
Received September 9, 2020, accepted September 23, 2020, date of publication October 27, 2020,
date of current version November 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3034129

Stateful-TCP—A New Approach to Accelerate TCP
Slow-Start
LINGFENG GUO AND JACK Y. B. LEE , (Senior Member, IEEE)
Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong

Corresponding author: Jack Y. B. Lee (jacklee@computer.org)

ABSTRACT The Transmission Control Protocol (TCP) is one of the pillars of the Internet. Therefore exten-
sive research has been conducted to improve its performance, primarily via optimizing TCP’s congestion
control algorithm. In this work, we show that besides congestion control, TCP’s Slow-Start algorithm is
increasingly becoming a bottleneck in modern high-speed networks. To tackle the problem, we propose
a different approach called Stateful-TCP, where path bandwidth estimated in a previous flow is used to
instantly ramp up the transmission rate of the subsequent flow to the same destination. This eliminates the
need for bandwidth probing in conventional Slow-Start, enabling TCP to efficiently utilize the available
path bandwidth right from the beginning. We applied Stateful-TCP to Linux’s default TCP implementation
– Cubic, to form S-Cubic and evaluated its performance via extensive emulations and Internet experiments.
Results from independent Internet experiments using over 1,000 end-user clients showed that S-Cubic could
reduce FCT by 37.5% and increase throughput by over 50% compared to Cubic. As opposed to an entirely
new TCP design, Stateful-TCP is designed to complement congestion control and thus could potentially be
applied to many of the existing TCP variants, as well as incorporated into future TCP designs.

INDEX TERMS TCP, slow-start, stateful, bandwidth estimation.

I. INTRODUCTION
The transmission Control Protocol (TCP) is one of the pillars
of the Internet as most applications use it for data transport.
For this reason, much research has been done to improve its
performance in a wide range of network settings (e.g., [1]–
[20]). Common to almost all TCP variants – a TCP flow
begins in a Slow-Start phase [21] with a relatively low initial
transmission rate (either limited by the initial congestion
window size, i.e., CWnd, or transmission rate), which is then
increased progressively as packets are correctly delivered.
This conservative approach is necessary as today’s networks
span a wide range of bandwidth (e.g., from Kbps to Gbps),
thus transmitting too aggressively at the beginning may cause
severe congestion in networks with limited bandwidth.

Nevertheless, TCP’s Slow-Start mechanism could become
a significant bottleneck to its performance, more so in net-
works with large bandwidth-delay-product (BDP). This lim-
itation is widely-known, and the initial CWnd of TCP has
been raised from 2 MSS in TCP Reno [22] to 10 MSS
in today’s Linux kernel [1]. While increasing the initial
CWnd can mitigate the limitation to some extent, it does
not resolve the problem completely, as many Internet flows

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Maaz Rehan .

are relatively short [13], [20]. As a result, a short TCP flow
may complete all data transfer before it could ramp up its
transmission rate to fully utilize the bandwidth available.
As an extreme example, if one transfers 100 KB data using
Cubic – the current Linux default TCP variant, over a net-
work with 100 Mbps bandwidth and 100 ms RTT, then the
average throughput achieved is only 2.5% of the bandwidth
available.

Note the naïve solution of increasing the CWnd further is
not practical either, as too large an initial CWnd can also
cause congestion in low-bandwidth network paths. Clearly,
this problem is unsolvable without any information on the
network path at the beginning of a TCP flow.

In contrast to TCP’s original design, where each TCP flow
is independent, most Internet applications initiate multiple
successive TCP flows in a single application session. These
TCP flows are likely to experience very similar network
conditions, and thus much can be learned from a previous
TCP flow to the same peer host. This motivates us to develop
a novel Stateful-TCP mechanism where path bandwidth is
estimated in a previous flow to instantly ramp up the transmis-
sion rate of the subsequent flow to the same destination. This
eliminates the need for Slow-Start altogether, thus enabling
TCP to efficiently utilize the available bandwidth right from
the beginning.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 195955

https://orcid.org/0000-0002-3807-1280
https://orcid.org/0000-0002-3583-6428
https://orcid.org/0000-0003-1869-2757


L. Guo, J. Y. B. Lee: Stateful-TCP—New Approach to Accelerate TCP Slow-Start

To explore Stateful-TCP’s performance gains over con-
ventional Slow-Start, we applied Stateful-TCP to Cubic to
form a new S-Cubic implementation in Linux. We then
conducted extensive emulated as well as real-world Inter-
net experiments to evaluate its performance. Results from
Internet experiments conducted using 24 client-server pairs
in Google/Tencent cloud located in 11 cities around the world
showed that compared to Cubic, S-Cubic could reduce flow
completion time (FCT) by over 50% on average. A further
benchmark test by an independent performance benchmark-
ing company, using over 1,000 end-user clients spread across
nine provinces in China over a period of one week, showed
that S-Cubic could reduce FCT by 37.5% and increase
throughput by over 50% compared to Cubic.

As opposed to an entirely new TCP design, Stateful-TCP
is designed to complement the congestion control and error
control algorithms, and thus could potentially be applied to
many of the existing TCP variants, as well as incorporated
into future TCP designs. This paper presents Stateful-TCP’s
principles, illustrates its application via S-Cubic, and evalu-
ates its potential performance gains and tradeoffs.

The rest of the paper is organized as follows: Section II
reviews some previous related works; Section III revisits
TCP’s Slow-Start mechanism and demonstrates the limita-
tions of existing solutions; Section IV presents the Stateful-
TCP mechanism and its application to Cubic; Section V
presents experimental results for S-Cubic; Section VI sum-
marizes the paper and outlines some future work.

II. BACKGROUND AND RELATED WORKS
The Transmission Control Protocol has evolved a long way
since its introduction. For example, Linux kernel 4.20 imple-
ments a total of 17 TCP variants designed for different net-
work environments, with Cubic [2] being the current default,
replacing the early variant TCP Reno [22] due to Cubic’s
better performance over large-BDP networks [2]. Over the
years, many newTCP variants had been developed. For exam-
ple, Westwood [3], Veno [4], and BBR [5] were designed to
mitigate the impact of random loss in mobile networks; TCP-
Hybla [6] was developed for satellite network with long delay
and high loss rate; DCTCP [7] was developed for datacenter
networks; Sprout [8] was developed for delay-sensitive appli-
cations in mobile networks; PCC [9] was designed to adapt
its congestion control behavior based on in-band network
measurements, and Copa [10] was designed to achieve low
delay while competing fairly in the presence of loss-based
competing TCP flows.

Most previous works focused on TCP’s congestion control
algorithm. However, irrespective of the congestion control
algorithm, TCP almost always begins a new flow with the
conservative Slow-Start to progressively explore the path
bandwidth. This is a necessity as path bandwidth is not
known, but it can also become a significant bottleneck, as dis-
cussed earlier. This motivates researchers to develop new
mechanisms to tackle the Slow-Start bottleneck.

For example, Hauger et al. [11] proposed Quick-Start,
where TCP’s sending rate is adjusted based on explicit feed-
backs from network routers. Liu et al. [12] proposed Jump-
Start, where the initial CWnd is set to the receiver’s advertised
window (AWnd) size and applied pacing to control the initial
transmission rate. Li et al. [13] further extended Jump-Start
to include proactive retransmission to reduce FCT in case of
packet losses towards the end of a flow. In a more recent
work, Nie et al. [14] proposed TCP-WISE, which employed
proactive learning at the server-side to dynamically assign
the initial CWnd for each new flow based on historical data.
In a different approach, Winstein and Balakrishnan [15] pro-
posed Remy without a Slow-Start phase at all by exploiting
knowledge of the network to optimize its congestion-control
algorithm.

Although Slow-Start begins with a small CWnd, it grows
the CWnd exponentially fast, and in some network settings,
it may also overshoot the link capacity, causing unnecessary
congestion. To address this problem, researchers proposed
additional conditions to modify the exit point of Slow-Start.
For example, Floyd [23] proposed Limited Slow-Start, which
introduced a new parameter called max_ssthresh (default to
100). Once the CWnd grows larger than max_ssthresh but
smaller than ssthresh, CWnd will be increased by at most
max_ssthresh/2 per RTT. Cavendish et al. [24] proposed Cap-
Start to take the network interface card’s (NIC) bandwidth
into consideration and only activate Limited Slow-Start if the
NIC bandwidth is higher than the estimated path bandwidth.
Ha and Rhee [16] proposed Hystart to exit the Slow-Start
phase early when CWnd has reached the estimated network
BDP. Hystart has since been adopted in the Linux kernel and
is enabled by default. In a more recent study, Huang [25]
showed that Hystart’s exit could sometimes be premature due
to RTT fluctuations. They proposed Hystart++ to integrate
Limited Slow-Start into Hystart. When it triggers, instead of
entering the congestion avoidance phase, Hystart++ updates
CWnd according to Limited Slow-Start until packet loss
occurs or ssthresh is exceeded.

Paradoxically, on the one hand, Slow-Start is often a bot-
tleneck due to the small initial CWnd. On the other hand,
Slow-Start could also induce congestions if CWnd grows too
much too fast. Therefore TCP’s startup phase is still far from
a solved problem. Without information on the network path,
it is clear that the problem is unlikely to be even solvable.
We argue that further optimization of TCP’s startup phase
must go beyond initial CWnd optimization. For instance,
in 5G networks which promises bandwidth in excess of Gbps,
even with a RTT of 20 ms, at 1 Gbps bandwidth, the CWnd
required to fully utilize bandwidth will be 2.5 MB. Such a
large initial CWnd could lead to significant congestion losses
if left unchecked.

III. TCP SLOW-START REVISITED
In this section, we first analyze TCP Slow-Start’s perfor-
mance impact and then evaluate some existing as well as

195956 VOLUME 8, 2020



L. Guo, J. Y. B. Lee: Stateful-TCP—New Approach to Accelerate TCP Slow-Start

FIGURE 1. The experiment setup. The bottleneck link is emulated using
DummyNet [26].

intuitive solutions to tune the initial CWnd to mitigate Slow-
Start’s limitations.

A. PERFORMANCE IMPACT
In Slow-Start, TCP begins with a small initial CWnd (e.g.,
10 MSS in current Linux kernel) and then doubles it every
RTT in an exponential manner as ACKs are received. It exits
the Slow-Start phase when the CWnd exceeds the Slow-Start
threshold (ssthresh), Hystart [16] (if enabled) triggers, or a
loss event occurs [21].

To illustrate the performance impact of TCPSlow-Start, we
conducted experiments using the topology depicted in Fig. 1.
We used Ubuntu with Linux kernel 5.3 as the server and client
OS, and employed DummyNet [26] to emulate a bottleneck
link with 100 Mbps bandwidth and RTT of 10 ms, 50 ms, and
100 ms [27]. There is no random loss, and the link buffer size
was configured to one BDP. The flow size ranges from 8 KB
to 8.2 MB, covering most of the range in the Internet’s flow
size distribution [20], [28].

For performance comparison, we first calculate the flow
completion time (FCT), denoted by T , defined as the time
from the client (receiver) sends the TCP SYN segment to the
time all data are received, and then compare it against the
minimum FCT, denoted by Tmin, defined as

Tmin = 1.5dmin +
S
C
+ 0.5dmin, (1)

where dmin is the two-way propagation delay (assumed to be
symmetric), S is the flow size (inclusive of TCP/IP header
overheads), andC is the bottleneck link bandwidth. The three
terms on the R.H.S. represent the: (i) time spent in three-
way handshaking; (ii) transmission time; and (iii) one-way
propagation delay for the last TCP data segment to reach the
receiver.

Thus Tmin represents the minimum FCT achievable in the
given network path for any TCP protocol. Using it, we then
define a metric called FCT efficiency, denoted by �,

� =
Tmin

T
, (2)

where it can range from 0 to 1, with 1 representing opti-
mal performance. A desirable property of FCT compared
to throughput/utilization is that it accounts for propagation
delay and overheads in TCP’s three-way handshaking, which

FIGURE 2. FCT efficiency of Cubic versus flow size.

more accurately measures the performance perceived by the
user/application.

Fig. 2 plots the FCT efficiency of Cubic versus flow size
for three different RTT settings. The result for each setting is
averaged over ten repeated experiment runs.

We observe that Cubic’s FCT efficiency exhibited a U-
shape characteristic with respect to flow size. Beginning with
small flow size, as Linux TCP has a default initial CWnd
of 10 MSS, flow size no larger than 10 MSS (e.g., 8 KB)
can be transmitted entirely in the first RTT, thereby achieving
close to optimal FCT efficiency. Note that Cubic did not
achieve an FCT efficiency of exactly 1 in the experiment as
the minimum FCT in (1) does not account for host processing
delays.

As flow size increases, Cubic’s efficiency drops as its
CWnd is smaller than the path’s BDP, preventing it from fully
utilizing the available bandwidth. Its efficiency progressively
improves as flow size increases further due to CWnd growth.
Cubic’s efficiency is also sensitive to propagation delay as
one would expect, degrading more in the 50 ms and 100 ms
cases. In these two cases, Cubic’s efficiency is lower than
0.5 over a wide range of flow sizes (e.g., 128 KB to 1024KB).

B. INITIAL CWND TUNING
To tackle TCP’s Slow-Start limitation, researchers have
developed novel ways to tune the initial CWnd [11]–[14] to
increase the initial transmission rate. We evaluate some of
the existing solutions in this section. We first implemented
Jump-Start [12] into Linux as it is not currently supported.
We did not implement Quick-Start [11] and TCP-WISE [14],
as the former requires network router support, which is not
generally available in the current Internet. For the latter,
we did not have sufficient information to recreate the training
algorithm or the experiment settings. Nonetheless, we created
a similar scheme called TCP-Cache, which also exploits his-
torical information for setting the initial CWnd to serve as a
comparison.

We first evaluate Jump-Start, which sets the initial CWnd
to the size of the initial AWnd reported by the peer and the
initial pacing rate to AWnd/RTT, where both AWnd and RTT

VOLUME 8, 2020 195957



L. Guo, J. Y. B. Lee: Stateful-TCP—New Approach to Accelerate TCP Slow-Start

TABLE 1. Summary of Linux Kernel Configurations.

FIGURE 3. Comparison of FCT efficiencies for Jump-Start (JS), TCP-Cache
(Cache), and TCP-Cache+ (Cache+) for three client operating system
platforms.

are obtained during three-way handshake. The pacing ends
once the first ACK is received.

We applied Jump-Start to Cubic and tested it in the topol-
ogy in Fig. 1 with 100 Mbps bottleneck-link bandwidth,
100 ms RTT, and 1.25 MB (one BDP) bottleneck-link buffer
size. Table 1 lists the key Linux kernel settings adopted by
the various algorithms. Three operating system (OS) plat-
forms were tested as the client receiver: Ubuntu Linux (kernel
5.3), Microsoft Windows 10 (Enterprise 2018), and Mac
Mojave (10.14). The initial AWnd differs across different
OS’s: 20 MSS, 179 MSS, and 90 MSS for Ubuntu, Windows
10, and Mac, respectively. We also found that even for the
same OS, the initial AWnd can also vary (e.g., two different
Windows 10 hosts exhibited initial AWnd of 44 and 179MSS,
respectively. We adopted the larger one in our experiments).

Fig. 3 plots the FCT efficiency of Jump-Start versus flow
size. Each data point is computed from the average of ten
experiment runs. There are three observations. First, regular
Slow-Start outperformed Jump-Start at 8 KB flow size. This
is due to Jump-Start’s initial pacing mechanism, which even
in the best case (with a Windows 10 peer), was limited to
179 MSS / 100 ms ≈ 21.5 Mbps. In comparison, with an
initial CWnd of 10MSS, Cubic can send the entire 8 KB flow
at the line rate (i.e., 1 Gbps).

Second, as flow size increases, Jump-Start’s efficiency
pulls ahead of Cubic, especially in the case with a Windows

TABLE 2. TCP Parameters in the TCP Control Block (TCB) [17].

10 client receiver. Nevertheless, its efficiency is still far from
optimal over a broad range of flow sizes.

Lastly, we observe that Jump-Start with Windows 10 (JS-
Win) behaves abnormally for flow sizes larger than 512 KB
– its efficiency degrades (instead of improves) as flow size
increases. Our investigation suggested that this may be due
to interactions between Jump-Start and Hystart [16], which
may have caused it to exit the Slow-Start phase prematurely.

In addition to matching the initial CWnd to AWnd, another
logical approach is to reuse it from the past connection to the
same peer. The idea is that the network path to the same peer
is likely to remain the same, and so the previous connection
would have already explored the path to arrive at a good
CWnd. A similar idea has been exploited by the TCP Control
Block (TCB) [17], which caches five internal TCP parameters
that can be used in a new connection (Table 2).

For a new connection to the same peer (identified by IP
address), current Linux already reuses: RTT to set the initial
timeout value; ssthresh to control the exit point for Slow-
Start; Reordering to set the threshold for triggering retrans-
mission under SACK. Interestingly, RTTvar and CWnd are
also cached. However, from our analysis of the Linux kernel
source codes, neither has any effect on subsequent flows.

Nevertheless, given the availability of TCB, a logical
extension would be to reuse the last recorded value of CWnd
from the previous connection to set the initial CWnd for
a new connection. We implemented this (henceforth called
TCP-Cache) into the Linux kernel and repeated the previous
experiments to evaluate its performance.

Specifically, we first ran a Cubic flow, followed by ten con-
secutive TCP-Cache flows. FCT is then computed from the
average of the ten TCP-Cache flows. The results, also plotted
in Fig. 3, shows that TCP-Cache generally achieved higher
efficiency than its Jump-Start counterpart. However, similar
to Jump-Start, its efficiency is highly client-OS-dependent.
For example, while TCP-Cache can achieve high efficiency
with Windows 10 client, its performance is only slightly
better than Jump-Start (and Cubic) with Ubuntu client.

This is unexpected as the cached CWnd value should
have no dependency on the client platform in a new con-
nection. Further investigation revealed that it is not due
to the cached CWnd, but due to the initial AWnd of the
client. This is because the maximum number of packets
inflight is limited not only by CWnd but also by AWnd.
As the initial AWnd is platform-dependent, it not only renders

195958 VOLUME 8, 2020



L. Guo, J. Y. B. Lee: Stateful-TCP—New Approach to Accelerate TCP Slow-Start

TCP-Cache’s performance OS-dependent but also limits its
achievable efficiency as the maximum initial transmission
window can never exceed AWnd. For example, a TCP flow
after transferring 1 MB data could grow CWnd to about
700 MSS. However, even with Windows 10 client, the initial
AWnd is only 179 MSS, which severely limits the initial
transmission rate.

C. THE CWND DILEMMA
One potential solution to the AWnd limitation is to suppress
the receiver AWnd (except when it equals zero) in calcu-
lating the transmission window. This was first proposed by
Liu et al. [18] in their TCP accelerator to speed-up TCP
performance over mobile networks. The key idea is that flow-
control (which AWnd is intended for) is rarely needed in
today’s computing devices as most can process incoming
data packets much faster than the typical data rate. There-
fore, even if the sender transmits more in-flight packets
than the receiver’s AWnd, buffer overflow is still unlikely to
occur [18].

To apply this technique, we modified TCP-Cache into
TCP-Cache+ such that the transmission window is now
simply equal to CWnd (unless AWnd is zero, in which
case transmission suspends as usual). The results for a
Windows 10 client are also plotted in Fig. 3 with the
curve named Cache+. We can observe that TCP-Cache+
outperforms TCP-Cache for longer flows. Its efficiency, how-
ever, degrades for flow sizes larger than 1024 KB. Moreover,
in another experiment (not shown) with the link buffer size
reduced to half BDP, its efficiency degrades earlier and more
severely.

To investigate the cause, we analyze TCP-Cache+’s CWnd
evolution and transmission rate for an 8.2 MB flow in Fig.
4. We observe that the CWnd had grown to a large value
(>1200 MSS) by the time the first flow ended (red curve).
This became the initial CWnd for the next TCP-Cache+
flow (green curve). The problem is that with the large initial
CWnd, the new flow then transmitted one CWnd’s worth of
data at the line rate (i.e., 1 Gbps) right from the beginning.
This resulted in a sharp spike in the transmission rate at
around 1.6 s in Fig. 4. Not surprisingly, such a massive
data burst resulted in buffer overflow at the bottleneck link.
Consequently, TCP reduced the CWnd significantly, result-
ing in a much lower transmission rate. In retrospect, this
is precisely why Slow-Start was introduced at the start of
a new TCP flow. This presents a dilemma as setting the
initial CWnd conservatively could severely limit performance
while setting it more aggressively may induce unnecessary
congestions.

IV. STATEFUL-TCP
In this section, we propose a new Stateful-TCP mechanism
to resolve the initial CWnd dilemma and to bypass the Slow-
Start phase altogether to ramp up a new TCP flow’s initial
transmission rate right from the beginning.

FIGURE 4. Congestion caused by a Cache+ flow (green) due to the large
initial CWnd and massive initial transmission burst (at around 1.6 s).

A. PRINCIPLE
The fundamental dilemma in Slow-Start is that too small a
CWnd will lead to bandwidth under-utilization. However, a
sufficiently large CWnd may also lead to buffer overflow at
the bottleneck link. A key insight to solving this dilemma is
that the large CWnd is not the problem – it is the initial burst
transmission that is causing the buffer overflow.

As a counter-example, if one runs an extended TCP flow,
its CWnd can also grow to a large value, but that does not
necessarily cause buffer overflow. This is because at steady-
state, TCP’s packet transmissions are clocked by the ACKs
returned from the receiver, which in turn are clocked by
the bottleneck link. Therefore, transmissions are paced in
accordance with the bottleneck link bandwidth. In contrast,
there is no such pacing at the beginning for TCP-Cache and
TCP-Cache+, resulting in a massive transmission burst.

Therefore, the goal of Stateful-TCP is to enable a new TCP
flow to operate in the same way as if it is a continuation of the
previous flow to the same destination, i.e., bypass Slow-Start
and transmit at the path bandwidth right from the beginning.
The next section presents the system design to accomplish
this goal.

B. SYSTEM DESIGN
Stateful-TCP operates in three phases: Startup phase, Esti-
mation phase, and Termination phase, as depicted in Fig. 5.
All three phases are implemented inside the TCP sender,
so no change to the TCP receiver is needed. A hash table is
used to cache states from a completed flow. Each table entry
comprises three fields: peer IP address, estimated bandwidth,
and minimum RTT.

1) STARTUP PHASE
After the three-way handshake is completed, the sender will
first check if bandwidth estimated from a previous flow
already exists for the peer. Specifically, the peer’s IP address
will be hashed into an H -bit index where H is determined by
the hash table size (e.g.,H = 20 bits in our experiments). The
hash table entry is then looked up to determine one of three
courses of actions:

VOLUME 8, 2020 195959



L. Guo, J. Y. B. Lee: Stateful-TCP—New Approach to Accelerate TCP Slow-Start

FIGURE 5. Stateful-TCP control flow.

Miss – The hash table entry is empty, i.e., no record of a
previous flow, so it reverts to regular Slow-Start.

Hit – The hash table entry is non-empty and the previous
flow’s IP address matches the new one so that Stateful-TCP
will be activated for the new flow by: (a) setting CWnd to the
previous flow’s BDP, i.e., estimated bandwidth × minimum
RTT; (b) suppressing AWnd (except when 0); and (c) activat-
ing pacing for outgoing packets at a rate equal to the previous
flow’s estimated bandwidth.

Collision – The hash table entry is non-empty but the pre-
vious flow’s IP address differs from the new one, suggesting
hash collision. In this case, the new flow will revert to regular
Slow-Start.

In both hash table miss and collision cases, states of the
new TCP flow will be stored to the table entry when the flow
terminates. One exception is when the estimated BDP is equal
to or smaller than TCP’s default initial CWnd, denoted by
CWnd init (10 MSS in Linux), in which case the states will be
discarded as there will be no performance gain over regular
Slow-Start.

The Start-up phase ends when the first ACK is received,
at which point pacing will be disabled, and CWnd will be set
to

CWnd = max {κ,CWndinit } , (3)

where κ is the current number of packets in-flight.
The idea is that the current number of packets inflight

reflects the path’s BDP, which is what CWnd should be
in order to fully utilize the available bandwidth. We set a
minimum of CWnd init for CWnd so that it will not be lower
than regular Slow-Start.

FIGURE 6. Comparison of bandwidth estimation versus flow size with
bottleneck link bandwidth of 100 Mbps and link buffer size of one BDP.

2) ESTIMATION PHASE
This phase follows the Startup phase immediately and
lasts until the TCP flow is terminated. During which time,
the TCP sender continuously estimates the path bandwidth
(c.f. Section IV-C). The estimation process operates inde-
pendently from the congestion control algorithm so that the
latter’s operations are not changed except for one aspect – the
AWnd is suppressed except for 0 so that it will not become
the bottleneck (c.f. Section III-C).

3) TERMINATION PHASE
Upon connection shutdown, e.g., receiving a FIN segment
from the client, Stateful-TCP will store the estimated band-
width, the minimumRTT, and the IP address of the client into
the hash table entry.

C. GAP-COMPENSATED BANDWIDTH ESTIMATION
A key component in Stateful-TCP is the bandwidth estimator,
which runs throughout the Estimation phase. The problem
of path bandwidth estimation is not new. In fact, bandwidth
estimation is an integral part of some notable TCP variants,
such as Westwood [3] and BBR [5]. The general principle
is similar, i.e., estimate bandwidth according to the amount
of data acknowledged within a certain period of time (e.g.,
one smoothed RTT). However, when applied to Stateful-TCP,
these algorithms could suffer from underestimation.

To demonstrate the potential problem, we first investigate
Westwood and BBR’s bandwidth estimation algorithms by
adding instrumentation codes into their Linux implementa-
tion to record the bandwidth estimated upon flow termination.
We conducted experiments using the topology in Fig. 1 with
bottleneck link bandwidth of 100 Mbps and bottleneck link
buffer size of one BDP. Both client and server ran Ubuntu
with Linux kernel 5.3.

Fig. 6 plots the bandwidth estimated by Westwood and
BBR for flow sizes ranging from 4 KB to 8.2 MB. The
first observation is that both algorithms significantly under-
estimate the link bandwidth (100 Mbps) for smaller flow
sizes. For example, Westwood’s estimated bandwidth begins
to converge to the actual link bandwidth only at the largest

195960 VOLUME 8, 2020



L. Guo, J. Y. B. Lee: Stateful-TCP—New Approach to Accelerate TCP Slow-Start

FIGURE 7. Illustration of bandwidth underestimation caused by
CWnd-limited transmission.

flow size of 8 MB even under the shortest RTT of 10 ms. This
is due to Westwood’s use of low-pass filtering in smoothing
the bandwidth estimates, which increased the convergence
time.

In comparison, BBR’s bandwidth estimates convergemuch
faster, but even in the best case (with RTT = 10 ms) still
requires a flow size of at least 512 KB to converge. This is
undesirable as the majority of Internet flows are relatively
short [20], [28]. Thus applying the underestimated bandwidth
to initial pacing will limit the efficiency of the new flow.

To tackle this problem, we first need to identify the cause
of the underestimation. Our investigations reveal that this is
caused by CWnd-limited transmission, as illustrated in Fig. 7.
Let ti be the start time of estimation cycle i. Whenever an
ACK is received, the sender will check if the elapsed time
since ti is equal to or longer than the current smoothed RTT,
denoted by d ,

t i+1 − ti ≥ d, ∀i, (4)

and if so, will mark the end of cycle i (and beginning of cycle
i + 1) to trigger bandwidth estimation. Bandwidth is then
estimated from the average throughput in cycle i, i.e.,

ci =
si

ti+1 − ti
, (5)

where si is the total number of bytes acknowledged by ACKs
in the cycle, and ci is the bandwidth estimate for cycle i.

An implicit assumption is that si accurately reflects the
maximum amount of data that can pass through the bottle-
neck link during the estimation cycle. However, the sender
may suspend transmission if it has exhausted the CWnd (or
AWnd), as illustrated in Fig. 7, resulting in an extended gap
between ACK arrival times. If this gap is not accounted for,
then the estimated bandwidth will be lower than the actual
one. Given that TCP begins with a small CWnd (10 MSS
in Linux), it explains the underestimation observed in West-
wood and BBR in Fig. 6.

To compensate for the transmission gap due to CWnd
exhaustion, we propose a new gap-compensated bandwidth
estimation (GCBE) method to exclude the gap induced by

transmission suspension from the estimation. Specifically,
let ni be the number of ACK packets in estimation cycle i;
hi,j and ai,j be the reception time and the number of bytes
acknowledged by ACK j (j = 0, 1, . . . , ni − 1) in cycle i
respectively.

We observe that transmission suspension will result in
abnormally long inter-arrival time between twoACKs. There-
fore we can exclude it from bandwidth estimation by first
identifying the ACK with the longest inter-arrival time in
cycle i, denoted by zi, from

zi = argmax
j

{
hi,j − hi,j−1

∣∣ j = 0, 1, . . . ni − 1
}
, (6)

and then excluding both the bytes it acknowledges and the
time it spans from the bandwidth estimation:

ci =

ni−1∑
k=1

ai,k − ai,zi(
hi,ni−1 − hi,0

)
−
(
hi,zi − hi,zi−1

) , (7)

Note that the first ACK, i.e., ai,0, is also excluded from
(7) as its transmission time is not known. Similarly, when
excluding the gap caused by ACK zi, both the amount of
data it acknowledged, i.e., ai,zi , and its inter-arrival time,
i.e.,

(
hi,zi − hi,zi−1

)
, are excluded.

However, it is also possible that there is no transmission
gap in the measurement cycle, e.g., CWnd is larger than BDP.
In that case, the estimation in (6) and (7) will still work as it
merely removes one sample from the measurement cycle.

GCBE keeps the most recent L (L = 5 in our experiments)
bandwidth estimates and then stores the maximum one for
use in the next flow when the current flow terminates, i.e.,

c∗ = max {ci|i = m− L, . . . ,m− 1} , (8)

where m is the total number of measurement cycles. This is
to prevent isolated loss events from skewing the bandwidth
estimate.

We implemented GCBE inside the Cubic pluggable con-
gestion control module in Linux. Fig. 6 compares its accuracy
against the ones in Westwood and BBR. It is clear that GCBE
does not suffer from underestimation due to CWnd-induced
transmission suspension and can obtain a good estimate of
the bottleneck link bandwidth for flow size as small as 4
KB. This is significant as in many applications (e.g., web),
the initial TCP flow is often a short one (e.g., base HTML
file). By employing GCBE in its estimation phase, Stateful-
TCP can ramp-up the transmission rate of the second flow
even if the first flow is very short.

D. LINUX IMPLEMENTATION
We applied Stateful-TCP to Cubic in Linux kernels from ver-
sion 4.9 to 5.3, by modifying Cubic’s pluggable congestion
control module to form Stateful-Cubic (henceforth called S-
Cubic). We chose this approach instead of modifying the
kernel as Linux’s pluggable congestion control module can
be easily installed/switched at runtime without recompiling
the kernel or even rebooting the OS.

VOLUME 8, 2020 195961



L. Guo, J. Y. B. Lee: Stateful-TCP—New Approach to Accelerate TCP Slow-Start

The hash table for storing bandwidth estimates is dynami-
cally allocated and initialized inside the congestion control
module at the time the S-Cubic module is registered with
the kernel. The hash table’s memory requirement is rela-
tively modest, considering that only three states {IP address,
estimated bandwidth, and minimum RTT} are stored for
each entry. In our experiments, we typically allocate one
million entries for the hash table. Early results from deploying
S-Cubic into a production server serving requests for an app-
store in our collaborator’s datacenter show that hash collision
is reasonably low.

It is worth noting that another way to store the data would
be to extend the TCP Control Block [17] with new data fields.
However, this requires modification to the kernel codes and
thus is less desirable from the deployment’s point of view.

The S-Cubic module can co-exist with all other Linux
TCP implementations, including the original Cubic. Switch-
ing between the different TCP implementations can be done
simply by issuing a few Linux commands in a console. This
greatly facilitates experimentation as one can easily alternate
between, e.g., Cubic and S-Cubic, in a back-to-back manner
using the same server to compare their performance within a
short time to ensure that the network conditions are as close
as practicable.

V. PERFORMANCE EVALUATION
In this section, we evaluate the performance impact of apply-
ing Stateful-TCP to Cubic via extensive emulated and real
Internet experiments. The TCP configurations are summa-
rized in Table 1 under the Cubic and S-Cubic columns.

A. FLOW COMPLETION TIME
We first evaluate and compare in Fig. 8 S-Cubic’s FCT effi-
ciency to Cubic, Jump-Start, and Cache+ using the same
topology in Fig. 1 for three RTT settings (10 ms, 50 ms,
100 ms [27]), and two link buffer size (half BDP and one
BDP) settings. Each data point is an average of 10 experiment
runs. There are three observations.

First, S-Cubic performed consistently across different flow
sizes, RTTs, and link buffer sizes, achieving close to optimal
FCT efficiency. For example, S-Cubic’s average FCT effi-
ciencies are 96.3%, 98.8%, and 99.3% for RTTs of 10 ms,
50 ms, and 100 ms, respectively (with a link buffer size of
one BDP). This is a remarkable result given that S-Cubic
primarily modifies Cubic’s behavior in the first RTT only and
then reverts to the Cubic algorithm after that.

Second, we observe that S-Cubic’s FCT efficiency is
slightly lower in RTT of 10 ms compared to 50 ms and
100 ms. A careful analysis of the packet traces suggested that
this is due to processing delay at the end systems (i.e., Linux
hosts), which are not accounted for in computing the mini-
mum FCT in (1). These become more significant (compared
to the flow duration) when the RTT is short.

Third, comparing the results for the two link buffer sizes,
we observe that Cache+ is relatively sensitive to the param-
eter. This is because Cache+ reuses the CWnd from the

FIGURE 8. Comparison of FCT efficiencies versus flow size.

TABLE 3. Comparison of Per-flow Mean Queuing Delay (in ms).

previous connection, and when the CWnd is sufficiently
large, the large initial transmission burst could cause buffer
overflow at the bottleneck link. S-Cubic avoids this problem
by pacing transmission in the first RTT at the previously
estimated bandwidth as if it is ACK-clocked.

B. QUEUING DELAY
In the same experiments in Section V-A, we also recorded the
per-flow queueing delays. From that, we calculated the mean

195962 VOLUME 8, 2020



L. Guo, J. Y. B. Lee: Stateful-TCP—New Approach to Accelerate TCP Slow-Start

FIGURE 9. Comparison of the per-packet queueing delay evolution
between a Cubic flow and an S-Cubic flow.

packet queueing delays and summarized them in Table 3 for
the three RTT and two link buffer size settings. Surpris-
ingly, although S-Cubic generally transmits at higher average
datarate, its queueing delays turn out to be even shorter than
Cubic in most cases. This counter-intuitive result is due to
S-Cubic’s transmission pacing.

Specifically, we plot in Fig. 9 the sequence of per-packet
queueing delays for both S-Cubic and Cubic for an 8.2 MB
flow in a link with 100 Mbps bandwidth, 100 ms RTT, and
1250 KB buffer size. This figure shows a desirable behavior
of S-Cubic, i.e., in the first RTT of ∼800 packets, S-Cubic
maintained consistent and very short packet queueing delays
due to its pacing mechanism. Consequently, for flows that
are shorter than one BDP, the queueing delay experienced in
S-Cubic will be significantly shorter than Cubic (e.g., 0.4 ms
vs. 6.9 ms for S-Cubic and Cubic, respectively). Beyond
the first RTT, S-Cubic reverts to Cubic so exhibited similar
packet delay behavior.

Overall, S-Cubic, despite its far higher FCT efficiency,
achieved similar packet delay as Cubic and significantly
shorter packet delay for flows shorter than one BDP. It is
worth noting that the overall delay performance is still dom-
inated by Cubic’s congestion control algorithm, especially
for longer flows. The Stateful-TCP mechanism itself does
not induce higher packet delays nor reduce it beyond the
first RTT. Therefore a fruitful future research direction would
be to integrate Stateful-TCP into other TCP variants that
are optimized for delay-sensitive traffics [8] or for reducing
buffer-bloat [5], [8], [10].

C. SHARED BOTTLENECK LINK
The previous experiments were based on a single TCP flow.
That offers a controlled and predictable environment to com-
pare and analyze the behavior of S-Cubic. In practice, a net-
work bottleneck is likely to be shared by multiple TCP flows,
and this presents a challenge - the presence of competing
flows means that the actual bandwidth available will vary
with time [32], [33].

Consequently, the path bandwidth estimated from a previ-
ous flow may no longer be the same by the time a new flow is

FIGURE 10. S-Cubic’s FCT improvements over Cubic under three different
link utilizations and four average flow sizes. Baseline refers to the case of
no competing flows.

FIGURE 11. Probability density functions for the number of overlapping
flows competing in the bottleneck link.

initiated. To investigate the potential performance impact of
competing flows, we conducted a second set of experiments
with the topology in Fig. 1. Bottleneck link bandwidth, RTT,
and buffer size were configured to 100 Mbps, 50 ms, and one
BDP, respectively. This time, the client generates new TCP
flows to the server according to a Poisson process. The flow
sizes were drawn from a Pareto distribution (with α = 2.5),
which exhibited long-tail characteristics resembling Internet
flow distribution [34]–[39].

We conducted experiments with mean flow sizes of 64 KB,
128 KB, 512 KB, and 1024 KB. Each experiment comprises
1,000 flows. To emulate different levels of bottleneck link
utilization, we adjusted the Poisson process’s mean arrival
rate in accordance with the mean flow size to achieve three
expected link utilization of 12%, 27%, and 63%, respectively
[40], [41]. The same experiments were repeated for Cubic and
S-Cubic.

Note that the performance metric FCT efficiency is not
applicable in this case as multiple flows dynamically share
the bottleneck link bandwidth, so the link capacity C in (1) is
undefined. Therefore, we employ another performancemetric
- FCT improvement, defined as the percentage reduction in

VOLUME 8, 2020 195963



L. Guo, J. Y. B. Lee: Stateful-TCP—New Approach to Accelerate TCP Slow-Start

FCT compared to Cubic, in the following experiments. The
results are summarized in Fig. 10 for the three link utiliza-
tions, plus a baseline case where only one flow is allowed at
a time (i.e., same as in Section V-A).

Remarkably, S-Cubic’s FCT improvements under shared-
bottleneck at 12% and 27% link utilizations are comparable
to the baseline case even though multiple TCP flows may
overlap in time, which can reduce the cached estimated band-
width’s accuracy. To verify the extent of overlapping flows,
we recorded the number of overlapping flows traversing the
bottleneck and plotted their probability density functions
(PDFs) in Fig. 11.

Clearly, there are overlapping flows for both Cubic and
S-Cubic, even at 12% link utilization. More importantly,
the number of overlapping flows is much larger in Cubic than
in S-Cubic. This is because S-Cubic flows generally complete
much faster, thereby reducing the likelihood of flow overlaps.

S-Cubic’s FCT improvements exhibited a concave shape
across mean flow sizes from 64 KB to 1024 KB. This is
due to Cubic’s convex-shaped FCT efficiency with respect to
flow size, as shown in Fig. 8 earlier. Finally, S-Cubic’s FCT
improvements did decrease at 63% link utilization. This is
due to Cubic’s improved efficiency at high link utilization.
However, link utilization over 50% is uncommon in practice,
e.g., about 70% of the links were never utilized over 50%
during a day [40]. Even in this case, S-Cubic still achieved
over 30% reduction in FCT compared to Cubic.

D. FAIRNESS AND FRIENDLINESS
We investigate S-Cubic’s fairness to itself and friendliness
towards Cubic in this section. We first investigate S-Cubic’s
aggregate behavior and then analyze its temporal dynamics.
The experiment topology is similar to Section V-C, except
that we added another pair of server-client so that two server-
client pairs shared the same bottleneck link of 100 Mbps
bandwidth, 50 ms RTT, and buffer size of one BDP.

We ran three sets of experiments with the number of clients
receiving S-Cubic flows ranging from 0 (i.e., all Cubic) to 2
(i.e., all S-Cubic). Wemeasured the mean FCT for each of the
two clients for four mean flow sizes and plotted the results
in Fig. 12(a) to 12(c) for three link utilizations. These results
compare the aggregate behavior of Cubic and S-Cubic flows.
Note that each bar has a top and a bottom part, representing
the mean FCT of the two clients respectively.

We first consider fairness by comparing the two clients’
mean FCT for the two cases of all-Cubic and all S-Cubic
flows (i.e., first and third groups of bars in Fig. 12). It is
evident that both Cubic and S-Cubic achieved a high degree
of fairness towards their own competing flows. For exam-
ple, even at the highest link utilization of 63% (Fig. 12(c)),
Cubic’s mean FCTs for 1 MB mean flow sizes were 0.73 s
and 0.75 s across the two clients, while the same for both S-
Cubic were 0.52 s and 0.55 s. The fairness performance at the
two lower link utilization settings is also similar.

Next, we consider S-Cubic’s friendliness to Cubic by com-
paring the FCT of the client receiving Cubic flows with the

FIGURE 12. Evaluation of aggregate fairness and friendliness in three link
utilization settings for Cubic and S-Cubic.

client receiving S-Cubic flows (i.e., the middle group of bars
in Fig. 12). As expected, Cubic’s mean FCTs increase when
competing with S-Cubic flows, as S-Cubic flows can ramp up
their transmission rates much more quickly than Cubic flows.
Overall, Cubic flows’ FCTs averaged over all four mean flow
sizes are increased by 12.6%, 21.6%, and 23.1% for 12%,
27%, and 63% link utilizations, respectively.

In addition to aggregate fairness/friendliness, we also
investigate the temporal dynamics within an S-Cubic flow

195964 VOLUME 8, 2020



L. Guo, J. Y. B. Lee: Stateful-TCP—New Approach to Accelerate TCP Slow-Start

FIGURE 13. Temporal dynamics of two competing flows (left: started
simultaneously; right: with 5 s interval). Link bandwidth, RTT, and link
buffer size were configured to 100 Mbps, 50 ms, and one BDP (625 KB).

by analyzing its throughput over time. We initiated two
TCP flows through the same bottleneck link of bandwidth
100Mbps, RTT 50 ms, and buffer size of one BDP. For the S-
Cubic flow, it used the estimated bandwidth from a previous
8 KB flow to begin its startup phase.

Fig. 13(a) plots the throughput time series for two experi-
ments – the left one with two Cubic flows starting simultane-
ously and the right one with a Cubic flow starting 5 s after the
first one. When started at the same time, the two Cubic flows
share bandwidth fairly right from the beginning. However,
if the second flow is started 5 s after the first flow, then it takes
nearly one minute for the second flow to ramp up to share
bandwidth equally with the first flow. This is because by the
time the second flow joins, the on-going flow already fully
utilizes the link bandwidth. The congestions caused by the
competition caused the late-coming flow to exit Slow-Start
prematurely, thus severely slowing its CWnd ramp-up.

We repeated the same experiments for S-Cubic and plot-
ted the results in Fig.13 (b). The two S-Cubic flows share
bandwidth fairly right from the beginning when they started
at the same time. Unlike Cubic, even in the case where
the second flow is started 5 s after the first flow, the two
flows still converge to the fair-share throughput quickly. This
is a desirable property as the late-comer is not deprived of
bandwidth by the existing long flow.

For friendliness, we investigate the dynamics of a Cubic
flow competing with an S-Cubic flow in Fig. 13(c). For the

FIGURE 14. Number of retransmissions per RTT for two competing flows.

TABLE 4. Measured Mean RTT between the Servers (Google) and Clients
(Tencent).

first case where two flows started at the same time (left fig-
ure), the throughput curves are remarkably similar to the case
where the second flow starts 5 s after the first one, no matter
if the first flow is Cubic (Fig. 13(a), right figure) or S-Cubic
(Fig. 13(c), right figure).

This suggests that from the perspective of the second Cubic
flow, the competing S-Cubic flow behaves just like an on-
going TCP flow that has reached steady-state – a testament
to the design principle presented in Section IV-A.

S-Cubic’s fast convergence does have a tradeoff.
We recorded the number of retransmissions per RTT in
the previous experiments and plotted their time-series
in Fig. 14 for the two cases of Cubic-vs-Cubic (c.f. Fig. 13(a),
right figure), and S-Cubic-vs-S-Cubic (c.f. Fig. 13(b), right
figure).

Not surprisingly, when the second flow joins 5 s after
the first flow, congestion losses are induced, triggering both
flows to enter congestion avoidance in order to adapt their
CWnd to share bandwidth fairly. In comparison, S-Cubic
induces more congestion losses than Cubic. For example,
the second S-Cubic flow triggered 138 retransmissions ver-
sus Cubic’s 4 retransmissions in the first RTT. The higher
loss rate, however, only occurs in the first RTT though (i.e.,
during the Startup phase). After that, the retransmission rate
is similar for both S-Cubic and Cubic, as both run the same
Cubic congestion control algorithm.

E. INTERNET CLOUD EXPERIMENT
In this section, we turn our attention to experiments con-
ducted in the open Internet. Specifically, we deployed
S-Cubic to cloud instances around the world, with three

VOLUME 8, 2020 195965



L. Guo, J. Y. B. Lee: Stateful-TCP—New Approach to Accelerate TCP Slow-Start

FIGURE 15. Average FCT improvement of S-Cubic over Cubic for the
24 client-server pairs.

Google cloud [42] instances serving as servers and eight Ten-
cent cloud [43] instances serving as clients. Table 4 summa-
rizes the locations and the mean RTT measured between the
24 client-server location pairs, with client-server RTTs rang-
ing from 8 ms (Frankfurt-to-Belgium) to 292 ms (Singapore-
to-Belgium). The goal is to evaluate the performance of
S-Cubic in real-world Internet environments.

For each client-server pair, we ran 1,000 flows for each
flow size, alternating between Cubic and S-Cubic in an inter-
leaved manner so that the network condition experienced by
Cubic and S-Cubic is as close as practicable. As the link
capacity is unknown in these experiments, FCT efficiency
cannot be computed, so we employ S-Cubic’s FCT improve-
ment over Cubic as the performance metric. The results are
summarized in Fig. 15 for the 24 client-server pairs across
four average flow sizes. The x-axis is sorted in increasing
order of client-to-server RTT (c.f. Table 4).

Generally speaking, the experimental results agreed with
the previous results obtained from our test-bed setup (e.g.,
Fig. 10). In particular, S-Cubic achieves significant FCT
improvements over Cubic in all test cases across all 24 client-
server pairs, with an overall mean FCT improvement of
53.7%.

F. MOBILE NETWORK EXPERIMENTS
In this section, we investigate S-Cubic’s performance in
mobile networks via trace-driven emulated experiments.
Mobile networks are known to exhibit rapid and significant
bandwidth fluctuations over short timescales [18], [19], [44],
so they may present a challenge to S-Cubic as it uses the
estimated bandwidth from the previous flow as the initial
sending rate.

To emulate a mobile network link, we capture actual band-
width trace data from 3G, 4G, and 5G production mobile net-
works (by flooding it with UDP datagrams and then recording
the reception rate at a stationary receiver), and then replicate
them using a modified DummyNet [45] that can replay band-

FIGURE 16. FCT improvements of S-Cubic over Cubic in 3G, 4G, and 5G
mobile networks.

width trace data. Link buffer size was set to 1,280 KB and
5MB in 3G and 4G networks, respectively [19], and RTTwas
set to 50 ms for both 3G/4G. For 5G, the RTT and link buffer
size were set to 20 ms and 10 MB according to our measure-
ment of the actual 5G network. Two random loss rates were
tested: 0% and 0.1% [46]. Fig. 16 summarizes S-Cubic’s FCT
improvements over Cubic in mobile networks. There are two
observations.

First, S-Cubic’s performance gains increase when going
from 3G to 4G, and increase further in 5G. This is due to
differences in BDP – 3G’s BDP is 22 MSS while they are
84 MSS and 305 MSS for 4G and 5G, respectively. This
strongly suggests that in 5G and future high-speed mobile
networks, TCP can become an increasingly significant bot-
tleneck to fully realize the bandwidth offered by these high-
speed networks. As further evidence, in a separate on-going
measurement of a production mobile service by a tier-one
service provider in China, the average TCP throughput for
1 MB data transfer is approximately 16 Mbps for customers
connecting via 5G networks, which is unexpectedly low.
However, our UDP-based measurement of a production 5G
network in China shows an average bandwidth of 180 Mbps,
indicating that the physical bandwidth is indeed very high,
just that current TCP cannot fully utilize it.

Second, comparing the cases with and without random
packet loss in Fig. 16, we see that S-Cubic’s performance
gains are higher when 0.1% random loss is introduced. This
is somewhat counter-intuitive as except during the Startup
phase, S-Cubic behaves in exactly the same way as regular
Cubic. It turns out that the reason is precisely due to the
difference in the Startup phase. In particular, random loss is
known to disrupt Cubic’s Slow-Start phase [3]–[5], thereby
lengthening the time Cubic takes to ramp up its CWnd.
By contrast, S-Cubic bypasses Slow-Start entirely, so it is far
less impacted by random packet loss.

Next, we compare the delay performance of Cubic and
S-Cubic in Table 5. The most significant differences are
observed across different network types, with 3G exhibiting

195966 VOLUME 8, 2020



L. Guo, J. Y. B. Lee: Stateful-TCP—New Approach to Accelerate TCP Slow-Start

TABLE 5. Comparison of Average Queuing Delay (in ms) between Cubic
and S-Cubic in Mobile Networks.

significantly longer delay than 4G, and in turn, 5G. This is a
direct result of their bandwidth differences:∼5 Mbps for 3G,
∼20Mbps for 4G, and∼180Mbps for 5G. On the other hand,
random packet loss reduces the delay significantly in all three
networks. This is because the congestion control algorithm in
Cubic is sensitive to random loss [5], and thus its throughput
is lowered by random loss, resulting in less queueing.

Finally, unlike in the case of the fixed-bandwidth network
(c.f. Table 3), S-Cubic’s queueing delay is higher than Cubic
in almost all cases. This is due to mobile networks’ band-
width variations where queueing will occur whenever the
bandwidth drops below the current transmission rate, even if
the latter is lower than the actual mean bandwidth available.
How to reduce queueing delay without sacrificing bandwidth
efficiency in mobile networks is thus a challenging problem
that warrants further investigation.

G. IMPACT OF AGED BANDWIDTH INFORMATION
A key piece of information to S-Cubic is the previous flow’s
estimated bandwidth to the same destination. Intuitively,
the longer it takes for a new flow to start after the previous
flow has terminated, the less correlated the estimated band-
width will be when applied to the new flow. In the case of
overestimation, the new flow will begin with a sending rate
higher than the available bandwidth, potentially leading to
congestion. On the other hand, underestimation will reduce
the new flow’s bandwidth utilization, resulting in longer FCT.

To investigate S-Cubic’s sensitivity to bandwidth estima-
tion errors, we conducted an experiment in a network with
100 Mbps bandwidth and 50 ms RTT, where a controlled
percentage of bandwidth estimation error is artificially intro-
duced to measure its impact on FCT and congestion. The
experiment consists of 1,000 flows with an average flow size
of 1024 KB following the Pareto distribution. In addition to
Cubic and S-Cubic, we tested S-Cubic with1%of bandwidth
estimation errors, ranging from −80% to +100%.
Fig. 17 plots the impact of bandwidth estimation error on

FCT, queueing delay, and retransmission rate. For bandwidth
underestimation, queuing delay is reduced while the FCT
increases as expected. In the cases of bandwidth overesti-
mation up to +60%, they increase the queuing delay due to
the onset of congestion. Beyond that, retransmission kicks-in,
rising to 2.3% at +100% overestimation.
Remarkably, FCT is relatively unaffected, e.g., 0.21 ms

versus 0.19 ms at 100% versus 0% overestimation errors,
respectively. The results show that although bandwidth esti-

FIGURE 17. Impact of bandwidth estimation error on S-Cubic. Link
bandwidth, RTT, and link buffer size were configured to 100 Mbps, 50 ms,
and one BDP (625 KB).

FIGURE 18. Comparison of FCTs for Cubic, S-Cubic, and S-Cubic∗ for nine
client-server pairs. The experiment lasted for three days.

mation error does impact performance, its sensitivity and
impact are relatively benign.

Taking the experiment one step further, we constructed a
special experiment in the open Internet to assess the impact of
real-world bandwidth estimation errors. Specifically, we cre-
ated a special version of S-Cubic called S-Cubic∗, where the
estimated bandwidth is conducted only once at the beginning
of the experiment (i.e., the first flow) and will not be updated
by subsequent flows.

We conducted a new experiment using the same three
Google servers and three Tencent clients - Moscow, Mum-
bai, and Singapore, covering paths with short to long RTTs.
In each case, the client carried out a download job from
the server once every twenty minutes. Each download job
consists of three separate downloads of a fixed-size file:
(i) download using Cubic; (ii) download using S-Cubic;
and (iii) download using S-Cubic∗ using the fixed initial
bandwidth estimate. The S-Cubic flow serves as a control,

VOLUME 8, 2020 195967



L. Guo, J. Y. B. Lee: Stateful-TCP—New Approach to Accelerate TCP Slow-Start

producing the FCT where the bandwidth estimate is updated
in each flow. The entire experiment lasted for three days.

The results are summarized in Fig. 18 for the nine client-
server pairs. We observe that S-Cubic and S-Cubic∗ have
similar FCTs across four flow sizes and client-server pairs.
Except for C4-S3, the difference between S-Cubic and
S-Cubic∗ is negligible even though all S-Cubic∗ flows in the
three days were using the same single bandwidth estimate
obtained at the beginning of the experiment. These results
show that S-Cubic’s sensitivity to the age of bandwidth
estimate is relatively low even over a time horizon of three
days in the network scenario tested.

H. INDEPENDENT BENCHMARKS
In this section, we report results provided by an independent
performance benchmarking company Bonree [47] in China.
This company specializes in conducting independent network
performance benchmarks of which the results are primar-
ily used by their customers to compare and select service
providers for hosting Internet services.

The benchmark setup (Table 6) comprises over 1,000 end-
user clients spread across nine provinces in China. Clients are
connected either via wired network or WiFi. Detail locations
or network access information are not disclosed, presumably
to prevent targeted optimization. The scale and geographical
coverage of this benchmark offer a realistic look into the per-
formance of Cubic and S-Cubic in real-world environments.

Fig. 19(a) summarizes the 8-hour mean FCT over the
course of one week. We observe that S-Cubic consistently
achieved substantially shorter mean FCT than Cubic. Overall,
the average FCT for Cubic and S-Cubic was 0.40 s and 0.25 s,
respectively, representing an FCT improvement of 37.5% by
S-Cubic. Among the∼10,000 downloads, Cubic has very few
cases with average throughput higher than 100 Mbps while
in S-Cubic, around 10% downloads achieved throughput over
100Mbps. Similarly, the overall average throughput achieved
by Cubic and S-Cubic was 34.0 Mbps and 53.8 Mbps, repre-
senting a 58.2% gain in throughput by S-Cubic. Moreover,
both Cubic and S-Cubic have similar download success rate
of over 99.9%, demonstrating S-Cubic’s compatibility with
current network and client TCP implementation (Windows
10 in this case).

To offer a perspective on the performance of S-Cubic
compared to more recent TCP designs, we conducted another
set of experiments comparing the performance of BBR and
S-Cubic in Bonree. Note that Bonree’s platform supports
comparison of a maximum of two TCP implementations at
a time so Cubic was not included in this comparison. Also,
the platform’s Linux kernel version does not yet support
BBRv2 so we tested BBRv1 instead. The results in Fig. 19(b)
show that the performance gap between BBR and S-Cubic is
much narrower, suggesting that BBR performed better than
Cubic in this network environment. We conjecture that this
is due to BBR’s more robust performance in lossy networks
(i.e., WiFi)

TABLE 6. Experiment Settings Adopted in the Independent Benchmarking
platform Bonree [47].

FIGURE 19. Comparison of average FCT for Cubic, BBR and S-Cubic
obtained from Bonree. Each data point is an average of 8-hour samples.

Overall, S-Cubic still managed to achieve 12% reduction in
FCT compared to BBR. More importantly, as Stateful-TCP is
designed to complement TCP’s congestion control algorithm,
this strongly suggests that applying Stateful-TCP to BBRwill
likely realize further performance gains.

VI. SUMMARY AND FUTURE WORK
This work introduces a new way to overcome the limita-
tion of TCP Slow-Start, which is increasingly becoming the

195968 VOLUME 8, 2020



L. Guo, J. Y. B. Lee: Stateful-TCP—New Approach to Accelerate TCP Slow-Start

bottleneck in modern high-speed networks. The emulation
results, as well as experimental results obtained from real-
world networks, show that the potential performance gains
from applying Stateful-TCP to Cubic are not only substantial
but could be essential to reap the benefits of emerging high-
speed networks such as 5G and beyond.

This study is only the first step. There remain many open
problems that warrant further investigation. For example,
the application of Stateful-TCP to other TCP variants, espe-
cially those designed for different objectives, e.g., lower
latency [8], [10], very large BDP [6], would be a fruitful area
for future research. On the other hand, Stateful-TCP currently
only accelerates the startup phase. Some of the techniques in
Stateful-TCP, such as GCBE, could potentially be applied to
congestion control as well so that performance beyond the
startup phase could be improved further.

Finally, in spite of the positive results obtained in this
study, broader experimentation and validation of Stateful-
TCP in general, and S-Cubic in particular, is needed to better
understand its performance in a broader range of environ-
ments and its potential impact to other traffics sharing the
same bottleneck. The authors are collaborating with Tencent
in this regard to scale-up the Internet experiments and also
to expand it into real-world Internet services to measure
the performance gains at the application level. In addition,
we are releasing the S-Cubic implementation in Linux as
open-source software1 to enable the research community to
scrutinize the implementation, to validate its performance
independently, and to use it as a template for applying
Stateful-TCP to other TCP designs.

ACKNOWLEDGMENT
The authors wish to thank the Associate Editor and the anony-
mous reviewers for their suggestions in improving this article
to its final form, and Tencent for their generous support of this
work by donating Tencent cloud instances for the experiments
and providing access to the Bonree benchmarking platform.

REFERENCES
[1] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal, A. Jain,

and N. Sutin, ‘‘An argument for increasing TCP’s initial congestion win-
dow,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 40, no. 3, pp. 26–33,
2010.

[2] I. Rhee and L. Xu, ‘‘CUBIC: A new TCP-friendly high-speed TCP vari-
ant,’’ ACM SIGOPS Operating Syst. Rev., vol. 42, no. 5, pp. 64–74, 2008.

[3] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, ‘‘TCP
westwood: Bandwidth estimation for enhanced transport over wireless
links,’’ in Proc. 7th Annu. Int. Conf. Mobile Comput. Netw. (MobiCom),
Rome, Italy, 2001, pp. 287–297.

[4] C. P. Fu and S. C. Liew, ‘‘TCP veno: TCP enhancement for transmission
overwireless access networks,’’ IEEE J. Sel. Areas Commun., vol. 21, no. 2,
pp. 216–228, Feb. 2003.

[5] N. Cardwell, Y. Cheng, C. S. Gunn, V. Jacobson, and S. Yeganeh, ‘‘BBR:
Congestion-based congestion control,’’ Queue, vol. 14, no. 5, pp. 20–53,
Sep. 2016.

[6] C. Caini and R. Firrincieli, ‘‘TCP hybla: A TCP enhancement for het-
erogeneous networks,’’ Int. J. Satell. Commun. Netw., vol. 22, no. 5,
pp. 547–566, Sep. 2004.

1S-Cubic is available at https://github.com/mclab-cuhk/Stateful-TCP

[7] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, ‘‘Data center TCP (DCTCP),’’ in
Proc. ACM SIGCOMM Conf. SIGCOMM, New Delhi, India, Aug. 2010,
pp. 63–74.

[8] K. Winstein, A. Sivaraman, and H. Balakrishnan, ‘‘Stochastic forecasts
achieve high throughput and low delay over cellular networks,’’ in Proc.
NSDI, Lombard, IL, USA, Apr. 2013, pp. 459–471.

[9] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, ‘‘PCC: Re-
architecting congestion control for consistent high performance,’’ in Proc.
NSDI, Oakland, CA, USA, May 2015, pp. 395–408.

[10] V. Arun and H. Balakrishnan, ‘‘Copa: Practical delay-based conges-
tion control for the Internet,’’ in Proc. NSDI, Renton, WA, USA, 2018,
pp. 329–342.

[11] S. Hauger, M. Scharf, J. Kogel, and C. Suriyajan, ‘‘Quick-start and XCP on
a network processor: Implementation issues and performance evaluation,’’
in Proc. Int. Conf. High Perform. Switching Routing, Shanghai, China,
May 2008, pp. 703–714.

[12] D. Liu, M. Allman, S. Jiny, and L. Wang, ‘‘Congestion control with-
out a startup phase,’’ in Proc. Int. Workshop PFLDnet, Feb. 2007,
pp. 61–66.

[13] Q. Li, M. Dong, and P. B. Godfrey, ‘‘Halfback: Running short flows
quickly and safely,’’ in Proc. 11th ACM Conf. Emerg. Netw. Exp. Technol.
(CoNEXT), Berlin, Germany, 2015, pp. 1–13.

[14] X. Nie, Y. Zhao, G. Chen, K. Sui, Y. Chen, D. Pei, M. Zhang, and J. Zhang,
‘‘TCPWISE: One initial congestion window is not enough,’’ in Proc. IEEE
36th Int. Perform. Comput. Commun. Conf. (IPCCC), San Diego, CA,
USA, Dec. 2017, pp. 1–8.

[15] K. Winstein and H. Balakrishnan, ‘‘TCP ex machina: Computer-generated
congestion control,’’ in Proc. SIGCOMM, HongKong, Aug. 2013,
pp. 123–134.

[16] S. Ha and I. Rhee, ‘‘Taming the elephants: New TCP slow start,’’ Comput.
Netw., vol. 55, no. 9, pp. 2092–2110, Jun. 2011.

[17] J. Touch TCP Control Block Interdependence, document RFC 2140,
Apr. 1997.

[18] K. Liu and J. Y. B. Lee, ‘‘Mobile accelerator: A new approach to
improve TCP performance in mobile data networks,’’ in Proc. 7th Int.
Wireless Commun. Mobile Comput. Conf., Istanbul, Turkey, Jul. 2011,
pp. 2174–2180.

[19] K. Liu and J. Y. B. Lee, ‘‘On improving TCP performance over mobile data
networks,’’ IEEE Trans. Mobile Comput., vol. 15, no. 10, pp. 2522–2536,
Oct. 2016.

[20] J. Zhou, Z. Li, Q.Wu, P. Steenkiste, S. Uhlig, J. Li, and G. Xie, ‘‘TCP stalls
at the server side: Measurement and mitigation,’’ IEEE/ACM Trans. Netw.,
vol. 27, no. 1, pp. 272–287, Feb. 2019.

[21] M. Allman, V. Paxson, and E. Blanton, TCP Congestion Control,
document RFC 5681, Sep. 2009.

[22] S. Floyd, T. Henderson, and A. Gurtov, The NewReno Modification to
TCP’s Fast Recovery Algorithm, document RFC 3782. Apr. 2004.

[23] S. Floyd, Limited Slow-Start for TCP With Large Congestion Windows,
document RFC 3742, Mar. 2004.

[24] D. Cavendish, K. Kumazoe, M. Tsuru, Y. Oie, and M. Gerla, ‘‘CapStart:
An adaptive TCP slow start for high speed networks,’’ in Proc. 1st Int.
Conf. Evolving Internet, Aug. 2009, pp. 15–20.

[25] Huang. Hystart++: Modified Slow Start for TCP. Accessed:
Sep. 1, 2020. [Online]. Available: https://tools.ietf.org/id/draft-ietf-
tcpm-hystartplusplus-00.html

[26] DummyNet. Accessed: Sep. 1, 2020. [Online]. Available: https://cs.baylor.
edu/~donahoo/tools/dummy

[27] A. Langley, A. Riddoch, A.Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang,
F. Kouranov, I. Swett, J. Iyengar, and J. Bailey, ‘‘The QUIC transport
protocol: Design and Internet-scale deployment,’’ in Proc. Conf. ACM
Special Interest GroupData Commun., LosAngeles, CA,USA,Aug. 2017,
pp. 183–196.

[28] F. Qian, A. Gerber, Z. M. Mao, S. Sen, O. Spatscheck, and W. Willinger,
‘‘TCP revisited: A fresh look at TCP in the wild,’’ in Proc. 9th ACM
SIGCOMM Conf. Internet Meas. Conf. (IMC), Chicago, IL, USA, 2009,
pp. 76–89.

[29] Y. Cheug, J. Chu, S. Radhakrishnan, and A. Jain, TCP Fast Open,
document RFC 7413, Dec. 2014.

[30] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, TCP Selective
Acknowledgment Options, document RFC 2018, Oct. 1996.

[31] H. Balakrishnan, V. N. Padmanabhan, G. Fairhurst, and M. Sooriya-
bandara, TCP Performance Implications of Network Path Asymmetry,
dcoument RFC 3449, Dec. 2002.

VOLUME 8, 2020 195969



L. Guo, J. Y. B. Lee: Stateful-TCP—New Approach to Accelerate TCP Slow-Start

[32] T. Zhang, J. Wang, J. Huang, J. Chen, Y. Pan, and G. Min, ‘‘Tuning
the aggressive TCP behavior for highly concurrent HTTP connections in
intra-datacenter,’’ IEEE/ACM Trans. Netw., vol. 25, no. 6, pp. 3808–3822,
Dec. 2017.

[33] L. Qiu, Y. Zhang, and S. Keshav, ‘‘On individual and aggregate TCP
performance,’’ in Proc. 7th Int. Conf. Netw. Protocols, Oct. 1999,
pp. 203–212.

[34] J. Rojas-Mora, T. Jimenez, and E. Altman, ‘‘Simulating flow level band-
width sharing with Pareto distributed file sizes,’’ in Proc. 5th Int. ICST
Conf. Perform. Eval. Methodologies Tools, Brussels, Belgium, 2011,
pp. 265–273.

[35] E. Chlebus and R. Ohri, ‘‘Estimating parameters of the Pareto distribu-
tion by means of Zipf’s law: Application to Internet research,’’ in Proc.
GLOBECOM. IEEE Global Telecommun. Conf., Nov. 2005, p. 5.

[36] P. Olivier, ‘‘Internet data flow characterization and bandwidth sharing
modelling,’’ in Proc. Int. Teletraffic Congr., in (Lecture Notes in Computer
Science), 2007, pp. 986–997.

[37] S. Floyd and V. Paxson, ‘‘Difficulties in simulating the Internet,’’
IEEE/ACM Trans. Netw., vol. 9, no. 4, pp. 392–403, Aug. 2001.

[38] K. Avrachenkovt, U. Ayesta, P. Brown, and E. Nyberg, ‘‘Differentiation
between short and long TCP flows: Predictability of the response time,’’ in
Proc. IEEE INFOCOM, Mar. 2004, pp. 762–773.

[39] A. B. Downey, ‘‘Lognormal and Pareto distributions in the Internet,’’
Comput. Commun., vol. 28, no. 7, pp. 790–801, May 2005.

[40] A. Hassidim, D. Raz, M. Segalov, and A. Shaqed, ‘‘Network utilization:
The flow view,’’ in Proc. IEEE INFOCOM, Apr. 2013, pp. 1429–1437.

[41] A. Odlyzko, ‘‘Data networks are lightly utilized, and will stay that way,’’
Rev. Netw. Econ., vol. 2, no. 3, pp. 210–237, Jan. 2003.

[42] Google Cloud. Accessed: Sep. 1, 2020. [Online]. Available:
https://cloud.google.com

[43] Tencent Cloud. Accessed: Sep. 1, 2020. [Online]. Available:
https://intl.cloud.tencent.com

[44] F. Ahmed, J. Erman, Z. Ge, A. X. Liu, J.Wang, and H. Yan, ‘‘Detecting and
localizing end-to-end performance degradation for cellular data services,’’
in Proc. IEEE INFOCOM - 35th Annu. IEEE Int. Conf. Comput. Commun.,
Portland, OR, USA, Apr. 2016, pp. 459–460.

[45] Modified DummyNet. Accessed: Sep. 1, 2020. [Online]. Available:
https://github.com/mclab-cuhk/netmap-ipfw

[46] Y.-C. Chen, E. M. Nahum, R. J. Gibbens, and D. Towsley, ‘‘Measuring
cellular networks: Characterizing 3G, 4G, and path diversity,’’ in Proc.
Annu. Conf. Int. Technol. Alliance, Jun. 2012, pp. 1–8.

[47] Bonree. Accessed: Sep. 1, 2020. [Online]. Available: https://www.bonree.
com

[48] G. C. Kessler. An Overview of Cryptography. Accessed: Sep. 1, 2020.
[Online]. Available: http://www.garykessler.net/library/crypto.html

LINGFENG GUO received the B.Eng. degree in
software engineering from Sun Yat-sen University,
Guangdong, China, in 2016. He is currently pur-
suing the Ph.D. degree with the Department of
Information Engineering, The Chinese University
of Hong Kong. He has participated in research
and development of internet protocols with The
Chinese University of Hong Kong.

JACK Y. B. LEE (Senior Member, IEEE) received
the B.Eng. and Ph.D. degrees in information
engineering from The Chinese University of
Hong Kong, Hong Kong, in 1993 and 1997,
respectively. He is currently an Associate Profes-
sor with the Department of Information Engineer-
ing, The Chinese University of Hong Kong. He
specializes in tackling research challenges arising
from real-world systems. He also works with the
industry to uncover new research challenges and

opportunities for new services and applications. Several of the systems
research from his laboratory has been adopted and deployed by the indus-
try. His research interests include research in multimedia communications
systems and mobile communications, protocols, and applications.

195970 VOLUME 8, 2020


