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ABSTRACT Smart grids are developing rapidly, leading to the need for accurate forecasts of power
consumption. However, developing a precise time series model for energy forecasting is difficult. It has to
be trained using optimal meteorological features such as temperature and time lags to qualify for a beneficial
model. We have proposed an approach that uses an ensemble machine learning model based on XGBoost,
support vector regressor (SVR), and K-nearest neighbors (KNN) regressor algorithms.We have also used the
genetic algorithm (GA) to predict total load consumption from optimal feature selection. Using Jeju island’s
electricity consumption data as a case study shows that the proposed ensemble model optimized with GA is
more accurate than the individual machine learning models. Using only the best-selected weather and time
features, the proposed model records all the features of a complicated time series and shows a reduction in
the mean absolute percentage error (MAPE) and the root mean square log error for the week ahead forecasts.
We got 3.35%MAPEof the threemonths test data by applying the proposedmodel. The smart grids operators
can manage resources effectively to provide excellent services to the consumers based on the recommended
model outcomes.

INDEX TERMS Energy forecasting, ensemble model, feature engineering, genetic algorithm, K-nearest
neighbors, meteorological features, power consumption, smart grids, support vector regressor, XGBoost.

I. INTRODUCTION
Energy is essential for national development from a social,
economic, and environmental point of view. It has a signif-
icant impact on industry and agricultural products, health
and hygiene, population, education, and human life quality.
Various energy sectors require time-ahead energy forecast-
ing systems. Energy load forecasting is an integral part of
the energy planning industry [1]. Smart grids prove helpful
in addressing the power grid challenges such as reliability,
economics, safety, greenhouse gas, and carbon emissions [2].
Power systems enable companies to make various decisions
related to power systems, delivery planning, product stor-
age, safety measures, demand-side management, and finan-
cial planning. Prediction is particularly crucial for the future
operation of the smart grids. Weak ahead demand forecasts
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help the smart grids to manage the future supply better.
Traditionally, statistical and engineering methods have been
used to predict future demand using tables and maps. These
traditional methods mainly take into account the influence
of the weather and the calendar. These features are currently
being used to develop forecasting models in new ways. Load
forecasting techniques can be divided into short, medium, and
long-term categories [3]. Estimated short-term forecasting
consists of Hourly, daily, or weekly forecasts; The medium-
term forecasting consists of months to one year, and long-
term forecasting range from one year to ten years. It is worth
noting that it is an effective way to estimate the load that
will significantly impact any power system’s financial perfor-
mance. Most decisions can be made based on the calculated
results. Because the relationship between many parameters
is complex and unstable, electric forecasting can be sep-
arated depending on weather conditions and forward load
structure. Various machine learning techniques have been
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proposed using algorithms of varying qualities to predict
power loads [4]. Due to the rapid economic growth driven
by population growth and the steady increase in electricity
demand in large cities, power forecasting plays an essential
role in monthly time measurements. Weather is one of the
main features for power demand, so it is now common for
models to include climate changes, for example, temperature,
humidity, wind speed, and cloudiness [5]. It is imperative to
decidewhichweather feature can be conceived. There are five
weather stations on Jeju Island, and eachweather station takes
readings on an hourly or sub-hourly basis.

As a case study, we collected time-series data of energy
consumption on Jeju island. Jeju island is the largest island
in Korea. Jeju energy corporation (JEC) aims to stop energy
conveyed from the Korean mainland and consume only
renewable energy to satisfy all electricity needs. Renewable
energy sources are cheaper as compared to traditional sources
of electricity. Hence they are replacing nonrenewable sources
worldwide [6]. JEC plans to include renewable energy tech-
nology to replace fossil fuel generators and nonrenewable
energy production on the island. The objective of the JEC is
to achieve this in three significant steps. The first step is con-
verting the Gapa island of Jeju into a test laboratory, making
it the first carbon-free island. The following is to increase the
share of renewable energy supply by 50 percent by 2020, and
the last is to transform Jeju island into a carbon-free city by
2030 [7]. We also collected weather data for five different
weather stations on Jeju island. We use the latest machine
learning algorithms to suggest energy forecasting systems.
We simulated a forecast model based on actual data on energy
use and weather data on the island of Jeju, South Korea.
A hybrid machine learning algorithm is proposed. We use
three advanced algorithmsXGBoost, support vector regressor
(SVR), and k-nearest neighbors (KNN) regressor algorithms.
These models are taught and trained based on optimized
features. We have used a genetic algorithm (GA) to obtain
optimal meteorological characteristics such as temperature,
wind speed, rain, humidity, and time lags. Their performance
is better than these simple models. The contributions of this
paper are threefold:
• performed exploratory data analysis of weather and load
consumption data;

• proposed an approach that uses an ensemble machine
learning model based on XGBoost, SVR, and KNN;

• used the genetic algorithm for optimal feature selection
to predict total load consumption;

• compared the proposed model with different prediction
algorithms.

The rest of the article is arranged as follows. Section 2
introduces related publications and articles. Section 3 intro-
duces the proposed hybrid model, genetic algorithm, and
introduces the data collection process. Chapter 4 presents
the process of energy consumption prediction based on
machine learning; it also performs preprocessing, feature
engineering, and training. Chapter 5 presents the performance
results of the proposed model evaluated using Jeju energy

consumption data. It also compares the results with the cur-
rent model. Finally, we conclude in the last section.

II. RELATED WORKS
The research in forecasting and prediction is extensive.
Various forecasting models were conceived and used to
answer the issues posed by the researchers. Electric load esti-
mation is an integral part of the power network. Many coun-
tries are opening electricity markets, increasing participation
of different entities, creating competitive environments, and
reducing costs. In the electricity market, when calculating
the electricity load and the cost of shortening the electricity
market. Load predictions are becomingmore important today,
but traditional algorithms’ performance is not robust and not
acceptable.

Deng et al. [8] presented amulti-scale convolutional neural
network (CNN) with load prediction and timing cognition at
several stages. In the case of multi-scale convolution, CNN’s
capacity increases with access to the load channel’s complex
and essential features. Further, they propose a new framework
that uses probabilistic distribution in the data, for example,
to find relevant properties for better results. The latest models
observed that the proposed model could achieve more accu-
rate results and show excellent stability in multi-step point
and probabilistic forecasting. However, the proposedmethod-
ology performance is not satisfactory in the first step for
direct multi-step prediction, and also the network structure’s
execution is a bit complicated. Wind energy forecasts are a
very effective way of solving wind energy problems due to
wind energy fluctuation and volatility. Shi et al. [9] have
introduced hybrid models to independently use each module
to predict wind power using grey relational analysis and
wind speed distribution features. Each module is measured
based on the different wind speed and the same wind speed
frequency. The case study shows various applications with a
short term of the hybrid predictive model. However, if the
wind power output is lower than ten megawatts, the pro-
posed model’s performance is inferior to the individual mod-
els. Ilbeigi et al. [10] performed research to reduce energy
consumption in Iran. They trained and employed numerous
artificial neural network (ANN) models, assessed the power
required by the office, evaluated the impact of the energy
factor, and performed a comprehensive sensitivity analysis
to find the most effective model. Besides, the building’s
energy needs were analyzed by the grasshopper and Energy
Plus calculation engine. Later, an artificial neural network
was modeled using the Levenberg-Marquardt distribution
medium to predict the most efficient building parameters
based on conventional solar energy. Besides, two different
sensitivity analyses were performed to assess the effect of
significant pillars on energy intake. Finally, the energy pre-
diction was improved using genetic algorithm research. The
results demonstrated that the average energy consumption
decreased by 35% by optimizing energy use in the Genetic
Algorithm case study. However, considering other parameters

VOLUME 8, 2020 196275



P. W. Khan, Y.-C. Byun: GA Based Optimized Feature Engineering and Hybrid Machine Learning

governing energy consumption, new design parameters can
be included and extended to the stated objectives.

Kaur and Ahuja [11] use the Autoregressive integrated
moving average (ARIMA) algorithm to estimate healthcare
organizations’ electricity consumption. The historical energy
consumption dataset from 2005 to 2016 was obtained using
Apollo Hospital in India.When choosing the correct estimate,
many accuracy tools measure forecasts and statistics, such as
root mean squared error and mean percentage error, are used.
They train the model for monthly, two monthly, and quar-
terly electricity consumption forecasting. The results show
that ARIMA is the most appropriate model for predicting
month range. ANN, particle swarm optimization (PSO), and
ARIMA were used by Atienza et al. [12] to forecast and
determine electricity consumption in the Philippines. They
use historical data on electricity consumption from 2008 to
2016 for the prediction of 2017 to 2020. The result revealed
that the use of PSO-ANN and ARIMA models yielded the
highest accuracy rate than of BP-ANN and ARIMA being
tested. However, a more efficient method than grid search
for obtaining the hyperparameters, and a different ANN
architecture for high consistent prediction accuracy can be
used. Short-term Load Forecasting for complex loads amidst
hierarchical layers has been analyzed by Fan et al. [13].
Some regional forecasting systems are in place for segment
analysis to find the region’s optimal partitioning according to
weather and electricity load values. Therefore, the prediction
accuracy is improved. However, the authors have not men-
tioned the feature selection procedure. Besides, algorithms
for collecting information generated by the smart meter in
various categories from traditional bottom-up or top-down
approaches methods have been proposed [14]. Decomposi-
tion based on a load value is also in practice for predicting
the day-ahead intermediate and peak loads. They cluster the
energy data, applying the k-means approach to ascertain the
daily base, medium, and peak loads. Then, a neural network
is utilized as a load forecasting system [15]. In the study of
Clements et al. [16], an algorithm that proposes a method
according to each prediction time using various filtering
coefficients was implemented. However, the linear prediction
model cannot consider the uncertainty of energy shortage and
other factors [17]. Therefore, several nonlinear models have
been studied over the past decade, such as artificial neural
networks [18], Gaussian process regression [19], recurrent
neural networks (RNNs) [20], and LSTM [21] have been
studied over the past decade to accommodate the nonlinearity
of data in a hybrid forecasting model.

Hong et al. [22] examined the spatial relationship between
different types of appliances to predict individual occupants’
short-term strength requirements. An effective short-term
Residential prediction framework provides data collection
model preprocessing data models, training modules, and load
predictionmodels.Within this framework, several time-series
have been run and have accounted for themotion of electricity
and certain spatiotemporal relationships. For predicting user
usage patterns, a learning method based on deep learning and

ResBlocks is proposed. The grid search method is used as the
hyperparameter correction network. The proposed method
and current prediction techniques are evaluated based on real
data sets. The results show that the proposed criteria are better
than other comparison methods. However, the correlation
described in communication networks can be used to further
enhanced the results. The document by Haq and Ni [3] pro-
posed a newer hybrid model for short-term prediction. They
decomposed load demand time series by improved empiri-
cal mode decomposition. Then they improved the accuracy
of the load times during peak periods by increasing the
correlation analysis between the system load and any input
variables. Energy load data from the Australian and Texas
energy markets are used to influence unusual patterns. Thus,
the proposedmodel can producemore robust andmore stable,
accurate predictions.

Liao et al. [23] reported in the paper a method of esti-
mating a similar day short load by XGBoost. They identify
the most critical factors affecting transportation and prepare
the necessary feature map to determine the exact days. Big
data and XGBoost process training techniques were used to
estimate the load forecasting. This process is accurate and can
improve the accuracy of predictions. However, authors have
just focused and targeted similar days for short-term load
forecasting. Ceperic et al. [24] proposed estimating the load
forecasting by support vector regression. To ensure the pro-
posed algorithm’s effectiveness, the model has been trained
and tested on publicly available datasets. Improvements in the
planning strategy can be considered that the efficacy of SVR-
based load forecasting depends on the number of available
models. Ashfaq and Javaid [25] proposed the use of Sup-
port Vector Machine (SVM) and K-Nearest Neighbor (KNN)
for load and price forecasting. However, the authors have
completely ignored the other factors, such as temperature,
holidays, and weekends. Advanced algorithms can be used
to choose proper input features for energy load prediction.
We have proposed to use the genetic algorithm for optimal
feature selection. To obtain better accuracy, we have proposed
to use a hybrid algorithm.

III. METHODOLOGY
Machine learning has been extensively used in the energy
industry to estimate energy consumption. Machine learning
algorithms choose the historical energy consumption data for
training of the model [26]. It develops the necessary proce-
dures in the network and uses a particular training system.
The accurate forecast also depends on the choice of factors.
Figure 1 shows the flow diagram of the designed model.
The data on hourly load consumption and several metrolog-
ical factors are collected from different power companies.
Weather readings are also taken on an hourly basis from
five different weather stations. Metrological factors such as
temperature, wind speed, humidity have a remarkable effect
on accurate forecasts. Exploratory data analysis is performed
on this data. We analyzed the consumption patterns and
their variation with respect to different weather features.
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FIGURE 1. Flow diagram of the proposed forecasting model.

Null values are imputed, and then a genetic algorithm is
applied for the selection of optimal features. The proposed
hybrid model consists of three state of the art machine learn-
ing algorithm, XGBoost, SVR, and KNR. After training the
model, we tested their performance using different measure-
ment methods. We also analyzed the output on different
forecasting parameters, such as 48 hours, week-ahead, and
two months forecasting.

A. DATA ACQUISITION
As a case study, we have collected Jeju island’s energy and
weather data. Jeju Energy Corporation is the energy distrib-
utor on Jeju Island. Electricity is sourced from two primary
sources. The first one is Korea Electric Power Corporation,
and the other is the Korea Power Exchange. These organiza-
tions are responsible for power market processes, power sys-
tems, and real-time shipping to support government planning
and policy-making efforts.

Korea Electric Power Corporation and Korea Power
Exchange provide renewable energy sources. It has three
primary sources. The first one is small-sized solar energy gen-
eration without any contract called behind the meter. The sec-
ond source is the photovoltaic generated solar energy, and
the third renewable energy source is wind power energy. The
Korea Power Exchange provides energy sources from non-
renewable sources, such as fossil fuel-based power sources.
Jeju island has five weather stations to cover all sides of the
island, as shown in Figure 2. Theweather data covers a variety

FIGURE 2. Weather stations location on Jeju island, South Korea.

TABLE 1. Weather station information.

of metrological factors. These factors include temperature,
wind direction, wind speed, humidity, precipitation, snowfall,
insolation, ground temperature, sea level pressure, local air
pressure, dew point temp, and steam pressure. Table 1 shows
the station ID, Latitude, and Longitude information of these
five weather stations, and Table 2 summarizes the properties
of the dataset.

B. ARCHITECTURE OF PROPOSED MODEL
Each machine learning model has its pros and cons. The
primary purpose of machine learning is to train a stable
model that performs well in all respects. [27]. We propose
an ensemble model consisting of XGBoost, SVR, and KNR.
Figure 3 describes the structure of the proposed hybridmodel.
This model requires several input parameters, including the
energy source combined with the weather parameters. After
clearing the data, the feature configuration is done. Follow-
ing preprocessing, the function is transferred to the genetic
algorithm. GA has performed several tasks, including fitness,
selection, reproduction, and mutation. The optimal features
are then passed to the hybrid model. The model is validated
using test data. Different evaluation metrics are also used to
measure the accuracy of predictions.

C. XGBoost
XGBoost algorithm is a supervised machine learning algo-
rithm. XGBoost uses a collection of predictors which come
together to answer. It uses boosting rather than bagging tech-
nique. In boosting, the predictors are made sequentially, not
independently. XGBoost is a gradient boosting algorithm.
It is also known as the ’regularized boosting ’technique.
It allows cross-validation at every repetition of the boosting
process, and thus it is easy to get the exact optimum number
of boosting iterations in a single run [28]. XGBoost is a high-
performance implementation of the gradient boosting frame-
work. In our case, if we have k regression trees, where each
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TABLE 2. Energy Load with weather data summary.

FIGURE 3. Structure of the proposed hybrid model.

tree optimize the previous one, we can define the predicted
target ŷ as explained in Equation 1

ŷi =
K∑
k=1

fk (xi), fkεF (1)

We have to minimize the objective function explained in
Equation 2. This function contains loss and regularization.
Where l explains the loss function, and � represents the
regularization function.

obj(θ ) =
n∑
i

l(yi, ŷi)+
K∑
k=1

�(fk ) (2)

D. SUPPORT VECTOR REGRESSOR
Support vector regression (SVR) belongs to the class of
support vector machines(SVM) [29]. SVM has gained much
consideration in pattern recognition and regression. The most

crucial feature of SVM is that it increases the learning
machine’s overall capacity according to the principle of struc-
tural risk mitigation. SVM’s training is about solving inte-
grated programming, so more and more solutions need to
be found. Using a slope support vector machine, we often
refer to support vector regression, and some researchers have
proposed SVR for the problem of electric charge prediction.
SVR is a regression algorithm, so using SVR, researchers can
work with static values instead of classifying. The support
vector is a data point near the border. The distance between
the two points is the smallest or minimum. Simple regression
tries to reduce the error rate while SVR tries to fit the error
within a particular threshold [30].

E. K-NEAREST NEIGHBORS REGRESSOR
K-nearest neighbors (KNN) regressor is one of the most deli-
cate classification systems that uses adjacent ‘‘K’’ to describe
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predicting data’s value [31]. The k nearest neighbors are
an incomprehensible and unobtrusive algorithm that stores
all known training data information and uses it to predict
outcomes based on equations or distance functions. The KNN
and the system can use each precautionary measure as input
to develop analytical methods that describe future conditions.
When KNN is used as a shift, predictions are made by calcu-
lating the output as one closest neighbor to the input. K shows
the number of neighbors used for prediction. If k is greater
than one output, it can be computed or similar to the average
of all k nearest neighbors’ results with the weight of one.

FIGURE 4. Flow diagram for genetic algorithm.

F. GENETIC ALGORITHM
A genetic algorithm is used for the optimal feature selection.
Figure 4 shows the flow diagram for the genetic algorithm.
It starts with the initialization of the population, and then it
evaluates the fitness function [32]. The reproduction stage
consists of three steps, selection, crossover, and mutation.
In every repetition of the GA, the most suitable chromosomes
generate new individuals. Those individuals or recent param-
eters give the foundation for the succeeding generation [33].
Following reproduction, GA evaluates the new population.
If the new population does not meet the stopping criteria,
it goes back to the reproduction stage and generates a new
population; otherwise, it stops and gives the optimal chromo-
some combination.

IV. FORECASTING
This section covers the three main parts of the proposed
load estimation method. The first is exploratory data analysis,

FIGURE 5. Schematic diagram of hybrid regressor.

the second is feature engineering, and the last is the ensem-
bled model’s training. The proposed hybrid method uses a
genetic algorithm to determine the best parameters. The data
used for estimation are time-series data, and the estimate is
based on Equation 3.

y(t + 1) = f (y(t), . . . , y(t − m+ 1) : F) (3)

F = WF,DF (4)

where y(t) is the vector representation of daily electricity
load at time t . m is the order of a dynamical system, which
is predetermined constant [34]. F is the set of weather and
time features, as explained in Equation 4. These features are
further explained in section IV-B.

yhybridt = α.Exgboostt + α.Esvrt + α.E
knn
t (5)

α = min
M∑
t=1

(yt − ŷt ), 0 ≤ α ≤ 1 (6)

where yhybridt is the final output of hybrid model and
alpha.Exgboostt , alpha.Esvrt , alpha.Eknnt represents the outputs
of XGBoost, SVR and KNN models respectively. α is the
weight coefficient of each model. Determining the weight
coefficients for each model is the crucial step in constructing
a hybrid prediction model. This can be achieved by solving
optimization problems that minimize the absolute number
of errors using Equation 6. Figure 5 depicts the schematic
diagram of the hybrid regressor. It takes the GA-based opti-
mized feature and forwards them to XGBoost, SVR, and
KNN regressors. We have employed the ensemble tech-
nique to get the advantages of different algorithms. Ensemble
machine learning enhances machine learning results through
consolidating various models. The ensemble approach is a
descriptive algorithm that merges multiple algorithms into
a predictive model to reduce bias, deviation, and enhances
prediction results. The output of these models is combined
based on weight α and gives the final outcome yht .

A. EXPLORATORY DATA ANALYSIS
For experimental purposes, the latest updated energy con-
sumption and metrological data from Jeju Island have been
collected from January 2017 until April 2020. Table 2 sum-
marizes the properties of the dataset. It shows the function
name, abbreviation, the count of each data feature, null val-
ues, mean, minimum, and maximum value. The data consists
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of hourly energy consumption and different weather obser-
vations such as temperature, wind direction, wind speed,
humidity, precipitation, snowfall, insolation, ground temper-
ature, sea level pressure, local air pressure, dew point tem-
perature, and steam pressure. The data contains 29088 rows.
This table shows that snowfall and insolation have a large
number of null values. The average energy consumption
throughout the observed dates is 644.73 MW. This energy
load comes from both renewable and nonrenewable energy
sources. The alliance of renewable power sources into the
grid is advantageous for the atmosphere furthermore holds
financial benefits [35]. Figure 6 shows the combined load
of renewable and nonrenewable energy sources. This graph
shows the overall trend of energy consumption on Jeju island
without the impact of other weather features. We can observe
a symmetrical pattern in energy consumption.

FIGURE 6. Combined load of renewable and nonrenewable energy
sources.

FIGURE 7. Box-plot for daily energy consumption.

Figure 7 shows the box-plot for total daily consumption.
The X-axis shows the name of the weekday, and Y-axis
represents the daily energy consumption. It can be observed
clearly that days are essential when it comes to consumption.
The lowest use is usually marked on weekends, as most
commercial and industrial areas remain closed, leading to
reduced overall consumption in the region.

To better understand the power consumed per hour,
we made Figure 8. This graph shows the mean energy
load distribution on an hourly basis. The X-axis indicates
the number of hours; Y-axis represents the mean hourly

FIGURE 8. Mean hourly consumption.

energy consumption. On the hour graph, we can see that
energy consumption is high between 19:00 and 22:00 and
relatively low between 2:00 and 07:00.

Figure 9 shows the rolling mean of energy consump-
tion compared to meteorological factors. The X-axis shows
the recording date of the load and meteorological factor.
Left Y-axis with the red label indicates the energy, and the
right y-axis shows the meteorological feature. Subfigure 9(a)
shows the rolling mean of energy compared to temperature.
It is observed that a decrease in temperature leads to an
increase in energy consumption. Subfigure 9(b) shows the
rolling mean of energy compared to humidity. Subfigure 9(c)
shows the rolling mean of energy compared to precipitation.
According to a report by Korea’s meteorological admin-
istration, most parts of Korea had below-normal rainfall
in 2017 [36]. Hence, we can see a smooth trend in the year
2017. Subfigure 9(d) shows the rolling mean of energy com-
pared to wind speed.

B. FEATURE ENGINEERING
The second step is the feature engineering. In this step,
abstractions and critical features are selected and extracted
from the prepared data, redundancy and irrelevant elements
are removed. Feature selection is the process of choosing
a subset of relevant and informative features for use in
model building [37]. There are many advantages to creating
predictive models using feature selection techniques. These
techniques can improve the model’s predictive accuracy and
generalization ability by reducing the problem’s size and
preventing overfitting. It also provides a smaller feature set as
input to the model, useful for building simpler models with
shorter training times.

There are four different sources of energy for Jeju island.
These sources consist of fossil fuel-based energy sources,
behind the meter, photovoltaic, and wind power. These
sources are combined using Equation 7. Where E totalt is the
total energy consumption with respect to time. E fft ,E

btm
t ,Epvt

and Ewpt represents the fossil fuel-based energy sources,
behind the meter, photovoltaic and wind power energy con-
sumption with respect to time t .

E totalt = E fft + E
btm
t + Epvt + E

wp
t (7)

Equation 8 describes the weather features and Equation 9
expresses the date features with respect to time t .
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FIGURE 9. Rolling mean of energy consumption compared to
meteorological factors.

Weather features consist of temperature TAt , wind direction
WDt , wind speed WSt , humidity HMt , precipitation RNt ,
snowfall DSNWt , insolation ICSRt , ground temperature TSt ,
sea level pressure PSt , local air pressure PAt , dew point tem-
perature TDt , and steam pressure PVt . Date feature consists
of hour Ht , month Mt , year Yt , quarter Qt , and day of week
DoWt .

WFt =
{
TAt ,WDt ,WSt ,HMt ,RNt ,DSNWt ,

ICSRt ,TSt ,PSt ,PAt ,TDt ,PVt

}
(8)

DFt =
{
Ht ,Mt ,Yt ,Qt ,DoWt

}
(9)

We collected weather data from five different weather
stations and then calculated the average of the grouped data.
The first step in estimating the average of grouped data is
to define the midpoint of each interval. Then multiply these
midpoints by the frequency of the corresponding class. The
total of products divided by the aggregate of values is the
mean value. The meanµ for each meteorological element can
be obtained by dividing 6mf by the total number of stations
N , wherem is the midpoint of the category, f is the frequency.
As a result, the Equation 10 can be written to summarize the
steps used to determine the mean of a weather station’s data.

µ =
6mf
N

(10)

A genetic algorithm is used for the optimal feature selec-
tion [38]. The pseudo-code for the genetic algorithm is
expressed in Algorithm 1. It starts with the initialization of

Algorithm 1 Pseudo-Code for Genetic Algorithm
1: initialize population p(t)
2: evaluate p(t)
3: while Until stopping criteria do
4: for each chromosome do
5: crossover c(t) from p(t)
6: compute fitness()
7: select p(t+1) from p(t) and c(t)
8: if chromosome available then
9: mutate p(t)
10: end if
11: output best and stop
12: end for
13: end while

population p(t) with respect to time t . The population is then
evaluated for each feature. For every set of a chromosome,
GA performs crossover c(t), compute fitness, and mutate.
It continues to do so until it gets the best combination of the
chromosome.

Figure 10 displays the chromosome representation of the
feature. Where the features with 1 bit are considered for
further training purposes, and features with 0 or False bit are
not considered.

C. TRAINING AND TESTING PHASE
The preprocessed data is used to define the training model.
The preprocessed data set is divided into two parts: the
test group and the training group. Training data consist of
January 1, 2017, to January 14, 2020, and test data include
from January 15, 2020, to April 27, 2020. Typically, 70%
of training and 30% of the testing data is used in practice,
but we have used 36 months for training and three months
for testing instead of 27 months for training and 12 months
of testing. The main reason for leaving less data for testing
is to get a more practical energy consumption prediction by
employing more training data. There are several typical train-
ing parameters. When combining hyperparameters, the root
mean square error (RMSE) is defined as the predictivemetric.
RMSE is the square root of the deviation expressed in the
Equation 11, where yt is the real value, and ŷt is the estimated
value. This statistical parameter is also called the standard
deviation of the regression system [39]. A low RMSE value
indicates that the model is well trained. For training purposes,
the loss function is set to RMSE.

RMSE =

√√√√ 1
M

M∑
t=1

(yt − ŷt )2 × 100 (11)

V. EXPERIMENTAL RESULTS AND DISCUSSION
This section covers feature importance analysis, forecasting
results, and model evaluation indicators. The proposed model
is also compared with other existing models.
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FIGURE 10. Chromosome representation of features.

FIGURE 11. Correlation graph.

A. FEATURE IMPORTANCE ANALYSIS
This section covers the correlation diagram, Shapley, feature
importance diagram, and feature selection based on genetic
algorithms for feature significance analysis. The correlation
matrix is used in an important way for the measured val-
ues obtained from the interval scale. The linear relation-
ship between two continuous variables can be evaluated
through correlation. Correlation can be calculated using the
Equation 12.

ρx,y =
Cov(x, y)
σxσy

=

∑
(x − µx)(x − µy)√∑

(x − µx)2
∑

(y− µy)2
(12)

where rhox,y is the correlation coefficient between variable x
and variable y. σx , σy are standard deviation of variable x
and variable y resppectivley. µx , µy represents the mean of
variable x and variable y. Figure 11 shows the correlation
graph.

Shapley (SHAP) is a different approach to examine the
significance of features. The purpose of SHAP is to esti-
mate the participation of individual prediction function and
to interpret the predictions [40]. The graphics summarized
in Figure 12 shows the features’ importance and influence
score. Each spot on the graph has a particular value. The
rating feature names determined in the y-axis, and while the
x-axis depicts the Shapley value. Colors designate indepen-
dent values from bottom to top. These features are listed as
critical. The horizontal position symbolizes that the value

FIGURE 12. SHapley Additive explanations (SHAP) graph.

is more prominent or less than the expected value. The red
color indicates that the variable value is high, and the blue
color shows that the importance is low. The ‘‘hour’’ feature’s
performance is very decisive; as in red, it is positive in the
x-axis. Humidity and rain have an insignificant effect on
training data.

Figure 13 shows the bar graph of feature importance.
Feature scaling is imperative for forecasting models. To per-
form feature scaling, it is necessary to calculate the number
of times each function is distributed over the boosting trees.
Then display the results as a bar graph and sort the features
according to their importance status. XGBoost calculates
feature significance based on the effect of component value
changes on average prediction difference. If the value is
more significant, it means that it will have more influence
on changing the expected value.

B. FORECASTING RESULTS
The test data consist of January 01, 2020, to April 04,
2020. The comparison of actual and forecasted load val-
ues of week ahead prediction is depicted in Figure.14.
Subfigure 14(a) explains the week ahead prediction between
15 to January 22. Subfigure 14(b) displays the 168 hours pre-
diction within 12 to 29th February. Subfigure 14(c) presents
the 168 hours forecast among 18 to 25th March.

Figure 15 shows the actual and prediction graph of test
data. This graph is for the whole test data. The X-axis rep-
resents the date, and Y-axis represents the load value.

Figure 16 shows the 48 hours forecasting. It consists
of actual values, predicted values, and also the difference
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FIGURE 13. Feature importance graph.

FIGURE 14. Week-Ahead predictions using hybrid model.

between those values. Energy companies have different fore-
casting windows.We have tested the forecasting results based
on the week ahead or 168 hours prediction.

C. MODEL EVALUATION INDICATORS
A comparison of the proposed model with the latest model
is performed in this section. We compared the model with
Lasso, Ridge, Gradient Boosting, XGBoost, Multilayer Per-
ceptron (MLP) Regressor, and SVR.

Figure 17 shows a graphical representation for comparison
with these models.Where the name of models are mentioned
on X-axis, and the values are specified on Y-Axis. The root of
the logarithmic means square error (RMSLE) is obtained by
equation 13. WhereM is the total number of data points, yt is
the actual value, and ŷt is the forecasted value. RMSLE error
is the logarithmic relationship between the model’s actual
data value and the forecasted value [41]. By applying the
proposed model, we obtained 0.02 RMSLE, which is the
lowest value compared to other models. Various evaluation

TABLE 3. Evaluation metrics.

metrics are used to validate themodel’s pros and cons, such as
mean absolute error, mean square error, and root mean square
error.

RMSLE =

√√√√ 1
M

M∑
t=1

(
log

(
yt + 1

)
− log

(
ŷt + 1

))2 (13)

We also chose the numerous advanced models for com-
parison with the proposed hybrid model. Besides bench-
mark models, we additionally evaluate the results with two
other hybrid models. The first hybrid model is composed
of catboost, Support vector regressor, and Multilayer per-
ceptron [7]. The other hybrid model consists of XGBoost,
Random Forst, and CatBoost models [42]. Table 3 shows the
evaluation indicators used to examine the different model’s
performance with the proposedmodel. Themean square error
(MSE) is the difference between the initial and predicted
value [43]. It is extracted by squaring the mean squared
error of the data set using Equation 14. The observed MSE
for the proposed model is 192.32. The mean absolute error
(MAE) describes the difference between the initial value and
the forecasted value and is extracted as the mean absolute
difference in the data set [44]. The MAE for the proposed
model is 10.05, calculated using the Equation 15.

MSE =
1
M

M∑
t=1

(
yt − ŷt

)2 (14)

MAE =
1
M

M∑
t=1

(
yt − ŷt

)
(15)

Figure 18 shows the training graph of the genetic
algorithm. It shows the improvement in the accuracy of
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FIGURE 15. Comparison of actual and forecasted load values from test data.

FIGURE 16. Forecasted load values for Operating 48 hours.

TABLE 4. MAPE and RMSLE comparison on week-ahead test data with other models.

every generation. The blue line represents every generation’s
best score, and the red line shows every generation’s average
score.

For testing purposes, we have used three weeks ahead
of slots. We chose a week from January, February, and
March. We made two cases. First, we trained and tested a
load of energy consumption data without weather features,
and thenwe carried out training and testing by addingweather
features. Mean absolute percent error (MAPE) is a measure
of the prediction accuracy of a prediction [45]. It measures the

size of the error, calculated using Equation 16 and expressed
as a percentage. We got 3.35 % MAPE of the overall model
by applying the proposed model.

MAPE =
1
M

M∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣× 100% (16)

Table 4 shows the comparison of the minimum, maximum,
and average MAPE in the two cases. This table also indi-
cates the RMSLE of each algorithm. It is evident from the
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FIGURE 17. Comparison of RMSLE with different models.

FIGURE 18. Genetic Algorithm.

correspondence that the recommended hybrid model works
well contrasted with different existing models.

VI. CONCLUSION
This article presents a concise presentation to the energy
consumption forecasting applying a genetic algorithm based
optimized feature engineering and machine learning. It con-
centrates on the comparison of various load forecasting meth-
ods with the proposed method. It also focuses on optimal
meteorological features such as temperature, wind speed,
rain, humidity, and time lags to qualify for a beneficial model.
This study has suggested an approach that employs an ensem-
ble of machine learning models, namely XGBoost, support
vector regressor, and k-nearest neighbor regressor algorithms.
It turns out that individual forecasting models are limited in
terms of performances. Therefore, combinations of predic-
tion methods are gaining rising concentration. We have also
used the genetic algorithm to predict total load consumption
for optimal feature selection. We have obtained and use the

Jeju islands’ actual energy consumption and weather data
for the experimental purpose. We performed exploratory data
analysis, preprocessing, and train-test split before the training
of the model. Moreover, we used various metrics to test
the advantages of the proposed model: absolute mean error,
absolute percent error, root mean square error, and log root
error. We also selected the latest model for comparison with
the proposed hybrid model. We got MAPE of 3.35 % for
the three months test data by applying the proposed model.
Electricity providers can effectively organize and manage
supplies based on the prescribed model results to provide
excellent customer services. In the future, this work can be
extended by taking into account the other parameters such as
the number of residents, electric vehicles, and tourists coming
in different seasons of the year.
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