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ABSTRACT Automatic modulation classification (AMC) used in cognitive radio networks is an important
class of methods apt to utilize spectrum resources efficiently. However, conventional likelihood-based
approaches have high computational complexity. Thus, this paper proposes a novel convolutional neural
network architecture for AMC. A bottleneck and asymmetric convolution structure are employed in
the proposed model, which can reduce the computational complexity. The skip connection technique
is used to solve the vanishing gradient problem and improve the classification accuracy. The dataset
DeepSig:RadioML, which is composed of 24 modulation classes, is used for the performance analysis.
Simulation results show that the classification accuracy performance of the proposed model is outstanding
in the signal-to-noise ratio (SNR) range from −4 dB to 20 dB compared with MCNet that is the best model
in the conventional models, where the proposed model achieves 5.52% and 5.92% improvement regarding
classification accuracy at the SNRs of 0 dB and 10 dB, respectively. In terms of the computational complexity,
the proposed model not only saves the trainable parameters by more than 67% but also reduces the prediction
time for a signal by more than 54.4% compared with those of MCNet.

INDEX TERMS Automatic modulation classification, deep learning model, convolution neural network,
light weight, cognitive radio.

I. INTRODUCTION
Automatic modulation classification (AMC) is widely used
in military and industrial applications. With the rapid devel-
opment of wireless communication technologies and the
increasing demand for wireless services [1], the spectrum
resources for wireless communications are becoming rapidly
exhausted [2], [3]. An efficient approach to deal with this
problem is to use cognitive radio (CR) technology, which
significantly improves the spectrum utilization efficiency by
sharing the licensed band between licensed and unlicensed
users [4], [5]. In CR networks, the AMC method should
be employed to identify a received signal without prior
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knowledge of the signal in various unknown channels. The
AMC methods are generally classified into likelihood-based
(LB) and feature-based (FB) approaches [6]. The former
method maximizes the classification accuracy. However,
it has a high computational complexity; consequently, its
implementation in real-time applications is difficult [7]. The
latter method consists of two stages: feature extraction and
classification. One of the tasks in the feature extraction stage
is the estimation of key factors such as the carrier frequency
and signal power [8]. In the classification stage, higher-order
statistics (HOS) is generally used as a classifier, which makes
a decision based on statistical feature values [9], [10]. In addi-
tion, machine learning techniques such as support vector
machine and decision tree can be applied [11], [12]. Conse-
quently, the FB approach has relatively higher robustness than
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the LB approach because of its high efficiency in implemen-
tation, although it yields a suboptimal performance. How-
ever, the FB approach has limitations in extracting expert
knowledge from multiple signals because of high-order mod-
ulation types and impairment channel conditions. More-
over, the selection of feature values depends on a manual
analysis [13].

Recently, deep learning techniques have attracted
attention for their promising performance in diverse
applications [14]–[16], which is a branch of machine learn-
ing [17]. A convolutional neural network (CNN) is a state-
of-the-art, effective deep learning technique. Typical CNN
models include AlexNet [18], GoogleNet [19], VGG [20],
and ResNet [21]. However, these models focus on image
processing [22], [23] and computer vision [24], [25] applica-
tions to classify images, and consequently, they are compu-
tationally heavy because of deep layers and large filter sizes.
Moveover, they take a long time to predict each class. There-
fore, the traditional architecture needs to be redesigned for
AMC because real-time classification should be considered
to satisfy the quality of service (QoS) requirement for CR
networks [26]–[28]. For example, the time slot periods of
the IEEE 802.15.4 and IEEE 802.11n standards are at least a
few milliseconds and microseconds, respectively. Therefore,
in addition to the conventional propagation, queuing, and
processing delays, the classification delay of AMC influences
the QoS. Thus, a CNN-based model may be promising for
AMC because of its high classification capability [29]–[31].

Several CNN-based architectures have been proposed
with the development of deep learning techniques
[32]–[40]. For example, J. Shi et al. [32] proposed a deep-
learning-based AMC model, which considered the phase
offset effect for a realistic orthogonal frequency-division
multiplexing (OFDM) system. In an OFDM system, four
modulation schemes were used and the fast Fourier trans-
form (FFT) was applied to convert the data between the
frequency and time domains. The proposed model achieved
a high classification accuracy as compared with three other
schemes. However, only four classes were used in the clas-
sification. The number of parameters used in the proposed
networks, by using the 256-point inverse FFT, is over 2M ,
which is too large. S. Hong et al. [33] presented a CNN-based
model for an OFDM system that is almost similar to [32]. The
proposed network showed a good performance except at a low
signal-to-noise ratio (SNR). However, although the authors
used a small in-phase and quadrature (IQ) length and focused
on only four classes, the architecture was computationally
too heavy. H. Zhang et al. [34] proposed a deep multistream
neural network for AMC. The proposed network was similar
to GoogleNet and deployed several modules to enhance the
classification accuracy. Furthermore, the authors used a 1×1
convolution layer to reduce the computational complexity of
the networks. However, although the accuracy performance
was good, more than 528k parameters were used in the
proposed structure, which is still large relative to the small
IQ length. S. Zheng et al. [13] proposed a fusion-based

TABLE 1. Summarization of related works.

CNN architecture for AMC. The authors also presented two
basic models (CNN1 and CNN2) for these fusion models,
which use 2 and 46 convolutional layers, respectively. Both
the basic and fusion models for 12 classes showed good
classification performances. However, the CNN1 model used
a very large number of parameters, i.e., over 21M , and the
CNN2 model used over 5M parameters. Therefore, when N
numbers of each model are used for fusion, the number of
parameters increases by N times. H. Gu et al. [35] proposed
two types of CNN-based models for AMC in general sce-
narios. The first one was for blind channel identification,
which predicted line-of-sight and non-line-of-sight classes,
whereas the second one was for modulation classification,
which predicted six modulation classes. These models used
very few parameters, i.e., below 110k , and showed good clas-
sification performance. However, the first model was used to
classify very simple patterns, and the second model was used
to classify low-order modulation schemes (2FSK, DQPSK,
16QAM, 4PAM, MSK, and GMSK), which are easy to
recognize. C. Yang et al. [36] proposed a deep-learning-aided
architecture for AMC. The proposed model was the same
as the second model [35] mentioned earlier, and the target
modulations for classification were also the same. Therefore,
this proposed model has the same limitations as the second
model mentioned above [35]. Y. Wang et al. [37] proposed
two different deep-learning-based models for AMC. One
was trained using IQ component signals, whereas the other
was trained using image-based constellation diagrams. The
IQ-based model had a computationally lighter architecture
than the image-based model, and it showed a good perfor-
mance at low- and high-SNR. However, it predicted a rela-
tively small number of classes and the number of parameters
used in the model was not small when the IQ length was
considered. The image-based model could not be compared
with the IQ-based model because its input size was larger.
However, it had deeper layers, and used a larger number of
parameters, even though it showed a better performance.

In this context, we propose a lightweight model using a
deep-learning-based CNN for CR networks. The DeepSig:
RadioML 2018.01A dataset [39], which includes 24 modula-
tion classes, is used for performance analysis. The following
are the contributions of this paper:

1) The proposed architecture is designed to be computa-
tionally light by applying a bottleneck and asymmetric
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TABLE 2. Key notations.

convolution structure. Therefore, it uses a smaller
number of trainable parameters compared with the
conventional architectures, which can reduce the
computational complexity

2) The classification accuracy performance of the pro-
posed model is improved by using the skip con-
nection approach. The proposed model outperforms
the conventional models in the SNR range from
−4 dB to 20 dB.

3) A dataset having 24 classes is applied to demonstrate
the robustness of the proposed model. In this dataset,
as the number of classes increases, the classification
level becomes higher. Finally, the proposed model
shows outstanding performance in terms of the classi-
fication accuracy and computation complexity.

The rest of this paper is organized as follows:
Section 2 describes the system model, Section 3 represents
our proposed CNN architecture, Section 4 presents the sim-
ulation results and performance analysis, and Section 5 con-
cludes the paper.

II. SYSTEM MODEL
A. SIGNAL MODEL
In this study, DeepSig:RadioML 2018.01A datasets gen-
erated using USRP B210 are used (SNR from −10 dB
to +20 dB), where the Rayleigh fading channel model is
applied and other wireless communication conditions regard-
ing random variables such as roll-off factor, carrier frequency
offset, and symbol rate offset between the transceiver and the
receiver can be found in [39] in details. The transmitted sig-
nals are sent as a frame, which is composed of 1024 samples,

FIGURE 1. Example of system model.

and the transceiver uses the 900MHz industrial, scientific, and
medical (ISM) band. The system model, which is a 2 × 2
multiple-input multiple-output (MIMO) system for example,
is shown in Fig. 1. The kth received signals in general form
can be represented as

y1 = h11x11 + h21x21 + n,

y2 = h22x22 + h12x12 + n, (1)

where the first index of h and x is the transmitted antenna
number, the second index is the received antenna number, h is
the Rayleigh fading channel coefficient, x is the modulated
signal, and n is additive white Gaussian noise. In addition,
h can be expressed as

h = αej(2π1ft+1φ), (2)

where α is the channel impulse response, and1f and1φ are
the carrier frequency and phase offset, respectively. The off-
sets are mainly due to disparate local oscillators and the resul-
tant Doppler effect in wireless communication. The channel
loss from the received signals is compensated by channel
equalization (CE), where the final input from CE is repre-
sented by a complex envelop. To utilize the received signal as
the input value of the CNNmodel, it should be normalized by
using root mean square (RMS), which prevents the optimizer
from halting at the local optimal value, and then divided into
IQ components. This is undertaken in the data processing
stage.

B. DATA PROCESSING
Data processing consists of two tasks: normalization and
high-dimensional representation for an IQ size of 2 × 1024.
The datasets have 24 modulation types. Each modulation has
4096 frames, which are used for training (80%) and testing
(20%), and the modulations are divided into two groups,
namely, digital and analog modulations, as follows:

1) Digital modulation: OOK, 4ASK, 8ASK, BPSK,
QPSK, OQPSK, 8PSK, 16PSK, 32PSK, 16APSK,
32APSK, 64APSK, 128APSK, 16QAM, 32QAM,
64QAM, 128QAM, 256QAM, GMSK
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2) Analog modulation: FM, AM-SSB-WC, AM-SSB-SC,
AM-DSB-WC, AM-DSB-SC

The RMS scheme is applied to the complex envelop signal
for normalization, which is represented as

s̄i =
si

RMS(s)
, where RMS(s) =

√√√√ 1
N

N−1∑
i=0

|si|2, (3)

whereN is the number of samples in a frame, which is 1024 in
total. After normalization, the samples are aggregated into a
2× N matrix, which is represented as

Sj =

[
s̄I0 s̄I1 . . . s̄IN−1
s̄Q0 s̄Q1 . . . s̄QN−1

]
, (4)

where superscript I is the in-phase term of s̄i, which is equal
to Re[s̄i], and superscriptQ is the quadrature term of s̄i, which
is equal to Im[s̄i]. Finally, according to the number of frames
and modulation types, the data matrix based on Sj for the
CNN is represented as

H =


S̄1,1 S̄1,2 . . . S̄1,k
S̄2,1 S̄2,2 . . . S̄2,k
...

...
. . .

...

S̄m,1 S̄m,2 . . . S̄m,k

 , (5)

where subscriptm is the total number of frames and subscript
k is the total number of modulations.

III. PROPOSED CNN ARCHITECTURE
A. CNN ARCHITECTURE
In general, a CNN architecture is composed of a convolu-
tional, batch normalization (BN), activation function, pool-
ing, fully connected, and classification layers. The convo-
lutional layer is used to extract feature maps. For example,
when the input size isQ×P×C , where C is the input channel
number, the feature map can be represented [40] as

zl =
C∑
c=1

0−1∑
ρ=0

ϒ−1∑
υ=0

K (q+ ρ, p+ υ, c)×W l(ρ, υ)+ bl, (6)

where W l(.) is the lth convolutional kernel size, bl is the lth
bias, and K is the input size, where q and p denote the row
and column index of the input size, respectively. In addition,
q = [1,Lq] where Lq = [Q−0stride + 1], and p = [1,Lp]
where Lp = [ P−ϒstride + 1]. The feature map passed from the
convolutional layer is normalized by the BN layer, which is
represented as

źl =
zl − µb√
σ 2
b + δ

, (7)

gl = γ źl + β, (8)

where µb and σ 2
b are the average and variance of the

mini-batch size, respectively. δ is a numerical stability coeffi-
cient, which prevents the denominator from becoming zero. γ
is a scale factor and β is a shift factor over the mini-batch size.

The rectified linear unit (ReLU) activation function decides
whether the output of the BN is forwarded to the next layer,
and it is expressed as

fReLU (ǵl ) = max(0, gl), (9)

where the softmax activation function is used after the fully
connected layer, which is given as

fsoftmax(glκ ) =
eg

l
κ∑

χ e
glχ
, (10)

where glκ is the lth feature map κ element and glχ is a
pre-activation output. Finally, stochastic gradient descent
with momentum (SGDM) [41] is applied as the cost function
for gradient descent optimization in this study.

FIGURE 2. Description of the proposed network architecture.

B. PROPOSED CNN ARCHITECTURE
As shown in Fig. 2, the lightweight CNN architecture is
composed of 10 convolutional layers, 3 pooling layers, and
1 fully connected layer, where Conv and Pool represent the
convolution and average pooling operations, respectively.
In addition, each convolution block is composed of a convo-
lutional layer, BN, and ReLU activation function in Fig. 2c.
The first convolutional layer processes the input dimension
2× 1024 from the input layer, where the convolutional layer
contains a 3 × 3 kernel matrix, and 16 convolution kernels,
and the padding size (3, 1) is applied. The first pooling layer
reduces the size of the feature map to optimize the extraction
of the signal characteristics, where the kernel size is 2 × 2.
The convolution and pooling operations are again performed
with 32 convolution kernels, where the size of the feature
map is optimized to obtain sufficient signal characteristics
for a high performance accuracy. Subsequently, the output
feature map passes Blocks 1, 2, and 3 in succession without
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downsampling, where the first and last convolutional layers
of Blocks 1, 2, and 3 use a 1 × 1 kernel matrix to reduce
the dimension of the feature map channel, which affects the
computational complexity.

Furthermore, the second and third convolutional layers use
an asymmetric kernel matrix of kernel sizes 3× 1 and 1× 3,
respectively, instead of 3 × 3 to decrease the number of
trainable parameters. Therefore, when the proposed kernels
are applied instead of a kernel size of 3 × 3 in Block 1, 12k
trainable parameters can be saved. Moreover, 32k trainable
parameters can be saved in the case of Block 2, whereas 129k
trainable parameters can be saved in the case of Block 3.
The accuracy performance can be enhanced by using the skip
connection technique for the vanishing gradient problem. It is
applied to Blocks 1, 2, and 3 as shown in Fig. 2b. The last
pooling layer reduces the size of the feature map from 3×256
to 1 × 1 to prevent overfitting before the classification step,
which includes the fully connected and softmax layers. The
final feature map is connected by a fully connected layer,
whose output is the same as the number of modulations.
The detailed information of the proposed model is shown
in Table 3, which is including the output size, the filter size,
and the number of used parameters. As shown in Table 3,
the parameters are 46472, which are used in the model.

TABLE 3. Configuration of the proposed CNN architecture.

IV. SIMULATION RESULTS
For simulation works, the SNR range of the used dataset is
from −10 dB to 20 dB with the interval of 2 dB. Therefore,
for the simulation work of each SNR domain 98304 frames
are used, which is composed of one of 24 modulations

(4096 frames). Finally, the dataset gets 1572864 frames,
where the dataset is divided such that 80% of the frames
(1258291 frames) are used for training and the remaining
(314573 frames) are used for testing. The performance of
the proposed model is compared with that of conventional
models such as ML-XGboost [39], VGG [39], ResNet [39],
CNN-AMC [42], and MCNet [43]. The simulation is per-
formed using an i5 2.9 GHz CPU, 32 GB RAM, and NVIDIA
GeForce RTX 2080 Super GPU devices. The detailed config-
uration of the simulation is summarized in Table 4.

FIGURE 3. Mini-batch/validation accuracy and loss versus epoch times.
(a)SNR=10 dB;(b)SNR=0 dB.

TABLE 4. Configuration for the simulation.

The mini-batch/validation accuracy and loss of the pro-
posed model is represented (Fig. 3). As the results, the
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convergence of validation accuracy and loss is reached
roughly from 21 epoch times, and it is shown that they are
converged stably. In terms of the mini-batch accuracy and
loss in Fig. 3b, the curves are fluctuated unstably because the
initial learning rate is set relatively high. For learning of the
proposed model it takes average 65minutes on NVIDIARTX
2080 Super. When compared with Oshea et al. [39], the lead
time is longer due to the difference of GPU performance.

FIGURE 4. The performance comparison with the conventional models
and the proposed model.

The classification accuracy for each model is represented
(Fig. 4), and the conventional models are compared with
the proposed model. From the results, the proposed model
outperforms the conventional models within the SNR range
of−4 and 20 dB. However, between−6 and−10 dB, MCNet
performs better than the proposed models and exhibits the
best performance among the conventional models. As classi-
cal methods, kNN (k-Nearest Neighbor), DT (Decision Tree),
and SVM (Support vector machine) are used. To apply a fea-
ture set to the classifiers there are instantaneous features [44],
HOC (High-Order Cumulant) features [10], and cyclosta-
tionary features [45], [46], where instantaneous features are
used for a feature set in the classical methods. As the result,
the classical methods are no better than deep leaning-based
classifiers, and kNN is the worst in the classical methods. The
ML-XGBoost model, in which an advanced DT algorithm is
used, still shows lower performance than deep learning-based
model. In cases where the deep learning technique is applied,
such as the MCNet and ResNet models, a significant dif-
ference in accuracy with the VGG and CNN-AMC models
was observed because the skip connection technique is used
in the VGG and CNN-AMC models. At an SNR of 10 dB,
the proposed model achieves 5.92% and 33.17% improve-
ment compared with the MCNet and ML-XGBoost models,
respectively. At a 0 dB SNR, the proposed model is higher
than the MCNet and ML-XGBoost models by 5.52% and
31.65%, respectively.

FIGURE 5. Classification result in the different number of blocks applied
to the proposed model.

In Fig. 5, the accuracy performance is illustrated when dif-
ferent numbers of blocks are applied to the proposed model,
which has three blocks in total. When only Block 1 is applied
in the SNR range from −10 dB to 0 dB, there is a slight
gap in the accuracy performance. However, in the SNR range
from 2 dB to 20 dB, the gap is relatively large. However, when
Block 1,2 or Block 1,2,3 are applied, the gap in the accuracy
performance is small in the overall SNR range.

In Fig. 6, 24 modulation schemes are shown in 3 groups.
In Fig. 6a, the performance of the PSK and APSK modu-
lation schemes is illustrated. The modulation schemes are
divided equally into two categories, namely, low perfor-
mance and high performance, at SNR 0 dB. The schemes in
the low-performance category—which are OQPSK, 16PSK,
32APSK, 64APSK, and 128 APSK—are predicted with an
accuracy below 40%. The schemes in the high-performance
category—which are the remaining schemes—are predicted
with an accuracy over 60%. In contrast, all the modulation
schemes are predicted with an accuracy over 90% at SNR
20 dB. In Fig. 6b, the performances of OOK, GMSK, ASK,
and QAM modulation schemes are shown. All the modula-
tion schemes except three—namely, OOK, GMSK, 16QAM,
32QAM, 64QAM, and 256QAM—have a classification accu-
racy of over 55%. Unfortunately, the accuracy performance
of 64QAM and 256QAM remains at approximately 70% up
to SNR 20 dB, although the remaining modulation schemes
have an accuracy over 90% at SNR 20 dB. In Fig. 6c, the per-
formance of analog modulation schemes is shown. Here,
the AM-SSB-SC and AM-DSB-SC schemes show a low
accuracy performance below 30% at SNR 0 dB. Furthermore,
the AM-DSB-SC scheme is difficult to predict over the entire
range of SNR, compared with the other modulation schemes.

In Fig. 7, the accuracy performance of each modulation
scheme is shown at SNRs 0 dB and 10 dB. Here, the aver-
age accuracies at SNRs 0 dB and 10 dB are 56.64% and
91.48%, respectively. In Fig. 7a, as 128APSK and 128QAM
are the most difficult to predict, they cannot be distinguished
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FIGURE 6. Classification results of digital and analog modulation.

TABLE 5. Summarization of classification accuracy.

from nine modulation schemes. In Fig. 7b, AM-DSB-SC and
64QAM are the most difficult to predict. Here, AM-DSB-SC
cannot be distinguished from 128APSK and 128QAM, and
64QAM cannot be distinguished from AM-SSB-SC. The
reference confusion matrices at 10 dB SNR can be referred
by [43] To compare the proposed model with the baseline

model (MCNet) regarding outstandingness. The overall clas-
sification accuracy for each model is summarized in Table 5.

The computational complexity of the models, which is an
important factor in CR networks for real-time communica-
tion, is considered. The computational complexity is sum-
marized in Table 6 for each model. In accordance with the
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FIGURE 7. Confusion matrix of proposed model. (a) SNR=0 dB,
Accuracy: 56.64%; (b) SNR=10 dB, Accuracy: 91.48%.

used trainable parameters CNN-AMC is the heaviest model
due to a sharp rise in the fully-connected layer, which uses
55.3% and 58.9% more trainable parameters than VGG and
ResNet, respectively. However, the prediction time is 3% and
13% shorter than VGG and ResNet because a few number
of the convolutional layers are applied. VGG and ResNet
are heavier than MCNet, which uses 44.7% and 39.8% more
trainable parameters, respectively. However, the prediction
time of them is similar with VGG and ResNet because both
depth-wise concatenation operations and addition operations
are performed many times by the structural character of
MCNet. The proposed model is computationally the lightest
model, which uses 67.6% fewer trainable parameters than
MCNet because not only small and asymmetric kernels are
applied, but the layer depth is not deep. In terms of the predic-
tion time, the proposed model requires a relatively very short
period compared with the deep learning-based models—
which is 0.057 ms—for predicting a signal. Through the
comparison of the prediction time, it is observed that the
proposed model can save 54.4% more than MCNet, which
shows the excellence of the proposed model. In contrast,
ResNet requires the longest time period in the models, and it
spends 60.9% more than the proposed model. A comparison

TABLE 6. Summarization of computational complexity.

with the classical models, the proposed model requires a
longer period for prediction due to the simple structure of
kNN and DT, which depends on the size of a dataset. The
complexity of SVM is higher than kNN and DT because it
should makes multiple classifiers according to the number of
class of a dataset. In the case of training time for each model,
it can be changed by the hardware performance. Further,
if multiple tasks work on PC when the dataset is training the
training time can be changed. Thus, the training time is not
displayed.

V. CONCLUSION
In this paper, a newCNNarchitecture for AMCwas proposed.
The proposed architecture was designed by applying a bottle-
neck and asymmetric convolution structure, which can reduce
the computational complexity, to consider the real-time com-
munication for CR networks. The dataset DeepSig:RadioML
2018.01A, which has 24 modulation classes, was used for
performance analysis. The simulation results showed that the
classification accuracy performance of the proposed model
was better in the SNR range from −4 dB to 20 dB, where the
proposed model achieved classification accuracies of 5.52%
and 5.92% at SNRs 0 dB and 10 dB, respectively. In terms
of the computational complexity, the proposed model saved
over 67% trainable parameters and reduced the prediction
time for a signal by over 54.4% compared with those of
MCNet. Finally, the robustness of the proposed model was
demonstrated via a comparisonwith the conventional models.
For future works we will propose a novel approach for the
difficult modulation (e.g. M-QAM, M-APSK and M-PSK) to
predict in the harsh environment based on this study.
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