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ABSTRACT Image rain removal aims to separate the background image from the rainy image. During the
past three years, the image rain removal with deep convolutional neural networks has achieved impressive
performance. However, how to reach tradeoff between high de-raining performance and low model parame-
ters is still a challenge. To address the issue, the paper is devoted to exploring a novel method based on wavelet
deep recursive pyramid convolution residual network (WDRPRN), in which discrete wavelet transform is
embedded to decompose the rainy image in different frequency domains, and the deep recursive pyramid
convolution residual network (DRPRN) can well predict the residual coefficients between rainy image and
clean image. In addition, compared with other neural networks, the DRPRN adopts recursive model that can
cost fewer parameters. Plentiful of experiments on synthetic and real-world datasets show that the proposed
method is significantly superior to the recent state-of-the-art algorithms.

INDEX TERMS Image rain removal, wavelet transform, residual coefficients, low model parameters.

I. INTRODUCTION

Image rain removal is a fundamental task in low-level com-
puter vision. The bad rainy images with rain streaks and
fog artifacts not only degrade human visual perception, but
also reduce the accuracy of many high-level computer vision
tasks, such as pedestrian detection [1], visual tracking [2],
scene analysis [3] and saliency detection [4]. Thus, it is a
vital research work to remove the rain streaks and recover
the details of the background image. This paper is committed
to the study of single image rain removal.

The light rainy image is mainly composed of slender rain
streaks and detail background image. In addition, for heavy
rainy image, this may be caused by rain accumulation [5],
which can form a veil on the background image. All in all,
the rain models are complex. The commonly used rain models
can be summarized as the additive composite model of rain
streak image S and clean background image B. Hence, the
rain model can be expressed as follows:

O=B+S (1)
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where the purpose of rain removal is to decompose the input
rainy image O and obtain the rain-free image B. It can be
observed from (1) that there are two unknown variables in
the rain model, which can lead to the infinite solution space
of the rain model. Therefore, it’s an ill-posed problem.

In general, the existing rain removal methods can be
grouped into two categories which are model-driven and
data-driven methods. The model-driven methods refer to
prior knowledge [6]-[12] and physical handcrafted feature
[9], [13], [14] to constrain the ill-posed problem, where the
physical handcrafted feature is relevant to repeatability [9],
high-frequency property [13] and directionality [14], and the
prior knowledge extracts rain streak discriminative charac-
teristics based on different priors or physical handcrafted
features. The model-driven methods can be summarized
as follows: sparse coding-based methods [6]-[8], low-rank
representation-based methods [9], [10], Gaussian mixture
model-based (GMM) methods [11], [12] and guided filter
methods [15], [16]. Although these rain removal methods
based on prior knowledge afterwards building optimization
cost have made great progress, the assumptions about rain
streaks do not fully consider the complex factors in the real
world, and only specific rain streaks can be removed, not all
rain streaks.
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Recently, the data-driven rain removal methods [5],
[17]-[20] have attracted people’s attention, which benefits
from the powerful non-linear mapping function of deep CNN,
without tedious handcrafted features or prior knowledge.
Although those deep networks have achieved significant per-
formance in single image de-raining, it is hard to strike the
balance between low model parameters and advanced perfor-
mance. To handle this issue, we propose a light wavelet deep
recursive pyramid convolution residual network (WDRPRN)),
which only owns about 68k parameters, and the de-raining
performance metrics overtake some advanced methods. We
also use pyramid convolution with multiple filter scales to
extract rain streak features of different scales, and make
an objective analysis by making a diagram and explain the
underlying reasons why this paper use it as follows:

FIGURE 1. Rain streaks of different scales.

The rain streaks in rainy image have obvious multi-scale
characteristics. Figure 1 shows that the rain streaks in differ-
ent areas have different range and direction characteristics.
How to effectively extract rain streak features of different
scales and design robust rain removal algorithm is critical.
Because the convolution of a single filter scale is regular,
it can only extract the local features of the relatively fixed
size window, while the pyramid convolution of multiple
filter scales can extract the features of different size win-
dows, which corresponds to the multi-scale characteristics
of rain streaks. Therefore, concatenating multi-scale features
is beneficial to improve the performance of rain removal.
Multi-scale features have been widely used in visual recog-
nition (Pyconv) [21], image segmentation (Aspp) [22] and
rain removal algorithms (ReMAEN [23] and LPNet [24]),
etc., which have been proven to have great benefits for the
improvement of computer vision algorithms.

In particular, we pay more attention to the rain streaks
removal in the frequency domain rather than directedly
removing the rain streaks from spatial domain. Firstly, the
rainy image is decomposed into different sub-band images by
utilizing wavelet transform. Secondly, the recursive pyramid
convolution residual network model is conducted to extract
the context information from different scales. Finally, the
wavelet loss and SSIM loss are selected to update the param-
eters of WDRPRN until the network converges. In order
to obtain better de-raining effect, we propose an enhanced
WDRPRN for stage-by-stage rain removal. The main contri-
butions of this paper are summarized as follows:
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« A novel wavelet-based approach for deep CNN sin-
gle image rain removal research is presented. We use
wavelet transform to decompose the rainy image into
four sub-bands, and then conduct rain streaks removal
process. Compared with the direct use of deep learning
to implement rain streaks removal, the biggest advan-
tage of the proposed method is that it can separate the
background details and rain streak structure in different
frequency domains. Effective separation processing can
reduce the training process of deep learning network and
improve the performance of the model to rain streaks
removal.

« This paper is also committed to designing a more effec-
tive and lighter recursive model to predict the residual
rain streak image, which can achieve a better trade-
off between better rain removal performance and fewer
model parameters.

o The combination of wavelet-based loss and SSIM loss
is used to optimize the network in the sub-band images,
where the wavelet-based loss can generate better satis-
factory result on the pixel level, and the SSIM loss can
better preserve the edge details of the background image.

The remainder of this paper is arranged as follows.
In Section II, we give a brief overview of the existing
rain removal related work and wavelet transform. Section I1I
introduces the detailed framework of wavelet deep recur-
sive pyramid convolution residual network. To verify the
de-raining performance of the proposed method, exten-
sive fundamental experiments and ablation studies are con-
ducted in Section IV. Finally, the conclusion is presented in
Section V.

Il. RELATED WORK

A. RAIN REMOVAL RESEARCH

The existing image rain removal methods are divided into two
categories, which are video-based rain removal and single
image rain removal. Compared with the single image rain
removal, the video-based methods can acquire the temporal
information between image frames. Thus, the single image
rain removal is a troublesome problem. Kang et al. [13]
has decomposed the rainy image into high-frequency and
low-frequency layers by using bilateral filter, showing that
the rain streaks can be removed via dictionary learning and
sparse coding in high-frequency layer. Luo et al. [6] proposed
a non-linear screen blend model, which can eliminate rain
streaks by discriminative sparse representation and dictionary
learning. Chen and Hsu [9] proposed a low-rank model from
matrix to tensor structure considering the similar and repet-
itive patterns of rain streaks. Chen et al. [25] raised a two-
stage error-optimized sparse representation (EOSR) model,
in which the sparse representation stage uses dynamic patch
error constraint to generate rain-free image, and the error-
optimized sparse reconstruction stage adopts multi-objective
optimization to obtain the final rain-free image with few
rain streaks and texture preservation. Li et al. [11] used
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patch-based Gaussian mixture model (GMM) prior knowl-
edge to separate the image background layer and rain streak
layer. Deng et al. [14] established a global sparse model uti-
lizing the intrinsic direction and structural information of rain
streaks, showing that it can efficiently remove rain streaks
from rainy images.

The convolutional neural network has been proved to
have promising performance in image processing, e.g., image
denoising [26], [27], image deblurring [28], [29], image super
resolution reconstruction [30], [31], image inpainting [32]
and linguistic steganography [33]. The de-raining methods
based on deep learning have also been greatly developed.
For instance, Fu et al. [17] raised a deep negative resid-
ual network to directly learn the relationship of rain streak
mapping in the high frequency layer. Yang et al. [5] built
the recurrent multi-task rain detection and removal network,
where the contextualized dilated network extracts features of
rain streaks with different shapes and directions. Zhang and
Patel [18] proposed a joint rain-density classifier and multi-
stream densely connected de-raining network, which removes
rain streaks under the guidance of the estimated rain density.
Li et al. [19] raised a recurrent deep convolutional neural net-
work, in which the intensity and transparency of rain streaks
can be simulated by using the squeeze-and-excitation block.
Hu et al. [34] established a rain imaging model based on scene
depth effect, and then constructed depth-guided attention
rain removal network to guide the main network to output
residual image, which is mainly suitable for RainCityscapes
images with depth information. Chen et al. [20] proposed
the smoothed dilated convolution end-to-end gated network,
which tackles the gridding artifacts by the smoothed dilated
convolution and merges the features of different levels via the
gated sub-network.

B. RELATED APPLICATION BASED ON WAVELET
TRANSFORM

Wavelet transform uses a series of wavelet functions with
different scales to decompose the original function, and the
coefficients of the original function in different scales are
obtained after transform. As wavelet transform can decom-
pose image signal into multi-scale and different sub-bands,
it has been widely applied in some low-level image pro-
cessing tasks, such as image super-resolution [35], [36],
image restoration [37], image rain removal [38] and image
dehazing [39]. Guo et al. [35] established the deep wavelet
super-resolution network (DWSR), which can predict the
missing details between the wavelet coefficients of low-
resolution images and high-resolution images, and greatly
reduce the amount of computation. Huang et al. [36] devel-
oped a wavelet-based CNN network for face super-resolution,
and the network directly predicted a series of HR wavelet
coefficients corresponding to LR. Liu ef al. [37] proposed
multi-level wavelet CNN(MWCNN), which embeds dis-
crete wavelet transform to CNN, as a replacement for
pooling operation. Yang et al. [38] built a recurrent wavelet
learning dilated residual dense network (RWL), which
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decomposes the rainy image into sub-band images of dif-
ferent scales, and then recurrently reconstructs the rain-free
image. Yang and Fu [39] raised wavelet U-net, where the
down-sampling and up-sampling can also be replaced by dis-
crete wavelet transform (DWT) and inverse discrete wavelet
transform (IDWT). Compared with recurrent wavelet dilated
residual dense network, our method employs once wavelet
transform then following a light recursive pyramid convolu-
tion [21] residual network, in which the grouped convolution
is the key benefit for multi-scale features extraction and
model parameters control.

ill. PROPOSED METHOD

A. WAVELET DECOMPOSITION

The rain removal problem of single image can be regarded
as the problem of restoring the detail structure of background
image under the premise of inputting rainy image, and the
wavelet decomposition can capture the image structural infor-
mation in different directions. Therefore, the wavelet decom-
position can well be embedded in the image rain removal task.
Figure 2 shows the basic flow chart of 2 — D discrete wavelet
decomposition. For the input image signal, filters and down-
sampling are used in the directions of column and row, and
four sub-band images after 2— D discrete wavelet decomposi-
tion can be obtained. In this process, Firstly, the approximate
representation LL of the image can be obtained by two low-
pass filters Gy, and down-sampling along the column and row
directions respectively. Secondly, the low-pass filter G; and
down-sampling are used in the column direction, and then the
high-pass filter Gy and down-sampling are utilized in the row
direction to obtain the vertical sub-band image LH. Thirdly,
the high-pass filter Gy and down-sampling are conducted
along columns, and then the low-pass filter G; and down-
sampling are used along rows to gain the horizontal sub-
band image HL. Finally, the diagonal sub-band image HH is
obtained by two high-pass filters Gg and down-sampling in
the column and row directions respectively. The 2—D discrete
wavelet decomposition can be expressed as follows:

Vi (x,y) = o(x)d(y)
Vin x.y) = ¢x)(y)
Vur (x,y) = @(x)p(y)
Vun (x,y) = @(x)e(y) )

where ¢ and ¢ indicate 1 — D scaling function (i.e. | —D low-
pass filter) and 1 — D wavelet function (i.e. 1 — D high-pass
filter). Therefore, we can get multi-resolution edge detail sub-
band images of rainy images with different scales and direc-
tions through wavelet transform. Furthermore, the DRPRN
is conducted to effectively remove rain streaks in four sub-
band images, and final rain-free image can be reconstructed
by inverse discrete wavelet transform.

B. DETAIL STRUCTURE OF THE WDRPRN
As illustrated in Figure 3, our wavelet-based deep recursive
pyramid convolution residual network mainly consists of
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FIGURE 2. Flow diagram of the 2 — D discrete wavelet transform.
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FIGURE 3. The overall architecture of wavelet based deep recursive pyramid convolution residual network.

three stages: RGB image discrete wavelet transform (DWT),
wavelet coefficient prediction network (DRPRN) and inverse
discrete wavelet transform (IDWT). The purpose of discrete
wavelet transform is to decompose the rainy image into
four sub-band images in wavelet domain. Furthermore, the
wavelet coefficient prediction network outputs four rain-
free wavelet coefficient images. Finally, the inverse discrete
wavelet transform is used to reconstruct the de-raining image
from four rain-free sub-band images.

1) THE WAVELET COEFFICIENT PREDICTION NETWORK

The input is 3 x A x w rainy image. Through Eq (2), we can use
DWT on 3-channels of the rainy image, and the output is four
3x ’% x5 sub-band images. Then we concatenate the channels
of four sub-band images. As the whole input of the wavelet
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coefficient prediction network shown in Figure 4, compared
with the rain removal methods only based on deep learning,
the biggest advantage of this network is that it makes full
use of the multi-scale edge features, which is conducive to
the rain streaks removal and the background details restora-
tion. Furthermore, in order to reduce the model parameters,
we also adopt the recursive learning manner similar to the
DRRN [40] as shown in Figure 5(a). To enlarge the receptive
filed of the network, the pyramid convolution (PyConv) [21]
is used to construct the recursive block as shown in Figure
5(b). The (PyConv) process divides the input feature maps
into different groups, and applies different depth kernel sizes
(3x3,5%x5,7x7 and 9 x 9) to each input feature map
group independently, which can strengthen the ability of the
network extraction multi-scale features corresponding to the
rain streak features, and reduce the computational cost and
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FIGURE 4. The details of the proposed wavelet coefficient prediction network.
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FIGURE 5. Structure of different recursive blocks: (a) recursive block of DRRN [33] and

(b) recursive block of the proposed DRPRN.

parameters. The number of recursive blocks is 16, and the
weight of recursive blocks is shared. We adopt zero padding
to keep the feature map of layer the same size as the input
tensor, so that each wavelet coefficient feature map is the
same size as the input. There are 64 channels in the middle
layer of our network. The inner pyramid convolution of recur-
sive block is composed of Convolution (Conv) with different
kernel sizes and Parametric Rectified Linear Unit (PReLU)
[41] activation function.

After four rain-free coefficient sub-band images are
obtained by using the wavelet coefficient prediction network,
the final rain-free image can be reconstructed by the inverse
discrete wavelet transform (IDWT).

2) ENHANCED WAVELET BASED DEEP RECURSIVE PYRAMID
CONVOLUTION RESIDUAL NETWORK

It is particularly worth mentioning that considering that the
heavy rain streaks are not easy to be removed in the first stage,
we stack three WDRPNRs named WDRPRN-E. As shown in
Figure 6, the input of the current stage is previous stage de-
raining result except for the first stage. We can formulate the
following procedures:

Ye = worprn O —1)

Y1 = fwprprn(*1)

1<t<3 3
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where y, indicates de-rained image in the ¢ — th stage, x1 rep-
resents the input rainy image, and t is the range of recurrent
network stage.

C. LOSS FUNCTION

Mathematically, the rain removal process aims to learn the
map function Fg (x), where 6 denotes the parameter of WDR-
PRN. Given {(x;, y,-)}i.il represents the rainy/ground-truth
image pairs of the training dataset. The common objective
loss function for rain removal is Mean Square Error loss

(MSE loss) on the pixel level, which can be defined as:

N

L) =3 0 |Fo )~ 4)
where x; and y; denote the i — th input rainy image and corre-
sponding ground truth rain-free image respectively. However,
MSE loss may over penalize the pixel value errors, which can
result blurred de-rained image. Following [24], we use Lq
loss to train our network. Different with [24], the Ly loss is
used in wavelet domain. In addition, we add the SSIM loss to
better preserve the edge details. Thus, our network consists
of two loss functions as:

1
L10) = < Y |LL(Fo o)) + LH (Fo @) . 3,)
+HL (Fy (&) . y;) + HHFg ). 3| )
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FIGURE 6. The details of the proposed WDRPRN-E.

where LL (.) , LH (.), HL (.) and HH represent the wavelet
transform process at different frequencies, and

Lysim (0) = 1—SSIM(Fy (xi) ,y;) (6)

where SSIM(.) can be calculated by structural similarity [42].
Hence, we can define the total loss as follows:

Liotar (0) = L1 () + ALgsim(6) (N

where A is trade-off parameter between L1 () and Lygim (0).

IV. EXPERIMENTS

A. EXPERIMENT SETTING

This section describes the experimental details and evaluation
results on four synthetic datasets and real-world datasets.
The image quality metrics of Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity (SSIM) are used to eval-
uate the de-raining performance. Our WDRPRN is compared
with six state-of-the-art methods: two model-driven meth-
ods including Gaussian Mixture Model (GMM) [11] and
directional Global Sparse Model (UGSM) [14], four data-
driven methods including Joint Rain Detection and Removal
(JORDER) [5], Deep Detail Network (DDN) [17], Density-
aware single Image De-raining using a Multi-stream Dense
Network (DID-MDN) [18] and Gated Context Aggregation
Network(GCANet) [20]. In the end, we make analysis in the
ablation study.

1) IMPLEMENTATION DATASETS

Synthetic Data: Four synthetic datasets are chosen to train our
network. The Rainl00H [5] dataset has 1800 rainy/ground
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Stage three
De-Rained Image y;

truth image pairs for training and 200 pairs for testing,
in which each rainy image can be synthesized by six different
directions and scales rain streak images and corresponding
clean images. In the RainlO0L [5] dataset, there are 1800
rainy/ground truth image pairs for training and 200 pairs
for testing where each rainy image can be synthesized by
the six different directions and scales rain streak images and
corresponding clean images. Rain12 [11] has only one type
of rain streaks.

Training dataset of Rain800 [43] comprises a total of 700
images, of which 500 are randomly selected from UCID
dataset and 200 from BSD-500 dataset, and testing dataset
of Rain800 contains 100 images, 50 images of which are
randomly chosen from UCID dataset and 50 images from
BSD-500 dataset.

Real-World Data: Since it is hard to collect clean images
corresponding to rainy images in the real world, the real-
world rainy images from Rain50 [43] real-world dataset can
be tested after training on Rain800 synthetic dataset. Rain50
has 50 real-world rainy images.

2) IMPLEMENTATION DETAILS

In the experiment setup, the number of filters in our network
is set to 64, and the depth of recursive module is 16 and the
trade-off parameter A = 1. In the training and testing stage,
the deep learning framework Pytorch is employed to carry out
our experiment on Nvidia Tian-V GPU with 12GB memory.
We resize the input image to 320 X 480, and the size of the
training batch is 4. Adam, as an optimizer with initial learning
rate of 0.001, implements the decay operation by multiplying
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FIGURE 7. Visual comparison of the proposed WDRPRN with state-of-the-art rain removal methods in synthetic rainy images from Rain100H [5].

0.21in 30, 50 and 80 epochs, and the number of whole training
epochs is set to 100.

B. QUANTITATIVE AND QUALITATIVE EVALUATION

1) EVALUATION ON SYNTHETIC DATASETS

Figures 7 to 9 show the visual quality of de-raining perfor-
mance with rain streaks of different scales and orientations
(Rain100H, Rain100L and Rain12). As observed, GMM and
UGSM failed to eliminate heavy rain streaks, while GMM
can remove light rain streaks and meanwhile blur image
details. Although DDN, GCANet and DID-MDN have the
ability to remove different types of rain streaks, they also gen-
erate tiny artifacts in the de-rained images. JORDER and our
WDRPRN have the best de-raining performance. In addition,
our method can even restore details and remove most of the
rain streaks (See the enlarged part of the red box in Figure 9)
than JORDER on Rain12.

To further demonstrate the qualitative improvement on the
four synthetic datasets, Table 1 and Table 2 show the quanti-
tative evaluation on PSNR and SSIM metrics. All compared
methods have been tested under the same conditions. It can
be seen from Table 1 and Table 2 that JORDER is superior to
other methods. In terms of image quality metrics, our method
is close to JORDER. In spite of the PSNR and SSIM values
of our method lower than JORDER on the Rain 100H and
Rain 100L, our method is higher than JORDER on Rain800
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and Rain12. Furthermore, compared with JORDER and other
methods, the proposed method has fewer parameters, and can
better reach tradeoff between high de-raining performance
and low model parameters, which can be easily deployed in
mobile devices.

2) EVALUATION ON REAL-WORLD RAINY IMAGES
To test the WDRPRN de-raining performance in real-world
rainy images, our network is trained on Rain800, and then
tests the actual de-raining result on Rain50 real-world dataset.
Figure 10 shows the visual de-rained effects of two real-world
rainy images compared with several state-of-the-art methods
including the paper method, and two real-world rainy images
are randomly selected from Rain50. It can be clearly seen
that UGSM has the worst performance in terms of residual
rain streaks, and GMM can remove rain streaks, but the
disadvantage is that it makes the de-rained image blur, such
as the wall edges, as shown in the second column. Although
DDN, GCANet, JORDER and DID-MDN have better de-
rained performance, they suffer from unexpected artifacts
as shown in the corresponding columns (The details can be
better observed via zooming image in the de-rained image).
The paper selects Naturalness Image Quality Evaluator
(NIQE) as the no reference image quality evaluation metric
of the real-world rain images as shown in Table 3, and a good
score is obtained.
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TABLE 1. Average PSNR and SSIM values in four synthetic datasets. Red denotes the best result and blue shows the second best result.

GMM UGSM DDN GCANet
Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Rain100H 15.01 0.430 14.88 0.471 21.25 0.740 22.19 0.783
Rain100L 28.43 0.861 24.10 0.837 32.01 0.930 32.03 0.921
Rain800 22.03 0.711 22.97 0.747 22.02 0.742 22.28 0.749
Rain12 32.02 0.911 30.23 0.882 31.76 0.943 30.77 0.902
Parameters - - 57369 702818

TABLE 2. Average PSNR and SSIM values in four synthetic datasets. Red denotes the best result and blue shows the second best result.

JORDER DID-MDN WDRPRN WDRPRN-E
Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Rain100H 22.94 0.811 23.51 0.797 22.87 0.787 23.53 0.802
Rain100L 36.11 0.969 25.78 0.861 34.02 0.943 35.89 0.959
Rain800 22.18 0.757 21.34 0.795 22.66 0.781 23.17 0.798
Rain12 33.92 0.951 33.06 0.917 33.89 0.944 33.95 0.952
Parameters 369792 372839 68044 68044

' ‘.‘Fl'- o
(a)Rainy Image

(e)GCANet

(b)GMM

(HJORDER

‘ (c)UGSM

(2)DID-MDN

(@DDN

—

(h)WDRPRN

—~

™ TR ™ T e e T ™

(i) Ground Truth

FIGURE 8. Visual comparison of our WDRPRN with progressive rain removal methods in synthetic rainy images from Rain100L [5].

The WDRPRN method proposed in the paper can effec-
tively remove most of the rain streaks and restore the back-

ground image structure in the covered region.

our method are implemented on Pytorch (GPU). Considering
that the optimization process of GMM is time-consuming,

we only compare the running time of other methods under

320 x 480 image. The model-driven method UGSM runs the
slowest, while data-driven methods JORDER and DID-MDN
run faster. Even though the test time of our proposed method
with fewer model parameters is not the fastest, it can be
easily used in mobile devices with better rain removal perfor-
mance and fewer model parameters as shown in Table 1 and
Table 2.

C. ABLATION STUDY

1) RUNNING TIME AND CONVERGENCE

The running time and model parameters of several state-
of-the-art methods are conducted as shown in Table 4.
The GMM(CPU), UGSM(CPU), DDN(GPU) and JORDER
(GPU) are implemented in MATLAB, and other methods and
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TABLE 3. Average NIQE value in real-world rainy images from Rain50 real-world dataset.

Methods GMM | UGSM | DDN | GCANet | JORDER | DID-MDN | WDRPRN | WDRPRN-E

NIQE 5.98 5.67 5.04 5.11 4.54 4.43 4.42 4.37
TABLE 4. Running time and parameters of different methods (seconds).
320x480 UGSM DDN GCANet JORDER DID-MDN WDRPRN
Running time 0.98 0.56 0.49 0.13 0.37 0.43
Parameters - 57369 702818 369792 372839 68044
(a)Rainy Image (b)GMM (c)UGSM (d)DDN
(e)GCANet ()JORDER (g)DID-MDN (hyWDRPRN (i) Ground Truth

| ool

(€)GCANet (fJORDER

(g)DID-MDN

(h)yWDRPRN (i) Ground Truth

FIGURE 9. Visual comparison of the WDRPRN with advanced rain removal methods in synthetic rainy images from Rain12 [11].

To present the training process of WDRPRN, we show the
convergence of training loss function and the improvement

process of PSNR and SSIM throughout the epoch. It can be Metrics | WDRPRN-1 | WDRPRN-2 | WDRPRN-3
observed from Figure 11 that WDRPRN converges quickly, PSNR 34.20 35.36 35.89
and meanwhile the PSNR and SSIM values reach a high level SSIM 0.943 0.950 0.959

in the Rain100L dataset, which can reflect the rationality and
effectiveness of the training setting.

2) ABLATION STUDY ON ENHANCED WDRPRN

In order to explore de-raining performance in different stages,
we conduct an ablation study. As shown in Figure 12, with the
increase of the number of single WDRPRN network, the de-
raining visual result is much better. To objectively evaluate
the effect of different stages on Rainl00L, Table 5 shows

195878

TABLE 5. Average PSNR and SSIM values of de-raining result at different
stages on Rain100L.

that the multiple WDRPRNs can better remove rain streaks.
Considering the limited memory, our enhanced WDRPRN is
a three-stage recursive network.

3) ABLATION STUDY ON LOSS

To investigate the de-raining result of different loss strate-
gies (MSE loss and MAE+SSIM loss), we conduct the
ablation loss study. Throughout the experiment, the reason
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FIGURE 10. Visual comparison of the proposed WDRPRN with state-of-the-art rain removal methods in real-world rainy images from

Rain50 [43].

why we did not adopt the MSE loss function is that it may
over penalize the pixel value error, which can generate the
blurred image. In order to keep the structural details of
local patch image the same between de-raining image and
clean image, the MAE loss and SSIM loss are accepted. The
quantitative results concerning on different loss functions are
tabulated as observed in Table 6. Compared with the de-
raining performance by MSE loss, the image quality metrics
PSNR and SSIM are obviously improved by MAE+SSIM
loss. Figure 13 shows that our experiment setup loss func-
tion can better remove rain streaks and preserve more
details.

VOLUME 8, 2020

TABLE 6. Average PSNR and SSIM values of de-raining effect under
different loss function strategies onRain100L.

Rain100L Loss function strategies
MSE MAE+SSIM

PSNR 31.18 35.89

SSIM 0.912 0.959

4) ANALYSIS OF RAIN REMOVAL ON DIFFERENT
FREQUENCIES

In order to further investigate the advantage of de-raining
result in the different frequency domains, we add the visual-
ization contrast between four sub-bands of de-raining image
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FIGURE 11. Training convergence analysis on LOSS, PSNR and SSIM of WDRPRN.
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FIGURE 12. The visual effect of de-raining performance in different stages. The number E in WDRPRN-E indicates the E-th
stage WDRPRN.

(a)Rainy Image . (b)Ground Truth

(a)MSE (b)MAE+SSIM

FIGURE 13. De-rained results by different losses.

and ground truth by using wavelet transform. Figure 14
illustrates the visual effect of rain removal, where the
rain streaks can well be removed in different sub-band
images, and the details, which are distorted, can be bet-
ter restored. Moreover, the edge structure of rain-free

195880

(a)Rainy Image (b)Ground Truth

(b)MAE+SSIM

region is maintained well, which is attributed to that
wavelet transform can decompose the image signal into
multi-scale sub-bands. We can restore the rainy image
according to the characteristics of rain streaks in different
frequencies.
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FIGURE 14. The visual result of rain removal and detail restoration in different frequencies by wavelet transform.

V. CONCLUSION

In this paper, we have proposed a light wavelet deep recursive
pyramid convolution residual network (WDRPRN). In com-
parison with the existing approaches, which failed to reach
the tradeoff between better de-raining performance and fewer
model parameters, we explored the de-raining method with
wavelet transform, which can achieve satisfactory perfor-
mance. The WDRPRN method can take advantage of the
characteristics of rain streaks at different frequencies, and
then remove different types of rain streaks by embedding
deep learning approach. Comparative experiments and abla-
tion studies were conducted to illustrate the well de-rained
performance under different baseline settings.

In spite of the superior performance achieved by our
method, there are still shortcomings that wavelet transform
incorporated into the deep learning method is plain model,
which may not maximize the de-raining performance. There-
fore, we will pay more attention to establishing effective rain
removal methods in future studies.
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