
Received October 5, 2020, accepted October 20, 2020, date of publication October 27, 2020, date of current version November 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3034260

Blockchain-Based Multi-Party Authorization
for Accessing IPFS Encrypted Data
AMMAR AYMAN BATTAH 1, MOHAMMAD MOUSSA MADINE 1, (Member, IEEE),
HAMAD ALZAABI 1, IBRAR YAQOOB 1, (Senior Member, IEEE),
KHALED SALAH 1, (Senior Member, IEEE), AND RAJA JAYARAMAN 2
1Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE
2Department of Industrial and Systems Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE

Corresponding author: Ibrar Yaqoob (ibrar.yaqoob@ku.ac.ae)

This work was supported by the Khalifa University of Science and Technology under Award CIRA-2019-001.

ABSTRACT Multi-party authorization (MPA) typically involves multiple parties to control and grant access
to shared data. MPA is used to solve the insider’s attack problem by ensuring that a single authority or party
is not acting alone. Currently, almost all existing implementations of MPA are centralized and fall short in
providing logs and events related to provenance of granting permissions in a trusted, secure, immutable,
auditable, and decentralized manner. Moreover, for sharing data, proxy re-encryption algorithms are often
used to give secure access to encrypted shared data. These schemes and algorithms are also centralized
and cannot be trusted. In this paper, we propose a fully decentralized blockchain-based solution in which
MPA is implemented using Ethereum smart contracts, and proxy re-encryption algorithms (which are
computationally expensive) are implemented using multiple oracles to give access to encrypted shared data
stored on a public and decentralized storage platform, such as the Interplanetary File Systems (IPFS). The
smart contracts help to validate results based on the majority of encrypted results determined by the oracles.
For this, we incorporate reputation mechanisms in the proposed smart contracts to rate the oracles based on
their malicious and non-malicious behaviors. We present algorithms along with their full implementation,
testing, and validation details. We evaluate the proposed system in terms of security, cost, and generalization
to show its reliability and practicality. We make the smart contract source code publicly available on Github.

INDEX TERMS Blockchain, access control, authentication, ethereum, encrypted files, multi-party authority.

I. INTRODUCTION
Recent years have witnessed unprecedented increase in iden-
tity theft, data loss, and security breaches. It has been reported
that 3,813 data breaches occurred that led to expose 4.1 billion
records in the first 6 months of 2019 [1]. Unauthorized access
or intentional breach has become one of the major threats that
is presented due to the improper implementation and mainte-
nance of access control systems [2]. Access controls help to
perform authentication and authorization of individuals. They
serve as the first and most important line of defense against
potential data access breaches. In the cybersecurity world,
getting unauthorized access to the ‘‘root user’’ is often con-
sidered as game over. Gaining access to the most important
user gives the attacker privileges to exploit and manipulate a

The associate editor coordinating the review of this manuscript and

approving it for publication was Moayad Aloqaily .

system by executing further attacks without any constrictions.
For example, unauthorized access made Edward Snowden,
a former national security agent, has enabled to steal approx-
imately 1.7million documents containing secret data from the
national security agency (NSA) and delivered them to news
agencies [3]. This security breach has led to expose NSA’s
confidential data to the general public. Snowden used anNSA
civilian’s public key infrastructure (PKI) certificate to gain
access to classified information on the NSANET [3].

Ensuring confidentiality of sensitive data is one of the
primary requirements of today’s systems. Access control
policies play a vital role in terms of system security.
Implementation and maintenance systems of access control
policies must be secured enough because if they get compro-
mised, then the internal and external defense systems are no
longer be useful. Unauthorized access is mostly caused by
users’ negligence, which leads to fail the purpose of other

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 196813

https://orcid.org/0000-0001-9238-3114
https://orcid.org/0000-0003-0556-2419
https://orcid.org/0000-0003-2833-5761
https://orcid.org/0000-0002-8438-3429
https://orcid.org/0000-0002-2310-2558
https://orcid.org/0000-0002-2749-2688
https://orcid.org/0000-0003-2443-7234


A. A. Battah et al.: Blockchain-Based MPA for Accessing IPFS Encrypted Data

implemented defense systems. In simpler terms, improper
and insecure privileged access management can pose serious
security threats. In addition, access controls can act as single
point of compromise in the system. This problem can be
addressed through multi-party authorization (MPA), which
uses multiple authorities to perform authentication and autho-
rization. Specifically, the MPA technology can be used to
secure the most sensitive data against insider attacks that are
mostly carried out by the insider acting alone [4]. It is some-
what similar to weapons systems, wherein two individuals
are required to enable a system using two different keys [4].
Another example of the MPA is like accessing to a lockbox
in a bank that usually requires multiple parties, such as the
lockbox owner and a bank official to gain access [4]. In a
simpler term, MPA acts as a second authority that helps to
review and approve any activity before its commencement.
Leveraging MPA for access controls can help to grant per-
missions in a reliable manner. However, MPA is a centralized
solution and often falls short in providing provenance of
log events related to access/permissions in a manner that
is immutable, auditable, decentralized, and trustful. On the
other hand, most of the existing proxy re-encryption schemes
used to give secure access to shared encrypted data are cen-
tralized and cannot be trusted. In this paper, we propose a
fully decentralized blockchain-based solution to address the
aforementioned problems. Also, storing all the transactions
related to MPA and access to files on the blockchain can lead
to create and maintain a trusted, immutable, and secure audit
trail that could be verified by anyone.

A. RELATED WORKS AND CONTRIBUTIONS
Since the past decade, the potential of blockchain has been
extensively explored in various research domains [5]–[10].
Blockchain technology can also be used to efficiently manage
access controls. However, its potential has not been widely
explored in this regard, and thus very limited literature is
available on this topic. For example, the authors in [11] have
proposed a solution called ‘‘FairAccess’’ that utilizes smart
contracts to enforce access control policies. This solution is
designed for the Internet of things (IoT) devices, wherein a
transaction processing is based on tokens that are generated
through a ‘‘GrantAccess’’ function that is called by a resource
owner. Subsequently, a requester uses the GetAccess function
to consume the token and obtain access to a certain resource
or it can delegate the token to a new owner under certain
conditions using a ‘‘DelegateAccess’’ function. Access to the
resource can also be revoked by the owner if some misbe-
havior is detected through a ‘‘RevokeAccess’’ function. Each
token is encrypted through the public key of the receiver,
which is extracted from the user address. This system is
designed for IoT devices to give their owners full access
and control over their data. Another study conducted in [12]
proposes an access control policy for an electronic health
record (EHR) system. The data which needs to be shared
is initially encrypted with symmetric keys. A proxy acts as
a mediator between the sender and receiver that helps to

fetch and send the data. The owner combines the private key
with the receiver’s public key to create a re-encrypted key
that is sent to the proxy. The proxy downloads the encrypted
files and re-encrypts them with the new key and pushes the
data to the receiver that is decrypted with the private keys.
Through this approach, each new user always requires a
new re-encryption key that makes it inefficient. Also, the re-
encryption is performed using a centralized server that can not
be trusted in most of the cases. In [13], the authors evaluated
that the blockchain-based technologies can be very benefi-
cial in the design of electronic registered multiparty delivery
services as they can help to solve the problems/challenges
related to the trusted third parties. The authors showed that the
blockchain has the potential to meet privacy and performance
requirements while satisfying the regulations imposed by the
European Union for registered electronic deliveries.

PriWatt is a token-based solution built on top of blockchain
[14] for energy trading. The system uses the concept of
multi-signature technology to verify the validity of transac-
tions. The multi-signature requires a minimum of m of n keys
to sign the transaction before a token is spent. This method-
ology requires that m is the minimum number of signatures
that need to match a public key, and n represents the number
of keys provided. Aminimum of t keys, which are less than n,
should be provided to proceedwith the transaction. This helps
to decentralize the transaction execution process. However,
in the token-based systems, it is hard to verify whether or
not the token is being spent by an authorized user. In [15],
a blockchain and trusted oracles based decentralized access
control solution for the IoT data has been proposed. The
trusted oracles are used to fetch data from the IoT devices.
The proposed solution consists of admins and smart contracts
(IoT data access, reputation, and aggregator), wherein the
former is responsible to manage, control, and delegate access
to the IoT devices, and latter enables the communication
between users and oracles. The IoT Data Access contract
forwards requests to Aggregator contract that sends requests
to a pool of oracles, where hashing is performed against
the data and subsequently send them back. The Aggregator
contract helps to compare the hashes. TheReputation contract
updates the reputation scores and helps to choose the one with
the highest reputation before generating an access token for
the end-user to access the IoT device through that oracle. One
of the major limitations of this solution is that it fetches all the
data that is not fully used in one turn.Moreover, it is expensive
as it requires multiple oracles. Besides, the whole process
of fetching data and comparing the hashes before granting
access is time-consuming.

In the past, the concept of multiparty access control has
been employed in online social networks (OSNs), wherein
it aims at protecting shared data associated with multiple
users [16]. Another study conducted in [17] has formulated
a collaborative multi-party access control model to allow
all individuals in OSNs related to a resource to collectively
participate in defining access control policies. Despite many
advantages of multiparty access control in OSNs, it poses

196814 VOLUME 8, 2020



A. A. Battah et al.: Blockchain-Based MPA for Accessing IPFS Encrypted Data

certain limitations in terms of centralization, log provenance
information, immutability, audit trial, trust, and security that
hinder its wide-level adoption. For coping with such lim-
itations, a multi -authority attribute-based access control
approach using smart contracts has been proposed in [18].
The proposed approach is tested on the Rinkeby Ethereum
Testnet. The proposed approach employs smart contracts to
define and enable interactions between the data owner (DO),
data user, and multiple attribute authorities. The approach
is based on the concept of attribute tokens. After collecting
attribute tokens, a smart contract allows issuing secret keys
to particular users to give them access to certain resources.
Unlike this approach, in our proposed solution, tokens are not
exclusive to MPA but they are used to perform authentication
between different participants. Besides, our proposed solu-
tion is significantly different from this existing approach. Our
solution is fully decentralized in which MPA is implemented
using the Ethereum smart contracts, and proxy re-encryption
algorithms are implemented using multiple oracles to give
access to encrypted shared data stored on a public and decen-
tralized storage platform, such as Interplanetary File Systems
(IPFS).

Our key contributions are summarized below:

• Wepropose a fully decentralized blockchain-basedMPA
solution to provide provenance of log events related
to access/permissions in a manner that is immutable,
auditable, trustful, and secure.

• We develop smart contracts to define and enable inter-
actions between DO, data requester (DR), MPA, proxy
re-encryption oracles, and IPFS. The implementation
code is made publicly available on GitHub.1

• We implement the solution of giving access to encrypted
shared data stored on IPFS using multiple oracles that
report their results to the proposed smart contracts.

• We introduce and incorporate reputation mechanisms in
the proposed smart contracts to rate the oracles based on
their malicious and non-malicious behaviors.

• We evaluate the proposed approach against various met-
rics, such as security, cost, generalization to find out the
limitations, reliability, and practicality of the proposed
solution.

• Our proposed solution can be customized and imple-
mented on both public and private blockchain networks
based on the needs and preferences of industries.

The organization of the paper is as follows. Section II
presents the proposed solution along with its architec-
tural components and shows sequential interactions between
them. Section III discusses full implementation details.
In Section IV, we provide security and cost analysis to show
the reliability of the proposed solution along with open chal-
lenges. Finally, a conclusion is given in Section V.

1https://github.com/multipartyauthority/
MPA-access-control

II. PROPOSED APPROACH
With the rapid technological advancements, risks have come
as part of the bargain. While technology is advancing,
security threats are also advancing. For any organization,
a policy is what holds it together and governs the environ-
ment, and that is exactly what access control does. It defines
digital policies to avoid threats and give role-based priv-
ilege to ensure authentication and authorization. In this
section, we present the proposed Ethereum blockchain-based
approach along with our system architecture components
that include DO, DR, IPFS, proxy re-encryption oracles,
and MPA.

A. ETHERUEM BLOCKCHAIN
Blockchain has been a breakthrough in 2009 introduced
by Sakatoshi Nakamoto to develop Bitcoin, a cryptocur-
rency that utilizes blockchain, as means of handling the
decentralization of ownership and consensus over the cryp-
tocurrency. Blockchain is a chain of blocks considered as
a distributed ledger containing transaction records that are
replicated across various computers assembled in a peer-
to-peer (P2P) network. It contains information about the
data of the transactions, time, value, hash, and encryption
codes. It has hash functions that convert any input into
fixed value output of each block so that each block will
have the hash information of the previous one to provide
integrity of the chain [19]. Moreover, it encrypts transac-
tions using public and private keys to achieve confidential-
ity. In addition to that, it employs consensus algorithms,
such as proof-of-work (PoW), proof-of-stake (PoS), proof-
of-capacity (PoC) to name a few, to ensure that all entities
involved in the system are agreed on a single source of
truth.

Ethereum is a public and open-source blockchain platform
that allows developers to create and deploy decentralized
applications (Dapps) [20]. The Etheruem blockchain boasts
attributes, such as modularity, simplicity, and universality.
Ethereum virtual machine (EVM) is used to execute smart
contracts to add application-specific logic to the Blockchain.
The Ethereum-based smart contracts can help to form a
closed network that consists of validators and participants
that are responsible to perform actions and validation of the
processes, and make important decisions. Moreover, through
smart contracts, all the transactions can be monitored and
controlled in a transparent, immutable, auditable, traceable,
and secure manner. In summary, defining and implementing
important properties (i.e., the access time of participants to
confidential information, the extent of authorization, and the
number of participants needed to satisfy the access policy)
through the Ethereum blockchain can lead to offer a reli-
able, highly secure, trusted solution. The Ethereum-based
permissioned blockchain is also gaining immense popularity
in recent times. Such examples include Hyperledger Besu and
Qourom [21], [22].

VOLUME 8, 2020 196815

https://github.com/multipartyauthority/MPA-access-control
https://github.com/multipartyauthority/MPA-access-control


A. A. Battah et al.: Blockchain-Based MPA for Accessing IPFS Encrypted Data

FIGURE 1. Architecture overview of the different participants.

B. ARCHITECTURE
The proposed system architecture is depicted in Figure 1.
It consists of entities that communicate with the smart con-
tracts to govern the access control of the encrypted data
stored on the IPFS. Such entities include DO, DR, proxy
servers/proxy re-encryption oracles, and IPFS. Each entity
has a unique Ethereum address (EA) for communication
purposes on the blockchain through Ethereum clients.
• DataOwner (DO): It is an initiation point of the system.
The DO is responsible to upload data for sharing, per-
form communication, agree upon access requirements
posed by the MPA, and register the address of the
data (which is the hash of the data) on the blockchain.
Also, it helps to encrypt the data using a symmetric key
algorithm and send it to the P2P decentralized database
along with the other key encrypted by the public key
of a shared wallet between MPA and DO using multi-
signature. Furthermore, the DO creates a smart contract
that contains the hash of the mentioned components to
act as the address of the data. Finally, the DO creates a
re-encryption key from the public key of the DR and its
own private key to send to the proxy servers.

• Data Requester (DR): The requester contacts the smart
contract using its EA asking for access to the encrypted
data provided by theDO.After the requester is validated,
it waits to get an access token from the smart contract
for the suitable proxy to receive the data. Once the data
is downloaded from the proxy, the requester downloads

encrypted data, encrypted symmetric key, and the hash
of the file. Subsequently, it proceeds to decrypting the
symmetric key along with the data using its private key
and decrypting the data again with that symmetric key.

• IPFS: It is a P2P decentralized database that holds the
data to be shared across multiple users [23]. The DO
uploads the data encrypted with a symmetric key that
is further encrypted with the DO’s public key. Once the
database is requested for the data (based on the hash
of the file), it provides the proxy with the encrypted
symmetric key and encrypted data.

• Proxy re-encryption servers: In our proposed solu-
tion, we use three proxy re-encryption servers/oracles
because performing encryption is a compute-intensive
task. Note that implementing compute-intensive oper-
ations/functions using the Ethereum-based smart con-
tract is a very expensive approach. Proxy re-encryption
servers or oracles are used to fetch data and execute
complex functions. They act as a medium to share data
mainly between the DO and DR. The proxy servers
have a reputation systemmanaged by the proposed smart
contracts. The reputation of a proxy fluctuates based on
the response to the queries of the smart contract. If most
proxies give the same hash results while others give
different, then their reputation goes down. The proxy
server has its own unique address that is sent within the
access token, which is shared with the requester. On the
other hand, the proxy server also receives a token with

196816 VOLUME 8, 2020



A. A. Battah et al.: Blockchain-Based MPA for Accessing IPFS Encrypted Data

the requester address to perform validation. Once the
proxy server receives the task of sharing the data to
that requester, it ensures confidentiality, integrity, and
privacy. The proxy server first gets the re-encryption key
from the DO, then downloads the data from the decen-
tralized database that includes the encrypted symmetric
key and the encrypted data. Once the proxy server has
the key and the data, it re-encrypts the symmetric key
which is sent to the requester.

• MPA: It acts as a co-owner, which is included in each
step of the access control mechanism. The MPA man-
ages access to a shared wallet (with the DO) to avoid
malicious acts. Using the multi-signature technology,
the DO requires the keys of the MPA. It requires m of
n (2 keys out of a total 3 keys) keys to use it. Note
that m and n are adjustable based on a use case sce-
nario. Although all the MPA entities do not need to be
involved in this process, they must be qualified enough
to verify the requirements needed to give access to the
data requested by the DR. For example, lets assume that
there is a highly confidential organization with an agent
that wants to share a sensitive report. The agent would
be the DO, but it does not make sense for him to have
full sole control of the data, that is why it should be
under the supervision of multiple people in the upper
echelons. Some of them are given keys to access the
account’s wallet, wherein the supervisors would have the
authority and knowledge of who has the right to access
the file within the organization. In this way, the MPA
technology can be used to secure the most sensitive data
against insider attacks that are mostly carried out by the
insider acting alone [4].

C. SYSTEM INTERACTIONS
Figure 2 shows a sequential workflow between the entities
involved in the proposed system. The dotted lines indicate
an off-chain event; whereas, the solid lines are used to rep-
resent on-chain events. In the first stage, the DO needs to
be registered to upload the needed data to the database with
the symmetric key used for encryption. The symmetric key
is encrypted with the public key of the owner. The owner
creates a smart contract that contains the hash of the data,
the address of the owner, and the access requirements that
need to be shared with the authorities responsible to perform
MPA.

• After the initial registration and setup, the smart contract
shares the access requirements with the authorities that
perform MPA.

• After that, the smart contract initiates a request made by
the DR. The request gets validated by the MPA, which
consists of authorized entities having enough knowledge
to determine whether or not the user meets the specific
requirements. Subsequently, the MPA sends the verifi-
cation results to the smart contract.

• If the verification is succeeded, the smart contract asks
the proxies/oracles to fetch the hash of the requested
data. Based on the fetched results, the smart contract
determines the suitable proxy. It proceeds to create a
token with the address of the proxy to be sent to the DR
and address of DR for the proxy. In this way, both of
them are connected together to validate each other.

• After that, the proxy server starts the process of fetching
data while simultaneously getting the re-encryption key
from the DO. The DO uses its private key and the public
key of the DR to create the re-encryption key using
the AFGH algorithm. The proxy server re-encrypts the
symmetric key through atomic encryption, so it becomes
invisible to the proxy server.

• Once the DR receives the needed data, it computes the
hash of the data and compares it with that available on
the blockchain to check its validity. After that, the sym-
metric key is decrypted using the DR’s private key, and
the data is decrypted using that symmetric key.

III. IMPLEMENTATION AND VALIDATION
For the implementation, we use Remix Solidity IDE to write,
run, and debug smart contracts [24]. The smart contracts
allow to implement access controls for encrypted data stored
on the IPFS. Also, the smart contract based reputation system
is proposed to identify and mitigate malicious activities and
threats by giving ratings to oracles or requesters. Figure 3
gives a simplified overview of the acting entities that are
discussed in the following subsection.

A. IMPLEMENTATION
The first phase of the implementation is the registration and
initialization of the network. The DO and its associated files,
DR, oracles, andMPA are get registered with the variables set
to the default states. The process gets started when the owner
uploads file/s to the IPFS and subsequently submits its hash
on the Ethereum-based blockchain. The owner only provides
the hash of the data bundle containing the file encrypted by
the symmetric key (Ks), which is further encrypted by a public
key (Kp) of the MPA. Once the file is added, the MPA and
the requesters are notified, as shown in the Algorithm 1. The
events sent out are important and they enable the MPA to
provide the access requirements to the smart contract.

Algorithm 1: Add File

1 Input: H (uploaded bundle)
2 Require: (DataOwnerOnly)
3 Emit: file was uploaded to MPA and requesters
4 add to bundle of hashes []← H (uploaded bundle)
5 create and add a new file with an empty request list

Once the MPA gets a notification about the file, it sets the
access requirements for that file. At this stage, the number
of authorities are also assembled. After that, the MPA shares
this information with the smart contract of the DO. Such

VOLUME 8, 2020 196817



A. A. Battah et al.: Blockchain-Based MPA for Accessing IPFS Encrypted Data

FIGURE 2. Sequence diagram of a file exchange between DataOwner and DataRequester.

information helps to validate/verify whether the requester is
eligible for this data access or not. The requester requires
to meet all the requirements set by the MPA to get the data
access. This can be seen in Algorithm 2.

The MPA handles the authentication process by enabling
each authority to verify each claim made by the requester.

If the number and validity of the data are legitimate, then
the request is entertained, as illustrated in Algorithm 3. The
method for calculating the rating of oracles is to map the
latency, whose value varies in a range between 1 second -
1 hour/3,600 seconds, to 65,535 - 1. Note that ‘‘65,535’’ is
the maximum value that can be stored in the uint16 data type.

196818 VOLUME 8, 2020



A. A. Battah et al.: Blockchain-Based MPA for Accessing IPFS Encrypted Data

FIGURE 3. Entity relation diagram displaying the different entities along with their corresponding associations of interaction.

Algorithm 2: Request File

1 Input: FileIndex, DRPublicKey, OracleCountMin,
OracleCountMax

2 Require: (DataRequesterOnly and ValidPublicKey and
ValidOracleRange)

3 create new request(DRAddress, RequestTime,
OracleCountMin, OracleCountMax)

4 add request to list of requests of the file
5 Emit: request submitted to DR and DRPublicKey to DO

Algorithm 2 shows the procedure for accessing the file,
when the DR initiates a request. The DR needs to state its
address, file information, and the number of oracles required
to be queried. The higher number of oracles ensure high
quality; however, they also impose extra costs. The lower
you set the range of oracles, it leads to degrading the quality.
It is important to note that in this scenario quality is referring
to the throughput/latency of the oracle and its reputation.
The said request is responded to DR through the DO smart
contract, after ensuring that the requester and the file have
the corresponding authentication according to Algorithm 3.

Algorithm 3: Authenticate Request

1 Input: File, Request, GrantBool
2 Require: (MPAOnly and !File.Granted)
3 if (GrantBool) then
4 Request.MPAAuthCount←

Request.MPAAuthCount + 1
5 end
6 Emit: inform DR and DO of new MPAAuthCount
7 if (Request.MPAAuthCount >=

File.MPAAuthRequiredCount) then
8 Emit: broadcase Request to oracles
9 File.Granted← true

10 end

Subsequently, an event is triggered and sent out for oracles
so they can register to retrieve the file.

Algorithm 4 presents respond of oracles with their
encrypted results. The hash retrieved is compared to the
original, and the latency is computed based on the time it took
to respond. Based on the certain number of oracles specified
by the DR, a certain threshold is set for time delay, where if

VOLUME 8, 2020 196819



A. A. Battah et al.: Blockchain-Based MPA for Accessing IPFS Encrypted Data

Algorithm 4: Add Oracle Response

1 Input: File, Request, Hash
2 Require: (OracleOnly and File.Granted)
3 Latency← Now - Request.Time
4 if (OracleCount < OracleMin) or (OracleCount >=

OracleMin and OracleCount < OracleMax and
notTimeoutBool) then

5 HashResultBool← File.Hash == Hash
6 Rating = HashResultBool × map(Latency, From:

[1, 3600 seconds], To: [65535, 1])
7 add oracle to list of oracles of the request
8 end
9 if (OracleCount >= OracleMin and TimeoutBool) or

(OracleCount == OracleMax) then
10 Reputations[]← Reputations(Oracles)
11 Ratings[]← []
12 BestOracleAddress← 0× 0
13 BestOracleScore← 0
14 for i← 0 . . .OraclesCount do
15 OracleScore = Ratings[Oracle] ×

(Reputations[Oracles] + 1)2

16 if OracleScore >= BestOracleScore then
17 BestOracleScore← OracleScore
18 BestOracleAddress← OracleAddress
19 end
20 end
21 SubmitContractOracleRatings(Oracles, Ratings)
22 TokenID← keccak256(Doctor ‖ Oracle ‖ Now)
23 Emit: Token(TokenID, BestOracleAddress) to

Doctor and Token(TokenID, Doctor) to Oracle
24 Evaluated← true
25 end

the maximum is not reached, it would stop accepting results
at that time. If the timestamp is passed and the minimum
number of oracles are not satisfied, the time period is further
extended until the minimum is achieved. A rating is then
given based on the latency and correctness of results. Later
on, the oracles are evaluated based on the given rating that
leads to find their reputation scores. Note that the oracles
having less reputations are eliminated from the system after
some time. In a simpler term, the oracle having the best score
is chosen. Tokens are then created and sent to the chosen
oracle and the DR.

Algorithm 5: Submit DR Oracle Rating

1 Input: oracleAddress, tokenID, rating
2 Require: (valid tokenID and valid oracleAddress)
3 averageDRRequesterRating← contractRatingCount ∗

averageContractRating + rating / contractRatingCount
+ 1

4 DRRatingCount←DRRatingCount+1

Tokens contain a unique identifier and the address of the
counterpart. Once the DR gets the token, it knows the address
of the chosen oracle and thus the DR can contact it. Token
ID is generated from hashing the requester address, oracle
address, and the timestamp information. After the DR gets
the data, it submits a rating based on the parameters defined
in Algorithm 5. The old reputation ranking is updated based
on the rating of the DR, rating of the smart contract, and the
old reputation.

B. VALIDATION
Let us take a sample example with different test cases to
better understand the functioning of the system and validate
that the design goals are met. The testing environment to
execute such an example is designed in the following way:
The DO and the DR are the main entities providing the basis
for all the interactions. TheMPA process is managed by three
authorities. Three re-encryption oracles are involved in our
system architecture. The DO uses two files to explore the
different test routes. Such twofiles require different privileges
to be accessed. The addresses of the participants are shown in
each of the provided figures across the validation section to
follow through and fully understand the interaction process
between the different entities.

Before starting this scenario, we first look at the enrollment
of the actors into the system. The smart contract deployed
by the DO is exclusive to him/her. The smart contract asso-
ciates the ‘‘owner’’ of the contract to the address of the
deployer, so no other DO can have the same ‘‘DataOwn-
erSC’’, as shown in Figure 4. The DO can add several files
to be accessed through the smart contract, when doing so the
owner adds the corresponding privileges of each file given to
the DR of the specified attributes.

FIGURE 4. Registering a DataOwner to an existing DataOwnerFile smart
contract, but failed.

It is important to note that the validation is required for
the DR as well as for getting access to each file. This is
important as each file could have different access privileges
and requirements. Therefore, the first phase of the validation
would be for the DR that has the minimum requirements to
access the files of DO. It uses ‘‘authenticateDataRequester’’
function to perform the validation, as shown in Figure 8.
The second phase is responsible for checking whether or not
the DR meets the requirements defined to access a certain
file. This would be in the response to a request as shown
in Figure 9. The DO can not be any of the other participants
to avoid conflict of interest and to ensure separation of con-
cerns. The same goes for other participants where they can
not pose as different participants. They also can not take a

196820 VOLUME 8, 2020



A. A. Battah et al.: Blockchain-Based MPA for Accessing IPFS Encrypted Data

FIGURE 5. Registering a DataRequester twice using the same address,
but failed.

FIGURE 6. Oracle tries to register twice with same address, but failed.

FIGURE 7. DataRequester tries to pose as an MPA to exploit the system,
but failed.

FIGURE 8. Authenticating DR using an MPA.

role more than once; for example, an oracle can not register
itself twice. Something similar can also be seen for other
participants, an example can be seen in Figure 5 and Figure 7.
Another example of an oracle trying to register twice with the
same address is stopped preventing a whitewash of reputation
and potential DoS attack from that channel, as can be seen
in Figure 6.

As mentioned previously, the DR is authenticated by ful-
filling the minimum requirements, so the concerned MPA
entities submit an authenticateDataRequester() functionwith
the address of the DR, as shown in Figure 8. Before a

FIGURE 9. Authenticating file access eligibility of DR.

FIGURE 10. Number of claim verification needed to access a particular
file.

FIGURE 11. Denying Oracle participation for a rejected request.

request is initiated, it is important to ensure that the files
have an associated number of each MPA member to verify
attributes to access the file, as shown by the helper function
in Figure 10. Now, when the DO initiates a request to access
the file, the MPA sends a response through the smart contract
(i.e., either grants or denies the access), as shown in Figure 9.
The DR does not require to pass the verification procedure as
this is something variable that is set by the MPA and the DO.
Two claims out of three might be enough and some claims
could be mandatory while others can be used in place of other
claims. Figure 11 shows several responses from the MPA,
which need to be directed towards the smart contract. Also
Figure 11 shows that file 1 gets only one permission; however,

VOLUME 8, 2020 196821



A. A. Battah et al.: Blockchain-Based MPA for Accessing IPFS Encrypted Data

FIGURE 12. Sharing events once the request is granted access so DR and
DO are notified.

it requires permission from two entities. Thus, no operation
can be performed. In the second case, file 2 gets multiple
permissions, and thus the process continues to be executed.
The DR also employs proxy re-encryption oracles in this
process to encrypt the files. In this way, the DR is given a
choice to keep the balance between cost, quality, and time.

The concerned entities are notified through certain events.
When the grant is done, an event is sent to DO, DR, and
oracles, as shown in Figure 12. After that, the oracles start
informing the smart contract that they want to participate in
fulfilling a certain request. The oracles are mainly chosen
based on the accuracy of the retrieved hash, latency, and
reputation scores. After the best oracle is chosen and it fulfills
its service, the DR requires to finish the interaction by sub-
mitting back a rating regarding the service received. To avoid
illegitimate ratings, the DR is asked to provide the token for
the oracle and is checked if it is a valid token or not. There
is also a second case, where the token exists, but it is not
linked to the right oracle in which it is being rejected by the
smart contract, as shown in Figure 13. When the token does
exist and matches the right oracle, it is being accepted, as can
be seen in Figure 14. Subsequently, the reputation score is
updated and the interaction gets finished.

FIGURE 13. Invalid doctor rating submissions.

FIGURE 14. Success submitting a valid rating token.

IV. ANALYSIS AND DISCUSSION
In this section, we evaluate our proposed system using various
performance measuring parameters including cost, security,
and generalization. Besides, we present several limitations of
our proposed solution acting as open research challenges.

A. COST ANALYSIS
In the Ethereum blockchain, smart contracts are executed on
EVMs. The EVM is paid in return for its services. Ethereum
gas is a unit used to measure the price for running or execut-
ing certain operations. Table 1 shows both the transactions
and their execution costs. The transaction costs were those
for establishing the transactions on the blockchain; whereas,
the execution costs were compensation for the EVM exe-
cution of the operations. The major costs were imposed by
the deployment functions as can be seen in Table 1. The
smart contracts are deployed once for each DO, so this is
not a recurring cost, unlike the functions. The functions were
mostly priced at below $ 0.3; however, the requestFile()
functionwas priced at $ 0.46 that it is relatively higher in price
when compared to other functions (excluding deployment
functions). The presented gas price is set at 20 Gwei, which is
safely above the current price that fluctuates between 10 and
15 Gwei.

B. SECURITY ANALYSIS
Herein, we present the security analysis of our proposed
approach using important parameters, as discussed below.
• Integrity and traceability: The distributed ledger of
the proposed blockchain-based solution acts as an
immutable evidence for all the transactions recorded on
it. It provides traceability features for access control
related events. The proposed solution assures users that
the data stored on it can not be modified or tampered
with, thereby enforcing trust. Our blockchain-based
solution maintains a chain of hashes, wherein each block
uses the hash of the previous block. Therefore, altering
one bit in a block leads to invalidating all the blocks that
follow it.

• Privacy: The users in our proposed system can interact
without compromising on their privacy. Although the
EA is used to mask the identity in the Ethereum net-
work, we further extend it in our implementation by only
exposing needed data without breaching the privacy of
users. There is no direct communication between the
DO and DR. Early interactions are performed through
the smart contract and logged on the chain. The later
interactions are mediated through tokens that share the
public addresses of the entities. The whole process of
encryption and decryption only requires the public keys

196822 VOLUME 8, 2020



A. A. Battah et al.: Blockchain-Based MPA for Accessing IPFS Encrypted Data

TABLE 1. Gas costs of smart contract functions.

and the decryption is done at the DR’s endpoint using
the private key.

• Authenticity: Two-way authentication method is used
to perform additional authentication. The EA acts as the
identifier for each participant on the network. However,
still the data remains visible to third parties most of
the times for authentication purposes. Thus, a link is
required to establish for off-chain interactions, and this
can be achieved using tokens. Even if there are off-chain
interactions that the blockchain do not mediate, tokens
are sent to the entities so that they can authenticate
each other. This helps to avoid potential impersonation
attacks.
On the other hand, reputation systems are also vulner-
able to certain types of security attacks including bal-
lot stung and bad-mouthing attacks [25]. Such attacks
can be mitigated by the use of tokens, where each DR
only submits one rating for one oracle. There is no real
incentive for an oracle to carry out a Sybil attack as only
one oracle is chosen and it mainly relies on the latency
of that oracle. A denial of service (DoS) attack is one
of the hardest to tackle. One of the possible ways to
mitigate it is that there is a limit to the maximum number
of oracles that would respond, but for a network with
a large number of nodes it would be very challenging
to completely prevent this type of attack. In the case
of unreliable oracles that do not provide the required
services, the DR can use the token to inform the network
about such a case. After that, the reputation score of the
oracle will go down due to its malicious action. In this
way, it will be eliminated from the system after some
time.

C. GENERALIZATION
Even though the starting point was examining organizations
that prioritize the confidentiality of data; however, the imple-
mented solution can be seen as a general template that encom-
passes all kinds of confidential data exchange. Any entity
that values confidentiality and privacy can incorporate our
solution regardless of the application domains.

The proposed framework can be seen as a foundation that
dictates the exchange of data policy of a larger system. The
proposed solution can be used for different intelligence agen-
cies that need solid access control governance. To incorporate
the different use cases and generalize them in a solution,
different concerns should be taken into account. Performance,
cost, privacy, integrity, and authenticity are all parameters
that concern a user and should be adjustable to match their
needs. To achieve a general solution, it might be a good
initiative to make components of the system optional, where
if there is an interaction between users that know each others’
attributes, then they should be able to exclude the MPA to
decrease cost and increase performance. This might prove to
be useful in a system of a modest size where the participants
are static, such as start-up businesses. Choosing who does the
encryption, who acts as the MPA, how much power is given
to the DO are all important aspects that must be studied if
such a solution needs to be incorporated. One of the major
things to be adjusted might be the hierarchical access policy,
which dictates the privileges based on the already established
hierarchy in the system.

D. OPEN CHALLENGES
• The oracles were implemented to alleviate the overload
on the blockchain in terms of cost and size. They help
to increase the performance with their off-chain actions.
They also incorporate a reputation system to mitigate
the effects of centralization and make decentralization a
viable option, whichmight be seen as making the system
more complex.

• Some security concerns are not fully mitigated as they
are very challenging. For example, the DoS attack for
a large network would be challenging to prevent. Even
though whitewashing is slightly mitigated by being
given an average reputation; however, it is still some-
thing that might be exploited.

• To completely deploy a solution, it would be favorable to
fully incorporate the re-encryption proxies and analyze
the behavior of the system as a whole to be assessed
in a better manner that would reflect the feasibility of
shipping such a solution.

VOLUME 8, 2020 196823



A. A. Battah et al.: Blockchain-Based MPA for Accessing IPFS Encrypted Data

• Amulti-signature wallet was not implemented but doing
so would also decentralize the authority power at the
endpoint. This would prove useful in cases where the
DO does not have enough power to claim a file for
himself. To ensure that nothing happens without the
supervision of those entities they would be involved in
a multi-signature wallet that would be needed to do any
action with the file.

• The development and deployment of such a large scale
solution would need a comprehensive study and anal-
ysis. It would be a challenge to fully assess how the
solution can be generalized for the different use cases
unless it is tested in the different domains, which would
take extensive efforts.

• The blockchain network with the different entities inter-
acting on it has been implemented as a software; how-
ever, the re-encryption oracles as physical entities have
not been fully integrated with the solution. This could be
something to be added in the future.

V. CONCLUSION
In this paper, we have proposed a fully decentralized
blockchain-based multi-party authorization (MPA) solu-
tion to provide provenance of log events related to
access/permissions in a manner that is immutable, auditable,
trustful, and secure. We proposed implementing proxy
re-encryption using multiple oracles to give access to
encrypted shared data stored on a public and decentralized
storage platform, such as the IPFS. We incorporated reputa-
tion mechanisms in the proposed smart contracts to give rat-
ings to the oracles based on their malicious and non-malicious
behaviors. We developed Ethereum-based smart contracts to
implement the functions, modifiers, and trigger events. Our
smart contract code is made publicly available on GitHub,
and it generic enough as it can be implemented on both types
of permissioned and permissionless blockchain networks
with minimal modifications based on the specific needs of
industries.We presented the proposed algorithms and the sys-
tem components alongwith their full implementation, testing,
and validation details.We presented the cost analysis to verify
the affordability and practicality of the proposed solution.
We conducted a security analysis to verify the reliability of
the proposed approach.We conclude that storing all the trans-
actions related to MPA and access to files on the blockchain
can lead to create and maintain a trusted, immutable, and
secure audit trail that could be verified by anyone. As a
future work, we aim to implement our solution using pri-
vate blockchain platforms, such as Hyperledger Fabric and
Hyperledger Besu. In addition, we plan to develop frontend
decentralized applications (DApps) for the end-users.

REFERENCES
[1] Cyber Risk Analytics. Accessed: Apr. 8, 2020. [Online]. Available: https:

//pages.riskbasedsecurity.com/hubfs/Reports/2019/
2019MidYearDataBreachQuickViewReport.pdf

[2] R. S. Sandhu and P. Samarati, ‘‘Access control: Principle and practice,’’
IEEE Commun. Mag., vol. 32, no. 9, pp. 40–48, Sep. 1994.

[3] J. Verble, ‘‘The NSA and Edward Snowden: surveillance in the 21st
century,’’ ACM SIGCAS Comput. Soc., vol. 44, no. 3, pp. 14–20, 2014.

[4] WIKIPEDIA. (2019). Multi-Party Authorization. Accessed:
Aug. 5, 2020. [Online]. Available: https://en.wikipedia.org/wiki/Multi-
party_authorization

[5] O. Bouachir, M. Aloqaily, L. Tseng, and A. Boukerche, ‘‘Blockchain and
fog computing for cyberphysical systems: The case of smart industry,’’
Computer, vol. 53, no. 9, pp. 36–45, Sep. 2020.

[6] M. Aloqaily, A. Boukerche, O. Bouachir, F. Khalid, and S. Jangsher, ‘‘An
energy trade framework using smart contracts: Overview and challenges,’’
IEEE Netw., vol. 34, no. 4, pp. 119–125, Jul. 2020.

[7] Q. Chen, G. Srivastava, R. M. Parizi, M. Aloqaily, and I. A. Ridhawi,
‘‘An incentive-aware blockchain-based solution for Internet of fake media
things,’’ Inf. Process. Manage., vol. 57, no. 6, Nov. 2020, Art. no. 102370.

[8] H. R. Hasan and K. Salah, ‘‘Blockchain-based solution for proof of deliv-
ery of physical assets,’’ in Blockchain–ICBC, S. Chen, H. Wang, and
L.-J. Zhang, Eds. Cham, Switzerland: Springer, 2018, pp. 139–152.

[9] K. Salah, N. Nizamuddin, R. Jayaraman, andM. Omar, ‘‘Blockchain-based
soybean traceability in agricultural supply chain,’’ IEEE Access, vol. 7,
pp. 73295–73305, 2019.

[10] A. Yousafzai and C. Seon Hong, ‘‘SmartSON:A smart contract driven
incentive management framework for self-organizing networks,’’ 2020,
arXiv:2008.11803. [Online]. Available: http://arxiv.org/abs/2008.11803

[11] A. Ouaddah, A. Abou Elkalam, and A. Ait Ouahman, ‘‘FairAccess: A new
blockchain-based access control framework for the Internet of things,’’
Secur. Commun. Netw., vol. 9, no. 18, pp. 5943–5964, Dec. 2016.

[12] D. Tith, J.-S. Lee, H. Suzuki, W. Wijesundara, N. Taira, T. Obi, and
N. Ohyama, ‘‘Application of blockchain to maintaining patient records in
electronic health record for enhanced privacy, scalability, and availability,’’
Healthcare Inform. Res., vol. 26, no. 1, pp. 3–12, 2020.

[13] M. M. Payeras-Capella, M. Mut-Puigserver, and M. A. Cabot-Nadal,
‘‘Blockchain-based system for multiparty electronic registered delivery
services,’’ IEEE Access, vol. 7, pp. 95825–95843, 2019.

[14] N. Z. Aitzhan and D. Svetinovic, ‘‘Security and privacy in decentralized
energy trading through multi-signatures, blockchain and anonymous mes-
saging streams,’’ IEEE Trans. Dependable Secure Comput., vol. 15, no. 5,
pp. 840–852, Sep. 2018.

[15] H. Al Breiki, L. Al Qassem, K. Salah, M. Habib Ur Rehman, and D. Sevti-
novic, ‘‘Decentralized access control for IoT data using blockchain and
trusted oracles,’’ in Proc. IEEE Int. Conf. Ind. Internet (ICII), Nov. 2019,
pp. 248–257.

[16] H. Hu, G.-J. Ahn, and J. Jorgensen, ‘‘Multiparty access control for online
social networks: Model and mechanisms,’’ IEEE Trans. Knowl. Data Eng.,
vol. 25, no. 7, pp. 1614–1627, Jul. 2013.

[17] P. Ilia, B. Carminati, E. Ferrari, P. Fragopoulou, and S. Ioannidis, ‘‘SAM-
PAC: Socially-aware collaborative multi-party access control,’’ in Proc.
7th ACM Conf. Data Appl. Secur. Privacy, Scottsdale, AZ, USA, 2017,
pp. 71–82.

[18] H. Guo, E. Meamari, and C.-C. Shen, ‘‘Multi-authority attribute-based
access control with smart contract,’’ in Proc. Int. Conf. Blockchain Tech-
nol. (ICBCT), 2019, pp. 6–11.

[19] C. Chinchilla. (2019). A Next-Generation Smart Contract and Decentral-
ized Application Platform. Accessed: Apr. 23, 2020. [Online]. Available:
https://github.com/ethereum/wiki/wiki/White-Paper/

[20] D. Bryson, D. Penny, D. Goldberg, and G. Serrao, Blockchain Technology
for Government. Montgomery, AL, USA: The MITRE Corp., 2017.

[21] (2020). Besu Enterprise Ethereum Client. Accessed: Mar. 23, 2020.
[Online]. Available: https://besu.hyperledger.org/en/stable/

[22] (2018). Quorum Whitepaper. Accessed: Mar. 23, 2020. [Online].
Available: https://github.com/jpmorganchase/quorum/blob/master/docs/
Quorum%20Whitepaper%20v0.2.pdf

[23] J. Benet. (2014). IPFS–Content Addressed, Versioned, P2P
File System. Accessed: Mar. 23, 2020. [Online]. Available:
https://github.com/ipfs/ipfs/blob/master/papers/ipfs-cap2pfs/ipfs-p2p-
file-system.pdf

[24] Remix Docs Description. Accessed: Apr. 3, 2020. [Online]. Available:
https://remix-ide.readthedocs.io/en/latest/#

[25] K. Hoffman, D. Zage, and C. Nita-Rotaru, ‘‘A survey of attack and defense
techniques for reputation systems,’’ ACM Comput. Surv., vol. 42, no. 1,
pp. 1–31, Dec. 2009, doi: 10.1145/1592451.1592452.

196824 VOLUME 8, 2020

http://dx.doi.org/10.1145/1592451.1592452


A. A. Battah et al.: Blockchain-Based MPA for Accessing IPFS Encrypted Data

AMMAR AYMAN BATTAH received the B.Sc. degree in computer engineer-
ing from Khalifa University of Science and Technology, Abu Dhabi, UAE,
in 2019. He is currently a Researcher and Teaching Assistant, pursuing his
graduate studies in computer science, with Khalifa University of Science and
Technology. His current research interests are in blockchain technologies,
the Internet of Things (IoT) security, and information security.

MOHAMMAD MOUSSA MADINE (Member, IEEE) received the B.Sc.
degree in computer engineering from Khalifa University of Science and
Technology, Abu Dhabi, UAE, in 2019. He is currently a Graduate
Researcher and a Teaching Assistant, pursuing his graduate studies, with
Khalifa University of Science and Technology. His research interests are
primarily focused on blockchain solutions in healthcare, personal health
records, and edge computing.

HAMAD ALZAABI received the B.Sc. degree in electrical and electronic
engineering fromKhalifa University of Science and Technology, Abu Dhabi,
UAE, in 2017. He is currently pursuing his graduate studies in electrical and
computer engineering, concentrating in the track of robotics, control, and
IMU arrays. His research interests include blockchain, power management,
and cyber security.

IBRAR YAQOOB (Senior Member, IEEE) received the Ph.D. degree in
computer science from the University of Malaya, Malaysia, in 2017. He is
currently working with the Department of Electrical Engineering and Com-
puter Science, Khalifa University of Science and Technology, UAE. Previ-
ously, he worked as a Research Professor with the Department of Computer
Science and Engineering, Kyung Hee University, South Korea, where he
completed his postdoctoral fellowship under the prestigious grant of Brain
Korea 21st Century Plus. He worked as a Researcher and Developer at the
Centre for Mobile Cloud Computing Research (C4MCCR), University of
Malaya. His numerous research articles are very famous and among the most
downloaded in top journals. He has been listed among top researchers by
Thomson Reuters (Web of Science) based on the number of citations earned
in the last three years in six categories of Computer Science. He is currently
serving/served as a guest/associate editor in various journals. He has been
involved in a number of conferences and workshops in various capacities.
His research interests include big data, blockchain, edge computing, mobile
cloud computing, the Internet of Things, healthcare, and computer networks.

KHALED SALAH (Senior Member, IEEE) received the B.S. degree in
computer engineering, with a minor in computer science, from Iowa State
University, Ames, IA, USA, in 1990, the M.S. degree in computer systems
engineering from the Illinois Institute of Technology, Chicago, IL, USA,
in 1994, and the Ph.D. degree in computer science from the Illinois Institute
of Technology, in 2000. He is currently a Full Professor with the Department
of Electrical and Computer Engineering, Khalifa University of Science and
Technology, UAE. He has over 220 publications and three U.S. patents, has
been giving a number of international keynote speeches, invited talks, tutori-
als, and research seminars on the subjects of blockchain, IoT, fog and cloud
computing, and cybersecurity. He is currently leading a number of projects on
how to leverage blockchain for healthcare, 5G networks, combating deepfake
videos, supply chain management, and AI. He has served as the Chair for
the Track Chair of IEEE Globecom 2018 on Cloud Computing. He is an
Associate Editor of IEEEBLOCKCHAINTECHBRIEFS, and amember of the IEEE
Blockchain Education Commitee.

RAJA JAYARAMAN received the bachelor’s and master’s degrees in math-
ematics from India, the M.Sc. degree in industrial engineering from New
Mexico State University, and the Ph.D. degree in industrial engineering
from Texas Tech University. He is currently an Associate Professor with the
Department of Industrial and Systems Engineering, Khalifa University of
Science and Technology, Abu Dhabi, UAE. His expertise is in multi-criteria
optimization techniques applied to diverse applications, including supply
chain and logistics, healthcare, energy, environment, and sustainability. His
research interests are primarily focused on using blockchain technology,
systems engineering and process optimization techniques to characterize,
model and analyze complex systems with applications to supply chains,
maintenance operations planning, and healthcare delivery. His postdoctoral
research was centered on technology adoption and implementation of inno-
vative practices in the healthcare supply chains and service delivery. He has
led several successful research projects and pilot implementations in the area
of supply chain data standards adoption in the US healthcare system. His
research has appeared in top-rated journals, including Annals of Operations
Research, IISE Transactions, Energy Policy, Applied Energy, Knowledge
Based Systems, IEEE ACCESS, Journal of Theoretical Biology, Engineering
Management Journal, and others.

VOLUME 8, 2020 196825


