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ABSTRACT Ultrasound imaging has been widely used for clinical diagnosis. However, the inherent
speckle noise will degrade the quality of ultrasound images. Existing despeckling methods cannot deliver
sufficient speckle reduction and preserve image details well at high noise corruption and they cannot realize
real-time ultrasound image denoising. With the popularity of deep learning, supervised learning for image
denoising has recently attracted considerable attention. In this paper, we have proposed a novel residual
UNet using mixed-attention mechanism (MARU) for real-time ultrasound image despeckling. In view of
the signal-dependent characteristics of speckle noise, we have designed an encoder-decoder network to
reconstruct the despeckled image by extracting features from the noisy image. Furthermore, a lightweight
mixed-attention block is proposed to effectively enhance the image features and suppress some speckle
noise during the encoding phase by using separation and re-fusion strategy for channel and spatial attention.
Besides, we have graded the speckle noise levels with a certain interval and designed an algorithm to
estimate the noise levels for despeckling real ultrasound images. Experiments have been done on the natural
images, the synthetic image, the image simulated using Field II and the real ultrasound images. Compared
with existing despeckling methods, the proposed network has achieved the state-of-the-art despeckling
performance in terms of subjective human vision and such quantitative indexes as peak signal to noise ratio
(PSNR), structural similarity (SSIM), equivalent number of looks (ENL) and contrast-to-noise ratio (CNR).

INDEX TERMS Ultrasound image, speckle noise, supervised learning, mixed-attentionmechanism, residual
UNet.

I. INTRODUCTION
Ultrasound imaging has become one popular medical
imaging technology due to its non-invasive, inexpensive and
real-time advantages. However, the coherent nature of ultra-
sound imaging results in inherent speckle noise in the ultra-
sound image [1]. The presence of speckle noise reduces
the resolution and contrast of the image, and adversely
affects subsequent image processing and analysis tasks such
as image segmentation, image registration, image feature
extraction and recognition [2]. Therefore, speckle noise
reduction from medical ultrasound images is highly impor-
tant for improving image quality.

The distribution of ultrasound speckle noise is signal
dependent and is governed by Fisher-Tippett distribution [3]
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or Gamma distribution [4], which is represented as:

u(x, y) = v(x, y)+ v(x, y)γ η(x, y) (1)

where (x, y) is the pixel location, v(x, y) is the noise-free
image, u(x, y) is the noisy image, η(x, y) is Gaussian noise
distributed with zero-mean and variance σ 2, and the factor γ
is related to ultrasound devices and additional processing.
Extensive studies indicate that γ = 0.5 can be used to model
speckle noise in the ultrasound image [2].

Up to now, various methods have been proposed for ultra-
sound image despeckling. In general, the existing despeck-
ling methods can be classified as frequency domain based
methods and spatial domain based ones. As for the fre-
quency domain based methods, the popular techniques
are the wavelet based methods [5]–[8]. These methods
work by transforming speckle noise into additive noise
and then removing it within the wavelet domain. However,
the despeckling performance of these methods is affected
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because speckle noise in the real ultrasound images is not
purely multiplicative noise and the artifacts related to the
choice of mother wavelet may be introduced.

The traditional spatial domain based methods, such as
Frost filter [9], Kuan filter [10], squeeze box filter (SBF) [11]
and speckle reducing anisotropic diffusion filter (SRAD) [12]
are based on local comparison of pixels. The shortcom-
ing of these methods is that they cannot adequately reduce
noise while preserving image details effectively. To address
this problem, the non-local means (NLM) method has been
proposed by Buades et al. [13]. This method explores the
self-similarities between image patches instead of individual
pixels, and restores each image pixel by the weighted average
of all pixels in a search window. Despite the success in
additive noise reduction, the NLM method by its very nature
is unsuitable for speckle noise reduction. To overcome this
drawback, several modified NLM approaches have been pro-
posed for despeckling. Coupe et al. [14] have introduced the
optimized Bayesian non-local means (OBNLM) filter which
determines the similarity between two image patches based
on the Pearson distance derived by the Bayesian framework
instead of the Euclidean distance in the traditional NLM
method. Yang et al. [15] have presented a hybrid despeckling
approach which combines the NLM with the local statistics
of noise. In this method, the local statistics of speckle noise
is used to pre-filter the ultrasound image and the non-local
similarity is computed based on the pre-filtered image.
Santos et al. [16] have derived the new stochastic distances
for the Fisher-Tippett distribution based on well-known sta-
tistical divergences, and used them as patch distance mea-
sures in a modified version of the BM3D algorithm for
despeckling log-compressed ultrasound images. Yu et al. [2]
have proposed the PCANet based NLMmethod, in which the
intrinsic features of image patches extracted by the PCANet
instead of the pixel intensities are introduced to determine the
nonlocal similarity of ultrasound images.

The above-mentioned despeckling methods cannot deliver
sufficient noise reduction while preserving image details
especially at high speckle corruption. Meanwhile, most of
these methods generally cannot realize real-time ultrasound
image despeckling due to the involved complicated opera-
tions. The deep learning, as a popular algorithm in the field of
machine learning, provides a possible and valuable solution to
real-time and effective ultrasound image despeckling because
it can automatically learn the intrinsic features from the train-
ing data, and can facilitate highly efficient image denoising.

The various deep learning models such as deep belief
network (DBN) [17], stacked auto-encoder (SAE) [18],
convolutional neural network (CNN) and recurrent neural
network (RNN) have been proposed. Among these models,
the CNN is very popular and many CNN-based models
have been successfully applied to such image processing and
analysis tasks as classification [19], [20], super-resolution
[21], [22], segmentation [23]–[25] and image denoising
[26]–[30]. For the image denoising task, Zhang et al. [26]
have proposed a deep CNN denoiser (DCNND) for image

restoration inwhich the dilated convolution is used to produce
larger receptive field and the residual learning is adopted to
maintain a noise map corresponding to the input noisy image.
Later, they have taken one step forward by investigating the
construction of feed-forward denoising convolutional neural
network (DnCNN) [27] to embrace the progress in very deep
architecture, learning algorithm and regularization method
into image denoising. The twomodels performwell in remov-
ing Gaussian noise by using residual learning strategy, but
they cannot work well for speckle noise removal because they
cannot accurately estimate the residual term v(x, y)γ η(x, y)
in equation (1). Chierchia et al. [28] have proposed a CNN
for synthetic aperture radar (SAR) image despeckling using a
residual learning strategy to recover the speckle component.
Wang et al. [29] have proposed a SAR image despeck-
ling CNN (ID-CNN) by integrating the convolutional layers
involving batch normalization (BN) and the rectified linear
unit (ReLU) with a componentwise division residual layer.
The two methods work on the purely multiplicative noise
model and use division or logarithmic transformation for
residual learning. However, such a model cannot represent
characteristics of speckle noise in the real ultrasound image.

In this paper, we have proposed a novel mixed-attention
mechanism based residual UNet (MARU) for real-time
speckle noise reduction. Furthermore, we have made
improvements on the non-local neural network [31] and
GCNet [32] and proposed a lightweight mixed-attention
block which can maintain both channel and spatial attention
using separation and re-fusion strategy with very little addi-
tional memory and time consumption. In order to cope with
the complex noise situation in the real ultrasound images,
we have graded the noise levels and designed an algorithm to
estimate the levels of speckle noise for MARU based image
despeckling. The experiments on the natural images, the
synthetic image, the image generated by Field II and the real
ultrasound images demonstrate the advantage of the proposed
network over several traditional despeckling methods and
deep learning based methods.

The remainder of this paper is structured as follows. The
proposed despeckling method is detailed in Section II. Then
we will make an analysis of the proposed network in Section
III. In Section IV, experimental results of the proposed
method and other compared methods on different test images
are provided. Finally, conclusion and future research direc-
tions are given in Section V.

II. THE PROPOSED DESPECKLING METHOD
A. THE PROPOSED DEEP RESIDUAL UNet
The proposed network architecture is shown in Fig. 1(b),
which is a deep residual UNet [33], [34] with mixed-attention
mechanism. We have utilized two-stage down/up sampling
and stacked two residual blocks [35], [36] as shown
in Fig. 1(a) at each stage. Here we have replaced the original
ReLU with LeakyReLU [37]. During the encoding phase,
the input image will firstly pass through a convolutional layer
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FIGURE 1. The framework of the proposed deep residual UNet with mixed-attention block. (a) The standard residual block with two pre-activated
units, i.e. BN-LeakyReLU-Conv2D; (b) The architecture of the proposed network.

and a mixed-attention block. Leaving aside max-pooling or
average-pooling, we will use a convolutional layer with stride
of 2 to halve the size of feature maps [38] and double the
number of channels to avoid the representational bottleneck
mentioned in [39]. During the decoding phase, the deconvo-
lution layer [40] will be used for upsampling and then the
feature maps will be added with the skip connection between
the encoding and decoding phases. Finally, a convolutional
layer is used to fuse all feature maps into a despeckled image.

In order to further improve the despeckling performance,
we have proposed a lightweight mixed-attention block based
on the non-local network and GCNet and introduced it into
our method. This block imitates the visual characteristics of
the human eye and assigns weights to each pixel in each
channel, that is, attention mechanism. The attention mech-
anism helps to enhance image features while suppressing
noise. Here, the non-local network has been proposed by
He et al. [31]. Inspired by the idea of non-local means,
He et al. [31] first introduced this idea into the deep learning
field and defined a generic non-local operation in the deep
neural network as:

zi =
1

C(u)

∑
∀j

f (ui, uj)g(uj) (2)

where j is the index that enumerates all possible positions. u
is the input image and z is the output image with the same
size to u. A pairwise function f computes a scalar which
represents the relationship between i and all j. The function g
computes a representation of the input signal at the position j.
The response is normalized by a factor C(u).
The architecture of the non-local network (NLNet) is

shown in Fig. 2(a). It is indeed a great idea, but the mem-
ory and time consumption will increase dramatically with
the increasing image size. This is very disadvantageous for

FIGURE 2. The architecture of the NLNet and the GCNet. (a)NLNet;
(b)GCNet. Here r is the compression coefficient.

the real-time denoising of ultrasound images due to their
relatively large size. To address this issue, Yue et al. [32]
have proposed the global context network (GCNet) as shown
in Fig. 2(b) based on the observation that the global contexts
modeled by the non-local network are almost same for differ-
ent query positions within an image. This means that we can
use the global context of one point to represent all points of
an image to greatly reduce the calculation. Correspondingly,
equation (2) can be simplified as:

z1 =
1

C(u)

∑
∀j

f (u1, uj)g(uj) (3)

where the output z1 is the global context of each point in the
input u.

Based on the above researches, we have proposed the
mixed-attention block with both channel and spatial attention
using separation and re-fusion strategy. The architecture of
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FIGURE 3. The architecture of the proposed mixed-attention block. The operations of adjusting the shape of tensor are omitted for simplicity.

this block is shown in Fig. 3. Firstly, the global context of each
channel is modeled as done in the GCNet, and then channel
attention is obtained after interaction between channels and
softmax activation. Secondly, all channels are fused using the
obtained channel weights, and then the spatial attention will
be obtained after the interaction between pixels and softmax
activation. Finally, the channel weights, spatial weights and
inputs are multiplied for each point to produce the scaled fea-
ture maps. Besides, residual connection is added for identity
mapping. This attention module is modified as:

F ′ = (1+Mc ·Ms) · F (4)

where Mc is the channel attention matrix with the shape of
[1, 1,C], andMs is the spatial attention matrix with the shape
of [H ,W , 1]; F and F ′ are the input feature maps and the
output ones, respectively.

B. SPECKLE NOISE GRADING AND ESTIMATION
Considering that σ is unknown for the real ultrasound images,
We have graded the noise levels and designed an estimation
algorithm. Because it is unrealistic to train the model for each
σ value, it is necessary to grade the noise levels according
to a certain interval. We have set the interval of grading
as 0.25 based on the comparative experimental results in
Section III(C).
When it comes to noise level estimation, we can get the

η(x, y) item by inverting equation (1). The problem is that
there are not noise-free images for real ultrasound images.
However, the mean value of the smooth area before and after
adding noise can be considered to be almost same due to
Gaussian distribution characteristics of η(x, y). Based on the
above consideration, we will divide the whole image into
many approximately uniform sub-areas and calculate their
mean standard deviation by inverting equation (1) as:

σ =
1
N

N∑
i=1

std((ui − ui)/
√
ui) (5)

where ui is the sub-area, ui is the mean of ui, N is the number
of sub-areas and std denotes the standard deviation. Through
experiments, we have determined the size of sub-areas to
be 6 × 6 pixels. Since there is zero-filled region in the real
ultrasound images, we will only select the areas whose mean
value is greater than zero. Besides, this estimation process is
only required once at the beginning of a clinical inspection.

C. TRAINING OF THE PROPOSED NETWORK
To train our network, we will use the Berkeley segmenta-
tion dataset (BSD400) [27] consisting of 400 images of size
180 × 180 for training. Considering that the total receptive
field during the encoding phase is no more than 64, we will
set the patch size as 64 × 64 and accordingly obtain about
25600 patches after data augmentation such as scale, flip
and rotation for training. Then we will add speckle noise to
these patches to produce the noisy image patches according
to equation (1).

The proposed network is realized with Python based on
Keras 2.2.4 on a Ubuntu 16.04, and it is run on a computer
with a Core I7-6950X CPU and 96G RAM. The NVIDIA
GTX 1080Ti GPU with CUDA 10.1 is used for acceleration.
The despeckling network will be trained using the Adam opti-
mizer with default setting and mean square error (MSE) loss
with total variation (TV) regularization [29] for 100 epochs.
The loss function is defined as:

L = ||v− v′||22 + λTV (||∇hv
′
||
2
2 + ||∇vv

′
||
2
2) (6)

where v′ is the output and v is the label, and ∇h/∇v denotes
the gradient operator along the horizontal/vertical direction.
λTV is a regular coefficient set as 0.05.

Here, it should be noted that although the MSE loss
has shown to work well on many image restoration tasks,
it may result in various artifacts on the final estimated image.
To overcome this problem, the TV regularization is utilized
here to maintain the smoothness of the image and atten-
uate the artifacts that may be caused by image denoising.
As shown in Fig. 4, we can see that the despeckled result using
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FIGURE 4. The denoised result of the proposed method tested on a
synthetic image with or without TV regularization. (a) MSE loss with TV
regularization, (b) MSE loss without TV regularization.

TV regularization is smoother and involves less artifact than
that resulting from only using MSE loss.

D. APPLICATION OF THE MARU METHOD
When the proposedMARUmodel is trained, it can be used for
image despeckling. Fig. 5 shows the application framework
of the proposed MARU method. For a real ultrasound image,
we will firstly estimate its noise standard deviation and
determine the noise level using the speckle noise estimation
method in Section II(B). Secondly, we will select the corre-
sponding trained MARU model for despeckling according to
the determined noise level.

FIGURE 5. The application framework of the proposed MARU method.

III. ANALYSIS OF THE PROPOSED NETWORK
A. RESIDUAL CONNECTION AND NETWORK DEPTH
To verify the role of residual connection, we will conduct sev-
eral comparative tests with or without residual connections on
a test dataset containing 68 natural images from BSD68 [43].
Besides, we will also conduct several comparative tests with
different sampling stages of residual UNet to determine the
proper network depth.

In order to quantitatively measure the despeckling per-
formance, two well-known evaluation indexes such as
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) [41] are used for performance appreciation, which are
defined as:

PSNR = 10 lg
(

2552

1
WH

W∑
i=1

H∑
j=1

(v′(i, j)− v(i, j))2

)
(7)

SSIM =
(2µv′µv + C1)(2δv′v + C2)

(µ2
v′ + µ

2
v + C1)(δ2v′ + δ

2
v + C2)

(8)

where W and H represent the width and the height of the
image, respectively. v is the noise-free image and v′ is the
denoised image. µv and µv′ are the mean intensity of images
v and v′, respectively. δv and δv′ are the standard deviation of
images v and v′, respectively. δv′v is the covariance between
images v and v′. C1 and C2 are the small constants to stabilize
SSIM.

Fig. 6(a) and Table 1 show that the network perfor-
mance improves as the number of sampling stages increases.
However, each additional sampling stage will increase the
number of parameters by more than four times, which will
lead to more training time and prediction time and is more
likely to cause overfitting. The observation from the vali-
dation curve of the network at different depths in Fig. 6(a)
shows that the network has already involved overfitting when
the sampling stage is 3. Considering that low-level features
are more conducive to protecting image details for denoising
task, we have determined the sampling stage as 2. Besides,
Fig. 6(b) shows that residual connection can help the network
converge better and faster. Thus, we have introduced the
residual connection into our network.

B. MIXED-ATTENTION BLOCK
In order to prove the validity of this mixed-attention block,
we will insert it and GCNet respectively behind the first
convolutional layer of the baseline (i.e., residual UNet) where
the backward transmission of noise information can be sup-
pressed more effectively. The comparative test results on
BSD68 are shown in Table 2. It can be seen that the average
PSNR value of baseline+mixed-attention block is 0.21dB
higher than that of baseline and 0.11dB higher than that
of baseline+GCNet. Clearly, the mixed-attention block pro-
vides the performance improvement with very little extra
parameters and time consumption.

C. NOISE LEVEL GRADING AND ESTIMATION
To verify the reasonableness of the grading interval
of 0.25 and the effectiveness of the estimation algorithm,
we have conducted a series of comparative experiments.
Fig. 7 shows the despeckled results of the synthetic image
corrupted with different speckle noise using the proposed
model. From Fig. 7, we can see that a specific model using
higher noise levels than the real ones can ensure good restora-
tion results and it will produce residual noise when the
noise levels used for the network model are lower than the
real ones. This observation demonstrates that it is prefer-
able to choose a model whose noise levels should not be
lower than the real ones.Meanwhile, the comparison between
Fig. 7(a) and Fig. 7(c) shows that although the former is a little
smoother and the latter has slightly clearer boundaries, the
difference between the two images is very small. The com-
parison indicates that such an interval of 0.25 is reasonable.

Besides, we have tested the estimation algorithm on
BSD68 with different noise levels and the results are listed
in Table 3. We can see that the proposed estimation algo-
rithm can generally estimate the levels of speckle noise with
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FIGURE 6. The training(solid)/validation(dotted) curves of different network architectures. (a) Residual UNet with sampling stages
ranging from 1 to 3. (b) The curve of UNet with or without residual connection when the number of sampling stages is 2.

TABLE 1. The comparative results of different sampling stages and wether to utilize residual connection on BSD68 when σ = 2.00.

TABLE 2. The PSNR, SSIM, parameters and time consumption of baseline structure and structures added with GCNet and mixed-attention block operating
on BSD68 when σ = 2.00.

TABLE 3. The estimated and real noise levels for the BSD68 corrupted with different speckle noise.

acceptable errors in that the estimated noise levels are slightly
higher than the real low noise ones and slightly lower than the
real medium and high level ones.

IV. EXPERIMENTAL RESULTS
To demonstrate the superiority of the proposed network in
terms of despeckling performance, it will be compared with
such traditional well-known despeckling algorithms as SBF,
SRAD, OBNLM and PCA-NLM methods and such deep
learning based methods as ID-CNN, DCNND and DnCNN.
Experiments have been done on the BSD68, the synthetic
image, the simulated image by Field II and the real ultrasound
images.

The datasets used in this paper are listed in Table 4. The
Set25600 is cropped from BSD400 after data augmentation
such as scale, flip and rotation for training. Besides, one
percent of this set is randomly chosen for cross-validation.
The BSD68 will be used to compare PSNR and SSIM values
and the ultrasound images of different organs will be used to
test the performance of all evaluated methods.

A. THE BSD68
This experiment is conducted on the BSD68 corrupted by
various levels of speckle noise based on equation (1) with
σ = 2.0, 3.0, 4.0 and 5.0. Table 5 lists the average PSNR
and SSIM values of all evaluated methods. Besides, the

195332 VOLUME 8, 2020



Y. Lan, X. Zhang: Real-Time Ultrasound Image Despeckling Using Mixed-Attention Mechanism Based Residual UNet

FIGURE 7. Despeckled results of the synthetic image corrupted with
different speckle noise using the proposed model. (a) Model using
σ = 3.00 when the real σ = 2.75, (b)Model using σ = 3.00 when the real
σ = 3.25, (c) Model using σ = 2.75 when the real σ = 2.75, (d)Model using
σ = 3.25 when the real σ = 3.25.

TABLE 4. The datasets used in this paper.

parameters, depth, floating point operations (FLOPs) and
average time for CNN-based methods are also listed
in Table 6. The highest PSNR and SSIM values at each

noise level are marked in bold. The observation from Table 5
shows that the deep learning basedmethods generally provide
higher PSNR and SSIM values than the traditional despeck-
ling methods except that the ID-CNN has relatively poor
performance at high noise levels. However, the proposed
MARU outperforms other networks due to its higher PSNR
and SSIM at each noise level. The advantage of the MARU is
due to its enhanced feature extraction ability resulting from
the distinctive network structure and the increase in network
depth and parameters. In addition, due to the adoption of
encoding-decoding network structure, our method involves
fewer FLOPs and the inference speed is faster than DnCNN.

B. THE SYNTHETIC IMAGE
Fig. 8 shows the despeckled results of SBF, SRAD, OBNLN,
PCA-NLM, ID-CNN, DCNND, DnCNN and the proposed
MARU on the synthetic image with σ = 3.0. Obviously,
the SBF and SRADmethods perform poorly in speckle reduc-
tion and provide jagged or over-smoothed denoised results.
By comparison, the NLM based methods deliver sufficient
speckle reduction. However, the OBNLM and PCA-NLM
methods generate the blurred boundary and some artifacts as
shown in Fig. 8(e) and Fig. 8(f). As for deep learning based
methods, the ID-CNN and DCNND remain the residual noise
to different extent and generate the obvious artifacts as shown
in Fig. 8(g) and Fig. 8(h). The DnCNN also produces the
unwanted artifacts in Fig. 8(i). By comparison, the MARU
not only removes speckle noise effectively but also pre-
serves image details well with very little artifacts as shown
in Fig. 8(j).

C. THE SIMULATED IMAGE
A more challenging and relevant image has been generated
for the cyst phantom based on Field II simulation. The cyst
phantom consists of a collection of point targets, five cyst
regions and five highly scattering regions. The simulated
image is shown in Fig. 9(a). For this simulated image, its
restoration is highly difficult because the left-most point tar-
gets are heavily corrupted by noise and they are significantly
smaller than other point targets. Fig. 9 shows the denoised
results for all evaluated methods. In Fig. 9(b) and Fig. 9(c),

TABLE 5. The average PSNR and SSIM values of various despeckling methods on the BSD68 with different levels of speckle noise.

VOLUME 8, 2020 195333



Y. Lan, X. Zhang: Real-Time Ultrasound Image Despeckling Using Mixed-Attention Mechanism Based Residual UNet

FIGURE 8. Visual comparison of despeckled results of various despeckling methods on the synthetic image with σ = 3.0. (a)The synthetic
image, (b)Noisy image, (c)SBF, (d)SRAD, (e)OBNLM, (f)PCA-NLM, (g)ID-CNN, (h)DCNND, (i)DnCNN, (j)MARU.

TABLE 6. The depth, parameters, FLOPs and average time of CNN-based
methods on BSD68.

the SBF method leads to the jagged boundary and performs
badly in speckle noise suppression while the SRAD method
produces the highly blurred image. As for the OBNLM and
PCA-NLM methods, they generate better results with less
remaining noise but they cannot recover the point targets
effectively as shown in Fig. 9(d) and Fig. 9(e). For the deep
learning based methods, the ID-CNN and DCNND remain
noticeable speckle noise in the despeckled image and gener-
ates some artifacts in Fig. 9(f) and Fig. 9(g). Although the
DnCNN generates better despeckled result than the ID-CNN

and DCNND, it leads to the loss of some point targets as
shown in Fig. 9(h). As for the proposed method, the back-
ground area has been well smoothed, and the sharpness of
point targets has been preserved relatively well as shown
in Fig. 9(i). The visual comparison indeed demonstrates the
advantage of the MARU over other compared methods in
both speckle noise reduction and detail preservation.

Since there are no noise-free images for the simulated
image and real ultrasound images so that PSNR and SSIM
values cannot be calculated, two widely used evaluation
indexes, i.e., equivalent number of looks (ENL) and contrast-
to-noise ratio (CNR) [42] are utilized to quantitatively appre-
ciate the despeckling performance, which are defined as:

ENL =
µ2
b

σ 2
b

(9)

CNR =
|µb − µo|√
σ 2
b + σ

2
o

(10)
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FIGURE 9. Visual comparison of despeckled results of various despeckling methods on the Field II simulated image. (a)The
simulated image and four ROIs marked with different colors, (b)SBF, (c)SRAD, (d)OBNLM, (e)PCA-NLM, (f)ID-CNN, (g)DCNND,
(h)DnCNN, (i)MARU.

where µo and µb denote the mean intensity of object
and background regions, respectively. σo and σb denote
the standard deviation of object and background regions,
respectively.

Four pairs of regions of interest (ROIs) marked with var-
ious colors as shown in Fig. 9(a) are selected to evaluate
the despeckling performance of these compared methods.
The ENL and CNR values are listed in Table 7. For ENL,
the proposed method provides the highest values in all ROIs,
which means that our method produces the best despeckled
result for the background area. As for CNR, the proposed
method achieves the highest values for ROI 1 and ROI 2,

and slightly smaller values than the highest ones for ROI 3
and ROI 4. The ENL and CNR comparisons indicate that
our method can preserve image details well while removing
speckle noise effectively.

D. THE REAL ULTRASOUND IMAGES
To further verify the practicality of the proposed MARU
method, it will be applied to despeckling the real ultrasound
images of cyst, fetus and kidney. The despeckled results of
the MARU method will be compared with those of other
evaluated methods.
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TABLE 7. The ENL/CNR for the evaluated methods implemented in four ROIs in the simulated image.

FIGURE 10. Visual comparison of despeckled results of various despeckling methods on a real cyst ultrasound image. (a)The
real cyst image with four ROIs marked with different colors, (b)SBF, (c)SRAD, (d)OBNLM, (e)PCA-NLM, (f)ID-CNN, (g)DCNND,
(h)DnCNN, (i)MARU.

Fig. 10 shows the despeckled results for the various meth-
ods on the real cyst ultrasound image [44] whose noise level is
chosen to be 2.75 for our model based on the noise estimation
result. Clearly, the results of the SBF and SRAD methods
remain much noise in the denoised images. As for such NLM
based methods as the OBNLM and the PCA-NLM, they
smooth the structure information somewhat excessively as
shown in Fig. 10(d) and Fig. 10(e). The ID-CNN, DCNND
and DnCNN methods lead to the loss of some image details
as shown in Fig. 10(f)-10(h). By comparison, the MARU can
smooth out speckle noise effectively while better preserving
the image details such as the fine details marked with the red
box in Fig. 10(i).

To quantitatively analyze the despeckling performance
of various methods, we will select four ROIs as shown
in Fig. 10(a) to calculate their ENL and CNR. Table 8 lists
ENL and CNR values for each evaluated method. Consistent
with the visual effects in Fig. 10, the ENL values of NLM
based methods are generally higher while our method follows
closely. As for CNR, the proposed method achieves the high-
est values in all regions. the comprehensive consideration of
ENL and CNR demonstrates that our method performs very
well in speckle noise suppression and detail preservation.

Besides, another clinical fetus ultrasound image [45] is
used to further visually compare the despeckling performance
of all evaluated methods. For this image, the chosen noise
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FIGURE 11. Visual comparison of despeckled results and profiles of pixel intensities along the highlighted line for the various
despeckling methods implemented on a real fetus ultrasound image. (a) The fetus ultrasound image, (b) SBF, (c) SRAD,
(d) OBNLM, (e) PCA-NLM, (f) ID-CNN, (g) DCNND, (h) DnCNN, (i) MARU.

TABLE 8. The ENL and CNR for the evaluated methods implemented in four ROIs in the cyst ultrasound image.

level is 2.50 based on the noise estimation result. To make a
clear comparison, the profiles of pixel intensities along the

highlighted line plotted in the original image are also shown
in Fig. 11(a). As shown in Fig. 11(b) and Fig. 11(c), the SBF
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FIGURE 12. Visual comparison of despeckled results and profiles of pixel intensities along the highlighted line for the various
despeckling methods implemented on a real liver ultrasound image. (a)The kidney ultrasound image, (b)ID-CNN, (c)DCNND,
(d)DnCNN, (e)MARU.

and SRAD methods perform poorly in speckle reduction.
The two NLM based methods both over-smooth the images
to some extent. Meanwhile, the OBNLM method leads to
the loss of such details as spine marked with the red box
in Fig. 11(d) and the PCA-NLM method introduces very
obvious artifacts marked with the red box in Fig. 11(e). As for
deep learning based methods, the ID-CNN and the DnCNN
generate some artifacts around the boundary marked with the
red boxes in 11(f) and Fig. 11(h). The DCNND damages
such details as the spine marked with a red box in 11(g). The
denoised result and the profile of pixel intensities in Fig. 11(i)
show that the proposed method can suppress speckle noise
more sufficiently than the DCNND and it preserves such
details as the spine better than the DnCNN without introduc-
ing artifacts.

We further compare the deep learning based methods on
the real kidney ultrasound images [46]. Likewise, the visual
comparison of despeckled results and the profiles of pixel
intensities along the highlighted lines in the original images
will be made. For this artery image, the chosen noise level
is 3.00 based on the noise estimation result. It is easy to see

from Fig. 12 that the proposed MARU method can produce
smoother background regions and preserve image structure
information better than the compared deep learning based
methods, especially in the red box area.

V. CONCLUSION
In this paper, a novel convolutional neural network is
proposed for real-time ultrasound image despeckling. The
introduction of residual network and the mixed-attention
mechanism boosts the denoising performance of this network
effectively. Besides, the speckle noise estimation algorithm
automates the denoising process and ensures its application
to real ultrasound image despeckling. Experiments on the
BSD68, the synthetic image, the simulated and clinical ultra-
sound images quantitatively demonstrate the advantage of the
proposed method over other compared methods in terms of
PSNR, SSIM, ENL and CNR. Visual comparison shows that
the proposed method outperforms the compared despeckling
methods in terms of speckle noise reduction and detail preser-
vation. Our future work will be focused on the estimation of
speckle noise levels in the real ultrasound images using deep
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learning and extension of the proposed method to denoising
other medical images such as computed tomography (CT),
magnetic resonance (MR) and positron emission computed
tomography (PET) images.
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