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ABSTRACT Polarized reflectance (Rp) and degree of linear polarization (DOLP) provide essential informa-
tion about polarized characteristics of land surfaces. For a given target, DOLP determines the magnitude of
Rp. It has been proved that DOLP can be used for some remote monitoring cases that cannot be well detected
with either non-polarized or polarized reflectance. Several bidirectional polarization distribution function
(BPDF) models have been proposed in the last several decades to reproduce the angular distribution of Rp,
but much less attention has been devoted to modeling and analyzing of DOLP. In this study, the Nadal–Bréon
BPDF model was transferred for calculating the DOLP of earth targets, and characteristics of DOLP were
analyzed based on the modeling results. To evaluate the model’s feasibility, two experiments were executed:
a fitting and a a priori modeling. The results showed good correlations (r > 0.9) between estimated and
measured DOLP when the model was fitted with POLDER/PARASOL (a space-borne multi-angle multi-
spectral polarimetric sensor) measurements. An increase of accuracy from 490 nm to 865 nm for fitting
modeling was achieved and the highest accuracy was found at 865 nm for both experiments, with overall
relative root mean square errors of 1.1 and 1.3 for fitting and a priorimodeling, respectively. Class-based free
parameters can be used for the a priori model of DOLP. The dispersion of the target-based free parameters
controls the correlation of the a priori modeling results. Moreover, the maximum DOLP was found to be
strongly determined by the corresponding bidirectional reflectance factor for every surface type (R2 = 0.86).
This study provides an additional approach for obtaining DOLP from remote sensing platform and is helpful
for studies of typical land surfaces.

INDEX TERMS Degree of linear polarization (DOLP), bidirectional polarization distribution function
(BPDF), POLDER/PARASOL, BRDF-BPDF database.

I. INTRODUCTION
Polarized radiation of earth surface is caused primarily by
specular reflection that occurs on ground targets [1]. Earth
surface characteristics, such as roughness [2], water con-
tent [3] and biochemical and structural information of veg-
etation [4]–[7] can be retrieved with the help of either surface
polarized reflectance (Rp) or degree of linear polarization
(DOLP). On top of that, as a boundary condition, polarized
characteristics of land surfaces are essential for retrieval of
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atmospheric properties, e.g. aerosol microphysical properties
and the optical depth [8]–[10].

In the last several decades, study of angular distribution
of Rp has been a hot topic, and several bidirectional polar-
ization distribution function (BPDF) models have been pro-
posed. These models can be broadly categorized as three
types: physical [11], [12], semi-empirical [13]–[19] and
neural-network-based [20]. Physical models have the best
physical interpretation. However, they may require a set of
biophysical parameters that are difficult to be obtained [12].
The neural networks-based models have been proven to
be more accurate but they may require more intensive
computation [20]. Semi-empirical models are easy-to-use
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and usually produce satisfactory precision [21]. They
are thus preferred in most cases. Semi-empirical models
were proposed using measurements collected from vari-
ous types of spectropolarimeters, e.g. the Diner Model
using ground-based Multi-angle SpectroPolarimetric Imager
(Ground MSPI) [14], the Waquet model using airborne
polarimeter MICROPOL [16], the Litvinov model using
Research Scanning Polarimeter (RSP) [15], the Nadal–
Bréon [18], Maignan [17] and Xie-Cheng models [13]
using space-borne POLarization and Directionality of Earth’s
Reflectances (POLDER). POLDER onboard the PARA-
SOL satellite (POLDER/PARASOL) provided long-term
polarization observations of land surfaces from 2005 to
2013. Thanks to the BRDF-BPDF database generated from
POLDER/PARASOL measurements [22], much less effort is
required for the BPDF modeling and its applications.

The above mentioned BPDF models were all proposed
for modeling angular distribution of Rp over various land
surfaces, whereas less attention has been dedicated to model-
ing DOLP and analyzing its characteristics. DOLP is critical
for remote sensing using polarimetric techniques. On one
hand, for a given target, DOLP indicates the proportion
of polarized reflected radiation, i.e. DOLP determines the
magnitude of Rp. For field measurements, due to DOLP’s
independence to the radiometer calibration and the incoming
flux [11], the Stokes parameters should be measured and
combined to obtain DOLP first, and Rp is obtained from
product between bidirectional reflectance factor (BRF) and
DOLP [5], [23]. On the other hand, unlike Rp, DOLP is
wavelength-dependent, indicating its ability to reveal the
polarized properties of the targets that are complemen-
tary to BRF. For example, DOLP shows different values
among vegetation in different agronomic status [4], [7], [24].
Soybean canopy with and without water stress can be clas-
sified using DOLP but cannot be well detected only from
BRF measurements [7], [12]. Corn canopy before and after
flowering can be well discriminated at larger viewing angels
using DOLP, whereas the two canopies share similar spatial
distribution of Rp [12]. That is to say, DOLP can be used for
some remote monitoring cases that cannot be dealt with using
either BRF or Rp. Therefore, angular distribution modeling
and analyses of DOLP is of great significance for both Rp’s
on-site acquisition and remote monitoring of key parameters
of terrestrial ecosystem. The POLDER/PARASOL BRDF-
BPDF database provides surface BRF and Rp, allowing to
build such models and analyze the characteristics of DOLP.

The objectives of this article are thus: 1) to build a model
for estimation of surfaceDOLP using theNadal–BréonBPDF
model based on POLDER/PARASOL measurements; 2) to
evaluate the accuracy of the DOLP model using different
experiments; and 3) to analyze the characteristics and poten-
tial applications of DOLP.

The paper is organized as follows. Firstly, Section 2 gives
the introduction of the database, generation process of DOLP
and the Nadal-Bréon BPDF model. Then Section 3 presents
two experiments involving fitting and a priori modeling and

TABLE 1. Statistics of selected polder/parasol observations and targets.

their results. Section 4 presents a discussion about themodel’s
performance and the characteristics of DOLP, and finally,
Section 5 gives conclusions and prospects of this study.

II. MATERIALS AND METHODS
A. POLDER BRDF-BPDF DATABASE
The data used in this study are from a new version of
the POLDER/PARASOL BRDF-BPDF database [22], which
includes surface BRF and Rp of 16 International Geosphere
Biosphere Programme (IGBP) classes. The data are from the
year 2008 and guarantee good continuity and quality of the
observations [22]. This is the latest and most widely used
database for modeling of land surface polarization and related
studies [4], [13], [20], [21]. The database contains monthly
and yearly datasets. In themonthly dataset, 50 targets with the
highest quality of atmospheric correction in each month were
provided. It thus contains 600 globally distributed targets for
each IGBP class. In the yearly dataset, the same best 50 tar-
gets over the year were selected for 12 months. In this study
we used the monthly dataset because of its better quality [22].
In the database, surface BRF for six spectral bands from
490 to 1020 nm (i.e. 490nm, 565 nm, 670 nm, 765 nm, 865 nm
and 1020 nm) as well as surface Rp at 865 nm were atmo-
spherically corrected. The dataset is freely available from the
PANGAEA website (doi:10.1594/PANGAEA.864090).

It is notable that observations for which Rp had a filled
value (indicating missing observation) are excluded from
the monthly dataset. Moreover, observations with Aero big-
ger than 5 were also excluded in order to suppress aerosol
effects [21]. Here, Aero represents the level of aerosol
load of observations ranging from 0 (for minimum) to
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FIGURE 1. Global distribution of the selected targets of 16 IGBP classes in the monthly POLDER/PARASOL
measurement database.

15 (for maximum) [22]. The number of selected targets of
each IGBP class are consequently lower than 600, as seen
in Table 1. The global distribution of the selected targets is
shown in Fig. 1.

B. GENERATION OF THE DEGREE OF LINEAR
POLARIZATION (DOLP)
DOLP describes the percentage of linearly polarized wave
in a specific beam of radiation. The POLDER polari-
spectrometer measured the Stokes vectors [I ,Q,U ] of the
detected radiance, where I represents the total radiance, and
Q and U quantify linearly polarized radiance with specific
angles to a fixed reference plane [17], [22]. If we take the
scattering plane as the reference plane,Q denotes the fraction
of radiation that polarizes perpendicularly or parallel to the
reference plane, andU represents the fraction of radiation that
polarizes obliquely to the reference plane. Moreover, the sign
of Q and U denotes the polarizing directions. For example,
positive and negative Q denotes the polarizing direction per-
pendicular and parallel to the reference plane, respectively.
In most cases, the reflected radiation polarizes light perpen-
dicularly to the scattering plane, making Q negative and U
negligible compared to I and Q [17]. The DOLP can be thus
described by the ratio between –Q and I:

DOLP =
−Q
I

(1)

For POLDER measurement, BRF and Rp are defined as:

BRF =
π I

E0cosθs
(2)

and

Rp =
−πQ
E0cosθs

(3)

respectively, where E0 indicates the top of atmospheric solar
irradiance, and θ s is the sun zenith angle. With these two
parameters, the DOLP of the earth surface can be thus derived
from surface BRF and Rp provided in the database:

DOLP =
Rp
BRF

(4)

Theoretically, DOLP ranges from 0 to 1, so observations
with ‘‘noisy’’ DOLP bigger than 1were further excluded in
the dataset. It is notable that around 7% of the observa-
tions gave negative polarized reflectance, leading to negative
DOLPs. The negative DOLPs are at a very small magnitude
not larger than 0.005, and they correspond to the above-
mentioned parallel-polarizing observations.

The above-mentioned scheme produces DOLP at 865 nm.
To produce DOLP for other bands of the POLDER instru-
ment, we applied a widely used hypothesis, suggesting that
the surface Rp is spectrally invariant, i.e. it rarely changes
with wavelengths from the visible to the near infrared spectral
region [16], [18], [24]. Consequently, DOLP for any band
can be easily derived from the ratio of Rp at 865 nm and
BRF in the corresponding band. It can be easily found from
Fig. 2 that, similarly to Rp [21], the DOLP of reflected
radiation shows an obvious anisotropic spatial distribution
that is symmetric about the principle plane, and bigger phase
angles (the angles between observation and illumination)
yield bigger DOLPs. Highest DOLPs always occur at the
forward scattering direction along the principle plane when
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FIGURE 2. Polar plots of the measured DOLP at 865 nm for six representative earth surfaces,
i.e. mixed forest (IGBP 05), grassland (IGBP 10), permanent wetlands (IGBP 11), urban and
built-up (IGBP 13), snow and ice (IGBP 15) and desert (IGBP 16). The black circles represent
different view zenith angles at 20 degrees intervals whereas the black lines represent relative
azimuth angles, at 30 degrees intervals, with respect to the direction of solar incidence marked
with small red circles. The three rows represent different sun zenith angles (SZA). The color bar
ranges from -0.005 to 0.10. The DOLP value in each angular bin is the average of all selected
measurements in each IGBP class within the corresponding sun-sensor geometry.

viewing angle is large (>60◦), and lowest DOLPS (with
negative values) are around the back scattering area near to
the solar incident direction. Such characteristics can also be
found in other wavelengths (not shown).

C. DOLP MODELING
DOLP shows a similar angular distribution pattern with
Rp(Fig. 2), which lays a possibility of using existing semi-
empirical BPDF models for DOLP modeling. Among sev-
eral widely used semi-empirical BPDF models mentioned
above, the Nadal–Bréon model has been reported to give
relatively higher accuracy [13], [17], [21]. It also served
as the algorithm for aerosol properties retrieval over land
surfaces using POLDER measurements [17], [18]. Thus, the
Nadal–Bréon model is considered in this study for reproduc-
ing and analyzing the angular distribution of DOLP.

The Nadal–Bréon BPDF model was proposed for accurate
estimation of Rp for four major surface types, i.e. desert,
shrubland, forest and low vegetation. It was built using two
free parameters, ρ and β [18]:

Rp(θs, θv, ϕ) = ρ(1− exp(−β
Fp

(cosθs + cosθv)
)) (5)

whereFp is the polarized component of Fresnel function [24],
θs and θv the sun zenith angle and view zenith angle, respec-
tively. Fp represents the specular reflection process that gen-
erates polarization, and it is a function of incident angle,
α, and the refractive index of the land surface, N . It is

written as:

Fp (α,N )

=
1
2

[(
Ncosα′ − cosα
Ncosα′ + cosα

)2

−

(
Ncosα − cosα′

Ncosα + cosα′

)2
]

(6)

Here,N is fixed to 1.5 for land surface, which is commonly
accepted [18], [20], [24]. α′ represents the refractive angle
and it can be related to α through:

sin (α) = Nsin
(
α′
)

(7)

α can be simply related to the scattering angle, γ , through
α = (π − γ ) /2. For a given sun-sensor geometry, γ is
defined as the angle between the solar incident direction and
the reflected light direction, and can be calculated as:

cosγ = −cos (θs) cos (θv)− sin (θs) sin (θv) cos (ϕ) (8)

where ϕ is the relative azimuth angle between the solar and
view directions.

Equation (5) was built based on a non-linear relationship
betweenRp and the Fresnel factor,Fp(α)/(cosθs+cosθv) [18].
Analogously, by plotting the Fresnel factor and DOLP at
865 nm, similar relationships can be obtained, as shown in
Fig. 3. Cases using other bands are similar to those at 865 nm,
and are not illustrated here. As such, the Nadal–Bréon BPDF
model can be migrated for DOLP modeling as:

DOLP(θs, θv, ϕ, λ)=ρ(λ)(1−exp(−β(λ)
Fp

(cosθs+cosθv)
))

(9)
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FIGURE 3. Relationship of POLDER-measured DOLP at 865 nm and the Fresnel factor, Fp(α)/(cosθs+cosθv ), for six
representative IGBP classes, i.e. (a) mixed forest (IGBP 05); (b) grassland (IGBP 10); (c) permanent wetlands (IGBP 11);
(d) urban and built-up (IGBP 13); (e) snow and ice (IGBP 15) and (f) desert (IGBP 16). Five arbitrary targets in each IGBP
class were selected to show such relationships.

Here, ρ controls the saturation value of the function
whereas ρβ indicates the slope of the linear relationship when
DOLP is relatively small. Note that ρ and β are wavelength-
dependent, which is different from those in equation (5).
Moreover, ρ and β are target-based parameters as they are
calibrated from observations of single targets.

III. EXPERIMENTS AND RESULTS
In order to evaluate the performance of the DOLP model,
assessments of accuracy of fitting results (the results of model

fitted on every single target), and a priori modeling results
(the results of model with a priori free parameters when no
polarizationmeasurement exists), were conducted. Given that
the calculated DOLP varies with wavelength, i.e. it mostly
ranges between 0 and 0.1 at 865 nm and between 0 and 0.3 in
the visible bands (Fig. 4), the relative root mean square error
(RRMSE) which describes the relative bias between modeled
and measured values was used to intercompare the model
performance over different bands. Moreover, the correlation
coefficient (r) of measured and modeled DOLP was also
applied. Note that r shows how well the estimation and
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FIGURE 4. Scatter plots of measured versus modeled DOLP of six representative IGBP classes and four visible and near
infrared bands of POLDER/PAROSOL. The range of x (measured) and y (modeled) is from −0.01 to 0.1 for 865 nm and from
−0.01 to 0.3 for 670nm, 565nm and 490nm. The 100×root mean square error (RMSE) and correlation coefficient (r ) of modeled
and measured DOLP are given at the upper left and lower right corner of each plot, respectively. Note that the color in each bin
represents the number of scatters on a logarithmic scale, so the warmer colored bins indicate much more scatters than cooler
ones.

measurement are correlated to a specific line, but not nec-
essarily to the 1:1 line.

A. FITTING RESULTS
In this part, the model was best fitted over every target per
band and per IGBP class, and hundreds of sets of target-
based ρ and β were obtained to calculate the modeled DOLP.
Scatter plots of modeled against measured DOLPs of six
representative IGBP class at 4 bands centered at 865 nm,
670 nm, 565 nm and 490 nmwere illustrated in Fig. 4, and the
corresponding statistics for all 16 classes are listed in Table 2.

According to Fig. 4 and Table 2, the modeled DOLP corre-
late well with the measurement along the 1:1 line, generally
with r bigger than 0.9. The best correlated results weremostly
found at 865 nm, except for IGBP 01, 03, 08, and 14 whose
highest r were found at 670 nm. Analogously, the best fitting
results with lowest RRMSE were produced at 865 nm except
for IGBP 16. Overall, 865 nm appears to be the best band
for fitting experiment, with highest overall r of 0.96 and
lowest overall RRMSE of 1.15. The relatively worst fittings
were found at 490 nm for all IGBP classes. There is a slight
decrease in RRMSE of fitting results with the increase in
wavelength from 490 nm to 865 nm, regardless of whether all
classes were separated or combined (also see Fig. 6). Among
the 16 IGBP classes, desert (IGBP 16) yielded the best
correlation (with r bigger than 0.98 for all bands) between
modeled and measured DOLP. This may be due to the high

homogeneity of the target pixel with the size of 6 × 7 km
width of the POLDER image, which rarely happens in other
land surface type except IGBP 15, i.e. ice and snow. But ice
and snow gave quite different optical properties compared
with other surface types [19], which somewhat influenced the
model’s reproduction and made IGBP 15 yield the highest
RRMSE among all surface types. Additionally, urban area
(IGBP 13) also showed relatively high modeling error com-
pared with other classes, which may be due to the smaller
quantity of observations and the unique polarized features of
the built-up areas.

B. A PRIORI MODELING RESULTS
Most of the remote sensing instruments are not equipped
with polarimetric sensors. Nevertheless, a priori parameters
derived from polarized observations can be utilized in empir-
ical models to reproduce the polarized characteristics of the
land surfaces. As proposed in [17] and utilized in [21], given
hundreds of sets of target-based free parameters, i.e. ρ and
β, per IGBP class and per band in section 3.1, their median
values were chosen as representative a priori parameters,
i.e. class-based parameters, for each corresponding surface
type and for each band (listed in Table 3). Using the listed
class-based a priori parameters, DOLP at a given band of a
given surface type can be calculated using Equation (9) with
specified sun-sensor geometry. The accuracy of the a priori
modeling results are listed in Table 4.
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TABLE 2. Accuracy of fitting results (r and RRMSE) for four bands and 16 IGBP classes. The best indices of each IGBP class are shown in Bold Italic.

TABLE 3. A priori free parameters for 16 IGBP classes at different wavelength.

Coincident with the fitting results, 865 nm gives generally
the most accurate a priori modeling of DOLP with over-
all RRMSE of 1.32, while IGBP 04, 05 and 12 were best
estimated at 565 nm and IGBP 06 at 670 nm. However,
differences regarding r were noticed in Table 4 comparedwith
the fitting results: the highest r for most of the classes and for
the entirety were yielded at 565 nm, whereas for IGBP 01,
03, 11, 13 and 15, 865 nm was the best correlated band.

IV. DISCUSSION
DOLP of land surfaces provides critical information of sur-
face optical properties and it determines the magnitude of

polarized reflectance. For a given target at a given wave-
length, the angular distribution of DOLP shows significant
anisotropic features (Fig. 2), which is similar to Rp. In this
study, the Nadal–Bréon BPDF model with two free parame-
ters (Equation (9)) was transferred to reproduce the angular
variations of DOLP (Fig. 3). The model was calibrated and
validated based on polarimetric observations from a widely
used POLDER BRDF-BPDF database (Fig. 1). Class-based
free parameters (Table 3) for all IGBP classes of common
bands were produced as inputs to the a priori model for
DOLP estimation. The model yields high precision and the
accuracy peaks at 865 nm (Table 2 and Table 4).
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TABLE 4. Accuracy of a priori modeling results (r and RRMSE) for four bands and 16 IGBP classes. The best indices of each IGBP class are in bold Italic s.

TABLE 5. Proportion of DOLP bigger than 1 that were excluded from the
database per IGBP class and per waveband.

It is notable that in the data pre-processing of the POLDER
BRDF-BPDF database, observations with DOLP bigger than
1 were excluded. As seen in Table 5, the ‘‘noisy’’ items only
occurred at visible wavebands (from 490 nm to 670 nm)
and took up a very small part of the data, with a proportion
mostly lower than 1%, No ‘‘noisy’’ item occurred in near-
infrared wavebands (from 765 nm to 1020 nm). The noise
was generated when DOLP was calculated from the ratio
of the polarized reflectance and BRF of land surfaces. The
visible wavebands are the spectral region where some land
surfaces (e.g. vegetated surfaces) absorb radiation, and the
BRF of these surfaces consequently shows relatively low
values. These values can be occasionally interfered by noise
and yield very small values near to zero, leading to very large
DOLPs (sometimes can be infinite). These abnormal values

FIGURE 5. Scatter plot of ρ and surface BRF at six bands, i.e. 490nm,
565 nm, 670 nm, 765 nm, 865 nm and 1020 nm, for 14 IGBP classes
excluding IGBP 13 (urban and built-up) and 15 (ice and snow). Each BRF
is the average of all selected measurements in a given IGBP class within a
specified sun-sensor geometry: sun zenith angle from 25 to 35 degrees,
view zenith angle from 35 to 45 degrees and relative zenith angle from
175 to 185 degrees.

would largely influence the model performance, so they were
removed from the dataset.

The free parameter ρ reflects the maximum DOLP of a
given surface type at a given wavelength. Previous stud-
ies have found a negative relationship between DOLP and
BRF given that Rp is insensitive to wavelength [11], [25].
Analogously, Fig. 5 plotted class-based ρ with the BRF
of corresponding classes. We calculated the average BRF
of all observations within a specified sun-sensor geom-
etry at six bands for all IGBP classes except IGBP 13
(urban and built-up) and 15 (ice and snow). IGBP 13 was
excluded because urban area shows complex features and
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Rp of different city targets with different complexity vary
greatly [13]. Snow and ice (IGBP 15) is distributed mainly
at the poles and thus does not have the required observa-
tions satisfying this geometry. A strong negative correlation
between ρ and BRF was found for each of the IGBP classes
and this relationship can be described by a negative power
function, as shown in Fig. 5. It is interesting that this rela-
tionship is stable regardless of the IGBP class, with quite
high R2 of 0.86 when all classes are taken into consideration.
Note that the specified sun-sensor geometry would have an
impact on the relationship. It suggests that once the BRF of
an arbitrary surface type (except urban area and snow/ice)
is obtained, the maximum DOLP at different wavelengths
could be estimated. It provides an approach for estimation
of the maximum polarization the land surface can produce
using remote sensing, based onwhich the polarized properties
of specific targets can be obtained and utilized for further
analyses.

FIGURE 6. Variation of fitting results accuracy for 6 representative IGBP
classes from 490 nm to 865 nm. Correlation coefficients (r , solid lines)
correspond to the left y axis whereas the RMSE (×100, dashed lines)
correspond to the right y axis.

An increase of fitting accuracy from 490 nm to 865 nm
was obtained, as shown in Fig. 6 and Table 2. This can be
attributed to two reasons. First, the hypothesis that Rp is
spectrally invariant is not always satisfied. As mentioned in
previous studies [1], [11], it has been tested in situ with high
spatial resolution instruments that there is a slight increase in
Rp when the wavelength changes from visible to near infrared
band (a departure within 8% from the hypothetical slope
of 1 of Rp in visible and near infrared bands), especially for
vegetation (a departure of about 30%). This is because the
leaf interior and wax layer on the leaf surface may change the
polarization behavior at some wavelengths [1]. This suggests
that, the real Rp at visible bands, i.e. 490 nm, 565 nm and
670 nm, is not exactly but slightly lower than the Rp at
865 nm, inducing errors into the model in the visible bands.
Using the Rp at 865 nm certainly made the DOLP at 865 nm
more accurate than for other bands. This explains the increas-
ing accuracy from visible to near infrared on one hand.

FIGURE 7. Relation of the correlation coefficient (r ) of the a priori
modeling and the relative standard deviation of ρβ.

On the other hand, the atmospheric effect is greater
and more difficult to correct at shorter wavelengths [22].
This makes the calibrated BRF of visible bands, in the
database, relatively less accurate than that at 865 nm. This
is also the reason why only Rp at 865 nm is provided in
the database. These two factors, surface Rp and surface BRF,
explain the fitting accuracy variation from the visible to the
near infrared bands. The free parameters derived at 865 nm
in Table 3 are thus recommended for accurate estimation of
DOLP.

The reasons above reflect a potential criticism of DOLP
modeling process, i.e. the measured DOLP in this study was
calculated from the ratio of Rp and BRF, and thus with errors
derived from the detection, calibration and correction process
of both surface BRF and Rp. This makes the applied model
sensitive to the precision of Rp and BRF in the database,
especially for visible wavelengths where the BRF is smaller
(e.g. for vegetation) and thus noisier comparedwith that of the
near infrared bands. Therefore, increased model performance
requires higher data precision.

For a priori modeling experiment, the lowest RRMSE
was mostly found at 865 nm whereas the highest r between
modeled and measured DOLP was mostly seen at 565 nm.
In fact, as the median value of the target-based parameters
was used to represent the class-based parameter of a priori
models, the dispersion of target-based parameters determines
the correlation betweenmodeled andmeasuredDOLP. There-
fore, the more dispersed the target-based parameters are,
the less the median value can represent the entirety, and the
worse the modeled and measured values correlate, leading
to lower r in the a priori modeling results. Consequently,
the relative standard deviation (RSD) was utilized to describe
the dispersion of the target-based parameters, ρ and β, and
their multiplication, ρβ. RSD was calculated as:

RSD=
STD(para)
para

× 100% =

√∑n
i=1 (parai−para)

2

n−1

para
× 100%

(10)
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where STD(para) and para represent the standard deviation
and the average of the target-based parameters in a given
IGBP class, respectively. A highly negative correlation can
be found in Fig. 7 when r of the a priori modeling and RSD
of ρβ were scattered for all IGBP classes. Scatters of IGBP 15
(ice and snow) are biased from those of other surface types,
indicating a relatively less correlated results of this class. It is
because ice and snow show different optical properties with
other types of earth targets and they may require a unique
model to describe their polarization characteristics [19]. The
R2 of the regression line is 0.741. Such high correlated
relationship cannot be found in relationships between r and
either ρ (R2 = 0.503) or β (R2 = 0.001). It indicates that
the correlation of the a priori model performance is mainly
determined by the dispersion of ρβ. It can be explained by
the fact that most of the DOLP are concentrated in the linear-
relationship area of the scatter plots between DOLP and
Fp/(cosθs+cosθv) (Fig. 3), so the dispersion of ρβ controlling
the slope of the linear relationship has a great influence on the
model’s performance.

This study remains unable to reproduce negative DOLP
values that indicate the reflected polarization parallel to the
scattering plane when scattering angle is close to 180◦. This
is because the Nadal–Bréon BPDF model (Equation (9))
assumes a positive Rp (and consequently positive DOLP) and
thus cannot fit the negative values, which take up nearly 7%
of all observations. This drawback has existed in all semi-
empirical BPDF models, but can be solved in models based
on machine leaning techniques, e.g. GRNN-based BPDF
model [20]. That is because neural network-based models
take positive and negative values as training samples and
allocate the possibilities of all these samples. In the future,
machine learning-based models could be further developed
for DOLP modeling to reproduce the negative DOLP in the
back-scattering area.

In general, the Nadal–Bréon BPDF model provides a good
accuracy for DOLP estimation, with acceptable errors in both
fitting and a priori modeling results. The feasibility is further
confirmed when the model’s accuracy is compared with that
of current BPDF models for Rp modeling. Table 6 illustrated
the performance, in terms of correlation coefficient between
modeled and measured values, of Nadal-Bréon model for
Rp and DOLP modeling. Overall, the DOLP model slightly
outperformed the Rp model for fitting modeling, whereas the
Rp model gave more correlated results than DOLP model
for a priori modeling. Nevertheless, the difference was not
great, so it can be summarized that the DOLP model gave a
competitive performance to the Rp model. The Nadal–Bréon
BPDF model was utilized in this study, for its consistently
relatively high precision of surface Rp modeling for most of
the IGBP classes, when models were fitted against different
datasets [17], [21].
A priori parameters obtained in this study (Table 3 ) are key

parameters for land surface remote monitoring that is based
on the polarized characteristics. As many space-borne sen-
sors are non-polarimetric, only optical non-polarized spectral

TABLE 6. Comparison of the modeling correlation coefficient between
the Nadal-Bréon model for polarized reflectance (Rp) and DOLP. The
correlation coefficient for Rp modeling is from reference [21].

features can be detected using the data acquired from these
sensors. However, a priori parameter provides an option to
estimate DOLP of arbitrary types of land surfaces, by com-
bining with the Fresnel function which can be directly
obtained from the sun-sensor geometry of the sensor. The
a priori parameters in this study were derived from the
POLDER/PARASOL measurements with a spatial resolu-
tion of 6 × 7 km, it thus makes more sense to apply these
parameters to sensors with moderate or coarse resolution, e.g.
Moderate-resolution Imaging Spectroradiometer (MODIS)
and Advanced Very High Resolution Radiometer (AVHRR).
Although the spatial resolution of these radiometers ranges
from 200 meters to 1 kilometer, the a priori parameters
obtained in this study are applicable because the dataset
we used for modeling guaranteed the homogeneity of every
POLDER pixel (>75% of the pixel is the same surface type).
This study thus provides an approach to obtain and analyze
the DOLP of land surfaces on moderate to coarse scale. With
the usage of the coarse-scale DOLP, further investigations,
e.g. the capability of DOLP for classification of vegetation
with different structural parameters and different agronomic
status [7], [12], [24], should be conducted in the future.

Furthermore, applying the model to a finer scale
(e.g. meter-level resolution) thus requires further investi-
gation using more experimental data, e.g. in-situ measure-
ments. Moreover, other BPDF models or improved versions
using other nonlinear estimators describing the relation-
ship between DOLP and the Fresnel factor can be inves-
tigated for further improvement of the DOLP modeling in
future studies [26]. Surface DOLP from other platforms
e.g. airborne AirMSPI [14], AMPR [27], MICROPOL [16],
RSP [28], or space-borne DPC/GF-5 [29] and the
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forthcoming 3MI/EPS-SG [30], can also be further utilized
to build DOLP models for all available wavelengths, to better
serve studies on ground polarized characteristics and their
further applications in terrestrial ecosystem, climate change
and atmospheric monitoring.

V. CONCLUSION
DOLP plays an important role in studies of polarized prop-
erties of vegetation, urban and snow. This article repro-
duced the angular distribution of DOLP using transferred
Nadal–Bréon BPDF model. The model was validated using
the POLDER/PARASOL measurements, and showed high
precision for the two experiments, i.e. fitting and a priori
modeling. Parameters derived at 865 nm are recommended
to be used to estimate DOLP. A negative correlation between
the DOLP and BRF helps to obtain maximum polarization
information of land surface using non-polarized detection.
This modeling process is sensitive to the error of Rp and BRF,
leading to an increase of estimation accuracy from short to
long wavebands. Data with higher quality may lead to a more
accurate modeling of DOLP at shorter wavelengths.

This study helps to provide additional information for
study of polarization characteristics of land surfaces. It pro-
vides a means for estimating DOLP directly from remote
sensing platforms with or without polarimetric instruments.
Field measurements aiming at building bidirectional DOLP
distribution functions benefit the more accurate studies of
polarization characteristics of earth targets [31], and this
study contributes directly to such work. Moreover, this
study serves for aerosol parameters retrieval over various
land surfaces by providing the boundary conditions of the
atmosphere [9]. Different from Rp, the spectrally variant
property makes DOLP more informative and effective for
remote sensing applications. The spectrally polarized feature
of a given target given by DOLP varies inversely to the
spectral features given by BRF. In this case, this study pro-
vides complementary information to compensate or enhance
normal non-polarized remote sensing on the earth surface.
For example, remote monitoring and classification of crop
structure parameters [7], sunglint detection on oceanic oil
slicks [32], and detection of land surface types with varying
contamination [33] have been proven effective using DOLP.
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