (s1s2s4 + c1c4)1θ4 (57)

r31 = −s2s41θ2 + c2c41θ4 (58)

r32 = −s2c41θ2 − c2s41θ4 (59)
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We used the GN method to estimate the joint variable above
and the uncertainty is additive. To maintain normalized atti-
tude, MEKF (multiplicative EKF) uses multiplicative attitude
errors to update the state and its performance is generally
better than additive EKF because artificial normalization will
introduce additional errors. To introduce attitude observation
into MEKF, we need to convert the above-mentioned attitude
additive error into multiplicative error. Define the multiplica-
tive error expressed as

1RM = R−1(x)R(x+1x)

= exp
(
1φ∧

)
≈ I +1φ∧ (60)

where Lie algebra is used to represent the multiplicative
error rotation matrix, and the first-order term is retained. So,
substitute (29) into (35), and the Lie algebra corresponding
to the multiplicative error is

1φ =
(
R−1(x)1RA

)∨
= FRJ1x (61)

where FRJ represents the transfer matrix from joint error to
multiplicative attitude error, omits the complicated calcula-
tion process, and directly gives the expression of FRJ as

FRJ =

−c1s4 c4 0 0
c2c4 −s4 0 0
−s2 0 0 1

 (62)

So the covariance of the multiplicative attitude error is

PR = FRJPJFTRJ (63)

For position estimation, consider the position vector expres-
sion in forward kinematics, i.e. (48), define the position error
as

1t = t(x+1x)− t(x) (64)

Omitting the complicated mathematics process, the transfer
relationship between the position error and the joint variable
error is directly obtained as

1t = FTJ1x (65)

where

FTJ =

 f11 f12 −c1s2 f14
f21 f22 −s1s2 f24
0 f32 −c2 a4c2c4

 (66)

f11 = −a4 (s1s2s4 + c1c4)+ d3s1s2 − a1s1 (67)

f12 = a4c1c2s4 − d3c1c2 (68)

f14 = a4 (c1s2c4 + s1s4) (69)

f21 = a4 (c1s2s4 − s1c4)− d3c1s2 + a1c1 (70)

f22 = a4s1c2s4 − d3s1c2 (71)

f24 = a4 (s1s2c4 − c1s4) (72)

f32 = −a4s2s4 + d3s2 (73)

So the covariance of the translation error is

PT = FTJPJFTTJ (74)

VI. EXPERIMENT VALIDATION
In this section, we design three simulations to verify the per-
formance of the proposed method. We compare the presented
GN estimator, denoted as LLS estimator since it uses Lie
algebra to parameterize the LS problem, with the simplified
unitarily constrained LS (SCLS) estimator, the unitarily con-
strained LS (CLS) estimator [13], and the q-method [9] in a
stationary scenario and using CRLB as a benchmark. Then
we track the relative pose between two moving rigid bodies
using the proposed GN estimator, LM estimator, and EKF.
Finally, we validate the modified LS method using in the
moving aerobridge. All simulation is performed in MATLAB
using the Robotics Toolbox maintained by Peter Corke.

A. COMPARISON OF STEADY-STATE ACCURACY
To illustrate the superiority of the proposed LLS estimator,
we set the coordinates of sensors and anchors as that of [14],
i.e.

C =

 0.5 1.5 1.5 0.5 1
0 0 1.5 1.5 1
0 0 0 0 1

m (75)

A =

 0 100 0 100
100 100 0 0
0 100 100 0

 (76)

We parameterize the attitude by Euler angle ϕ =

[ 20 −25 10 ]T deg in the sequence of XYZ and the trans-
lation is t = [ 15 5 10 ]Tm. We use q-method to initialize
CLS and LLS. The simulations are averaged over Nexp =

1000 independent Monte-Carlo experiments with different
measurement deviation σ . We utilize the bias, the root-mean-
squared-error (RMSE), and the associated CCRB defined
in [14] to analyze the precision. The comparisons shown
in Fig. 5 and Fig. 6 illustrate the proposed method has a
smaller bias and the RMSE meets the CCRB in a large range
of noise deviation.

FIGURE 5. The bias of the estimated attitude.

196986 VOLUME 8, 2020



R. Xia, H. Pei: Relative Pose Estimation Based on Pairwise Range With Application to Aerobridge

FIGURE 6. The RMSE of the estimated attitude.

We also define RMSE for the small rotation perturbation
as

RMSE(φ) =

 1
Nexp

Nexp∑
n=1

‖φ‖2

1/2

(77)

where φ is defined as

φ = ln
(
RR̂T

)
(78)

and ln(·) is the logarithm mapping Lie group to Lie algebra.
We draw in Fig. 7 the RMSE of φ and the associated CRLB
defined in (21). The performance is consistent with Fig. 6 that
the proposed estimator has higher precision.

The SCLS estimator diverges when the number of sensors
is less than four because the matrix operated by SVD is rank
deficient while other estimators can still work except for
slightly degraded precision, which is shown in Fig. 8.

FIGURE 7. The RMSE of the estimated attitude in term of rotated
perturbation.

The bias and RMSE of the estimated translation are shown
in Fig. 9 and Fig. 10 from which we can see the bias of
the LLS estimator is smaller and the precision can meet the
CCRB. It is a quite general result that the CRLB always
increases as we estimate more parameters [22], so the CRLB
of a translation calculated using the LLS estimator is lower
than the CCRB.

FIGURE 8. RMSE of attitude with 3 sensors.

FIGURE 9. The bias of the estimated translation.

FIGURE 10. The bias and RMSE of the estimated translation.

B. TRACKING THE RELATIVE POSE OF TWO
MOVING RIGID BODIES
In this subsection, the docking process of two moving rigid
bodies, namely the leader L and the follower F, is simulated
based on Robotics Toolbox. To ensure that the algorithm is
repeatable and robust, we do 100 independent Monte-Carlo
experiments. The initial positions of both are uniformly dis-
tributed inside a cube with 10m length in the seventh and
first hexagram limits of the inertial frame. The initial atti-
tudes parameterized by Euler angles are uniformly distributed
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between 0 to π along each axis. The final attitude coincides
with the inertial frame and their position are respectively
tL = [ 0 0 0 ]T and tF = [ 0 0 2 ]T . We sequentially perform
the presented GN solver, LM solver, and EKF to compare the
performance. We have discussed the existence of solutions
in terms of the rank of the Hession matrix in subsection III-B
and we drow a conclusion that to ensure a global convergence
with any initial state, four sensors are necessary. We choose
the topology of the sensors in each body as

SL = SF =

 1 0 0 1
0 1 0 1
0 0 1 1

m (79)

The standard deviation of range measurement is 0.01m,
which is common for UWB devices, e.g. the P440 of the Time
Domain company [24]. The pose estimation is initialized by
the linearization process and q-method [9].

One challenging instance of the experiments is shown
in Fig. 11 and the trajectory of the relative pose is illus-
trated in Fig. 12. The initial relative attitude is ϕ0 =

[ 176.04 5.09 −60.23 ]T deg in ZYX order and the translation
is t0 = [−14.99 −15.43 7.05 ]Tm. The distance of the both
is 22.64m while the sensors have only 1m separation.

FIGURE 11. Docking process of two rigid bodies.

The errors of the relative attitude and translation estimated
by GN and LM solver are shown in Fig. 13 and Fig. 14, where
the error of attitude is presented by small rotation perturba-
tion in (72). The envelope dotted curve is the 3σ boundary
calculate with (20). The red dash curve is the error of the GN
estimator and the brack solid curve is the error of the LM
estimator. The initial pose errors are large since two bodies
are far from each other initially, but the errors are mitigated as
two bodies get close. It is alternatively to enlarge the distances
of the sensors to alleviate the error, which is intuitively similar
to trilateration [25]. We find the GN estimator outperforms
the GPS and it is globally convergent while the LM estimator
can almost reach under 10cm and several degrees accuracy
for relative translation and attitude.

Although the accuracy of the LM estimator is greatly
higher than the GN estimator, the maximum errors of atti-
tude and translation are beyond 1deg and 10cm respectively.
It may be sufficiently precise for some scenarios but it is
possible to improve the performance with IMUmeasurement.
Besides, with four sensors mounted on each body, the LM
and GN estimator can obtain global convergence but mea-
suring all pairwise distances can be time-consuming. When

FIGURE 12. The trajectory of the relative pose.

FIGURE 13. The attitude error of the GN and LM estimator and 3σ
boundary.

FIGURE 14. The translation error of the GN and LM estimator and 3σ
boundary.

only three sensors are mounted on each body and the plane
constructed by the three sensors are parallel, two relative
translations satisfy the distance measurement so the error is
divergent. If the relative velocities are known, we can obtain
a unique solution. Based on the idea, we used three sensors
and one IMU on each body to perform the presented EKF.
To be practical, the parameter of the IMU chosen in Table 2
is considerably large and common in civilian equipment.

The performance of the EKF shown in Fig. 15 and Fig. 16
are globally convergent in the Monte-Carlo experiments with
different initial poses. We also add the case of mounting four
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TABLE 2. IMU Noise Paremeters.

FIGURE 15. The attitude error of the EKF with three sensors.

FIGURE 16. The translation error of the EKF with three sensors.

sensors on each body for comparison shown as the black solid
curve. The initial velocity and biases of the state are set as
zero. Because the propagation in EKF is highly nonlinear,
the approximation to the first order of the errormay causes the
error approach or even slightly penetrate the 3σ bound. The
precision of the attitude and translation is better than the result
of the LM estimator even in the case of three sensors. The
errors of attitude and translation are always below 1 deg and
10cm respectively. Besides, adding one more sensor in each
body causes only slightly promotion.

C. TRACKING THE END-EFFECTOR OF AN AEROBRIDGE
This subsection simulates the performance of using the modi-
fied LS estimator proposed in sectionV based on the Robotics
Toolbox to track a moving aerobridge. To show the practica-
bility, we model the simulation environment as a real airport.
Two aerobridges respectively named target and auxiliary are
built and shown in Fig. 17. There are two anchors above the
roof of the entrances of both aerobridges and one anchor on
the top of the terminal building. The topology of the anchor

FIGURE 17. Moving aerobridges with attached frame and anchors
configuration.

expressed in the reference frame is a1 = [ 0 0 1 ]T , a2 =
[ 0 6 1 ]T and a3 = [ 0 0 6 ]T . Meanwhile, two sensors are
on the top of the wrist and the end-effector of the target with
2m separation. We manage to track the trajectory of the end
effector of the target w.r.t. the terminal building.

The truth trajectory is given as follows: it rotates −15◦

around the shoulder, extends 50m, pitches up −7.5◦, and
rotates −60◦ around the wrist. All joints of the target move
successively. Emulated distances with zero-mean Gaussian-
white random noises are generated and the variance is given
as σ = 0.01m. They are sampled with the average interval
T = 0.02s. The performances of the GN estimator are shown
in Fig. 18 and Fig. 19.

FIGURE 18. The attitude error of GN estimator.

FIGURE 19. The translation error of GN estimator.
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FIGURE 20. The attitude error of MEKF incorporating the pose estimated
by the GN estimator.

FIGURE 21. The translation error of MEKF incorporating the pose
estimated by the GN estimator.

To simulate the real working situation of an aerobridge,
we choose a large extension, so the estimation is too noisy to
serves as an output. We further use the MEKF [9] to incorpo-
rate the angular velocity and linear acceleration measurement
form the IMU mounted on the end effector. The parameter of
the IMU is shown in table 2 and the performance of theMEKF
is illustrated in figure 15. It can reach an accuracy of 1deg
for attitude and 0.01m for translation, which is satisfying for
practical application.

VII. CONCLUSION
In this article, based on pairwise range fromWSN, we derive
a Jacobian matrix of the range measurement w.r.t. the attitude
and the translation and further using nonlinear optimization
algorithms (GN and LM solver) to iteratively estimate the
relative pose. Besides, we propose an unconstrained and
lower-dimensional CRLB to numerically verify the perfor-
mance which outperforms the SVD solution in [14]. To track
the relative trajectory of the moving objects, we present a
novel relative kinematic without the cumbersome angular
acceleration term. It incorporates the IMU and range mea-
surement and outputs a smooth state with associated uncer-
tainty. For objects in three-dimensional space with DOFs less
than six, specifically the aerobridge with four DOFs, we pro-
vide a simplified algorithm with fewer sensors. We also
design three simulations to compare our solver with other
existing popular solver, to compare the performance of the

presented GN, LM, and EKF, and to verify the simplified
version in the aerobridge setting. The results show the novelty
and practicability of our proposed methods.

APPENDIX A LENGTHY ELEMENTS OF THE Fk AND Gk
MATRIX IN EKF

F21 = −0.5R̂
+

k

(
R̂kall,k

)∧
T 2 (80)

F22 =
(
I3×3 + ω̂

∧

k T
)
R̂
+

k (81)

F24 = G21 = −ω̂
∧

k

(
R̂
+

k t̂k
)∧

T 2
−

(
R̂
+

k
ˆ̇tk
)∧

T 2

− 0.5
[
R̂
+

k

(
R̂kall,k − â

f
f ,k

)]∧
T 3 (82)

F31 = −
(
I3×3 − 0.5ω̂∧k+1T

)
R̂
+

k

(
R̂kall,k

)∧
T (83)

F32 =
(
ω̂
∧

k − ω̂
∧

k+1 − ω̂
∧

k+1ω̂
∧

k T
)
R̂
+

k (84)

F33 =
(
I3×3 − ω̂

∧

k+1T
)
R̂
+

k (85)

F35 = G33 =
(
I3×3 − 0.5ω̂∧k+1T

)
R̂
+

k T (86)

G32 = −

[(
I3×3 + ω̂

∧

k T
)
R̂
+

k t̂k
]∧
−

(
R̂
+

k
ˆ̇tk
)∧

T

− 0.5
[
R̂
+

k

(
R̂kall,k − â

f
f ,k

)]∧
T 2 (87)

F34 =
(
−ω̂
∧

k + ω̂
∧

k+1ω̂
∧

k T
) (
R̂
+

k t̂k
)∧

T −
(
ω̂
∧

k R̂
+

k t̂k
)∧

T

−
(
2I3×3 − ω̂

∧

k+1T
) (
R̂
+

k
ˆ̇tk
)∧

T

−
(
1.5I3×3 − 0.5ω̂∧k+1T

) [
R̂
+

k

(
R̂kall,k − â

f
f ,k

)]2
(88)

G31 =

(
I3×3 − ω̂

∧

k T + ω̂
∧

k+1ω̂
∧

k T
2
) (

R̂
+

k t̂k
)∧

−
(
I3×3 − ω̂

∧

k+1T
) (
R̂
+

k
ˆ̇tk
)∧

T

−
(
I3×3 − 0.5ω̂∧k+1T

) [
R̂
+

k

(
R̂kall,k − â

f
f ,k

)]∧
T 2

(89)

APPENDIX B DERIVATION OF THE JACOBIAN MATRIX IN
SECTION V
The coordinate of the anchor Ai is given as

aIi|oI = ai =
[
xi yi zi

]T (90)

where the superscript and subscript are omitted for concision
and bj = bIj|oI for the mobile nodesMj. The distance between
M1 and each anchor is

di3 = ‖ai − b3‖

= a21 + d
2
3 + ‖ai‖

2
− a1d3s2 + 2a1 (xic1 + yis1)

+ 2d3 (xic1s2 + yis1s2 + zic2) (91)

It is noted that the bold face and light face standard for
coordinate vector and DH parameter respectively. The partial
derivative of di3 w.r.t. all joint variables are

∂di3
∂θ1
=

1
2di3

[2a1 (xis1 − yic1)+ 2d3 (−xis1s2 + yic1s2)]

(92)
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∂di3
∂θ2
=

1
2di3

[−2a1d3c2 + 2d3 (xic1c2 + yis1c2 − zis2)]

(93)
∂di3
∂d3
=

1
2di3

[2d3 − a1s2 + 2 (xic1s2 + yis1s2 + zic2)]

(94)
∂di3
∂θ4
= 0 (95)

The distance betweenM2 and each anchor is

di4 = ‖ai − b4‖

= a21 + a
2
4 + d

2
3 + ‖ai‖

2
− 2a4d3s4 + 2a1a4s2s4

− 2a4 [xi (c1s2s4−s1c4)+ yi (s1s2s4+ c1c4)+zic2s4]

− 2a1d3s2 + 2d3 (xic1s2 + yis1s2 + zic2)

− 2a1 (xic1 + yis1) (96)

The partial derivative of di4 w.r.t. all joint variables are

∂di4
∂θ1
=

1
2di4
{−2a4 [xi (−s1s2s4−c1c4)+ yi (c1s2s4−s1c4)]

+ 2d3 (−xis1s2 + yic1s2)−2a1 (−xis1 + yic1)}

(97)
∂di4
∂θ2
=

1
2di4

[2a1a4c2s4−2a4 (xic1c2s4 + yis1c2s4− zis2s4)

− 2a1d3c2 + 2d3 (xic1c2 + yis1c2 − zis2)] (98)
∂di4
∂d3
=

1
2di4

[2d3 − 2a4s4 − 2a1s2

+ 2 (xic1s2 + yis1s2 + zic2)] (99)
∂di4
∂θ4
=

1
2di4
{(−2a4d3 + 2a1a4s2) c4

− 2a4 [xi (c1s2c4 + s1s4)+ yi (s1s2c4 − c1s4)

+ zic2c4]} (100)
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