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ABSTRACT Named data networking (NDN) is a new and promising Internet architecture, which aims
to replace the current transmission control protocol/Internet protocol (TCP/IP)-based Internet. The NDN
internet architecture has introduced several benefits in numerous applications. An NDN-based indoor
positioning and navigation system can further optimize existing localization technologies with reduced
the server load and faster response time. In this study, an NDN-based approach for the existing Wi-Fi
fingerprinting-based indoor positioning and navigation was investigated. Among the many features of NDN,
the network-level caching can reduce the computational load and response time of the localization and
navigation server. The theoretical analysis of the runtime complexity shows that the NDN’s network-level
caching performance is better than those of the conventional algorithms. In this paper, naming methods for
different services and a server-side algorithm for handling the NDN requests are proposed. The real-world
implantation and testing results show a better overall performance than that of TCP/IP. This network-level
optimization for indoor positioning and navigation opens new opportunities because it can be combined with
other application-level optimization techniques for more efficient indoor positioning and navigation in the
future.

INDEX TERMS Indoor positioning, indoor navigation, localization, named data networking (NDN), RSS
fingerprint.

I. INTRODUCTION
The global positioning system (GPS) in modern smartphones
makes life simpler by helping users to locate their position
and navigate around different places. One of the challenges
of the GPS is that it does not perform effectively inside
buildings [1]. Making matters worse, GPS receivers in smart-
phones are not powerful enough to accurately measure alti-
tude in multi-storey buildings [2]. Nevertheless, users require
localization and navigation in many modern complexes such
as shopping malls, airports, and hospitals. Finding a specific
shop in a shopping mall, locating an ATM booth, identify-
ing a terminal in an airport or locating a ward in a large
hospital is very common nowadays. To address this prob-
lem, researchers have developed various indoor positioning
techniques based on Wi-Fi [3], Bluetooth [4], ultrasonic
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sound [5], radio frequency identification [6], light signals [7]
and ultra-wideband [8]. Some of the indoor positioning and
navigation technologies can run on a user device indepen-
dently but most of them require an external server to estimate
user location and to find the correct path for navigation inside
a building.

There are two phases in fingerprinting-based technolo-
gies. The first is the offline phase during which a radio
map of an indoor area is generated with the received sig-
nal strength (RSS) fingerprints. This radio map database is
stored in a server responsible for the calculation of position-
ing or navigation requests. The second phase is the online
phase during which the RSS intensity of the selected radio
sources is observed by a user with a device and sent to the
server. The server estimates the user’s current location by
comparing the received RSS values with the existing RSS val-
ues from the radiomap database and sends the estimated coor-
dinates back to the user. Indoor navigation is also achieved in
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a similar fashionwhere the user sends destination information
to the server and in response, the server sends back a plausible
path (we explain the procedure in details in Section III).

Fingerprinting-based localization has several limitations
regarding the accuracy and initial RSS data collection for
the radio map. However, the computational load and server
response time are also some of the concerns which are the
primary focus of this research. The computational complex-
ity of the positioning and navigation algorithms running on
the server mainly depends on the size of the indoor area.
In addition to acceptable accuracy, real-time responsiveness
is also a key to functional indoor positioning and naviga-
tion systems. Researchers have adopted different approaches
to mitigate this problem. In the current literature, all pro-
posed approaches are based on the application layer. How-
ever, there is still room for improvement in the network
layer, which is yet to be investigated. Network-level improve-
ments can be combined with other efficient application-level
implementations to further optimize the performance of
indoor positioning and navigation systems. All the proposed
application-level efficiencies rely on the transmission control
protocol/Internet protocol (TCP/IP) for the communication
between the server and client.While TCP/IP is still robust and
fulfilling our needs, it has some problems; TCP/IP is not the
most efficient way for transmitting data when designing the
Internet of Things (IoT) systems. IoT requires a network with
reduced traffic load, fast response time, better mobility and
security. TCP/IP cannot meet all these requirements. There-
fore, information-centric networking (ICN) is receivingmuch
attention in the IoT research field. ICN shifts the paradigm of
point-to-point networking to data-centric networking. In ICN,
it does not matter where the data is coming from as long
as they are authentic. It helps the networking devices to
retrieve data from the nearest possible node (when the data
are available) without communicating with the original server
from where the data originated.

Named data networking (NDN), which falls under the
umbrella of ICN, is a strong candidate for the future of
Internet architecture [9]. The fundamental difference between
TCP/IP and NDN is that instead of using an IP address to
find the destination node, NDN uses a name to find specific
data. Traditional TCP/IP uses an IP address, a MAC address,
and a port number to establish an end to end connection
with the server and the client. NDN shifts this paradigm
to a data-centric network in which data are the key com-
ponent. Instead of IP addresses, names are used. A name
indicates the data someone is looking for and not the end
point where the data are being produced. This allows inter-
mediate routers to look at the name and identify which data
are being requested. In addition, NDN routers carry caches
of previously requested data such that the router can satisfy
future requests independently. Moreover, when one request is
in progress, other identical requests are stalled in the router,
which reduces unnecessary network traffic (detailed expla-
nation in Section III-A). NDN also offers better security by
encrypting the data instead of the connection between the

server and client. Features like adaptive forwarding, better
security, and data cachingmakeNDN a better communication
protocol over TCP/IP, particularly in IoT applications.

To address the aforementioned problemwith the inefficient
transmission protocol, an NDN-based approach is proposed
in this paper. The main contributions are as follows:

1) A novel NDN-based approach for indoor position-
ing and navigation systems is proposed to reduce the
server load and response time. This approach opti-
mizes the network layer and will be applicable to any
server-based indoor positioning or navigation system
in the future. It can complement other application layer
optimizations and make a system more efficient.

2) A complete NDN-based indoor positioning and nav-
igation system is designed with Wi-Fi RSS finger-
prints and floor detection with barometer sensors. The
approach is based on fundamental indoor positioning
and navigation algorithms.

3) The proposed NDN-based approach is evaluated
by comparing it with traditional TCP/IP-based sys-
tems. The real-world experimental results have shown
reduced server load and response time compared to
those of TCP/IP in floor detection, indoor positioning,
and indoor navigation services.

The primary objective of this research study was to intro-
duce a better communication protocol in indoor positioning
and navigation systems to make the network layer more
efficient. This approach can offer reduced the server load
and faster response time. Accuracy of the indoor positioning
system is outside the scope of this paper.

The remainder of this paper is organized as follows:
Section II presents related study reports on different opti-
mization techniques for indoor positioning and navigation.
Section III presents the architecture and modeling of the
proposed system. Moreover, Section IV presents the imple-
mentation of the proposed NDN-based system and tests done
in a real-world scenario. The performance of the NDN-based
system is evaluated with real results obtained from a mobile
application in Section V. Finally, the key conclusions and
future study directions are presented in Section VI.

II. RELATED WORK
NDN is getting is receiving much attention from researchers
in the IoT field [10]–[12]. Being a data-centric network,
NDN particularly favors low powered IoT devices. In addi-
tion, NDN provides certain key features for IoT such as
caching, data aggregation, adaptive forwarding, and security.
Researchers are exploring how NDN can improve wireless
networks such as ad-hoc and wireless sensors [13], [14]. The
popularity of NDN in IoT applications is growing rapidly
as more and more researchers are investigating the improve-
ments and use cases of this promising Internet architec-
ture [15]. Outdoor location-based services have increased in
demand in the last couple of decades. Indoor positioning
systems are being widely studied recently, and providing
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robust indoor positioning and navigation solutions is a con-
cern. Moreover, many researchers are studying the accuracy
of indoor positioning systems [16]–[19] and how to reduce
the server load with different algorithms and implementation
techniques [20]–[22].

Wi-Fi fingerprinting-based indoor positioning is one of
the most popular indoor positioning techniques currently
available. Because most indoor areas already have a Wi-Fi
infrastructure, Wi-Fi fingerprinting-based indoor positioning
is a cost-effective method with acceptable accuracy. In this
localization technique, some Wi-Fi routers are selected as
access points (APs) and reference points (RPs) are chosen
in the indoor area. The numbers of APs and RPs increase
with the size of the indoor area, which directly impacts the
performance of the positioning algorithms running in the
server. To improve the efficiency of various indoor position-
ing techniques, many solutions have been proposed in recent
years. Some researchers suggested using the Kalman filter to
constrain the search space ofWiFi fingerprints to improve the
accuracy and computational efficiency [23]–[25]. One team
in the IPIN 2018 competition introduced a more efficient
algorithm that considers other features of theWi-Fi RSS such
as the entropy parameter and their efficiency weight [26].

Because this research work exclusively focuses on reduc-
ing the server load and response time, some of the previously
published related works are presented in this section. Dong
et al. [27] proposed a new efficient fingerprint vector match-
ing algorithm for a large dataset that employs three match
making processes. Instead of directly mapping between the
location and fingerprint, which takes a lot of computing time,
matching the head node is done first in order to narrow
down the search area. In the second step, the vectors are
matched within the search area. Subsequently, the absolute
RSS values are matched to optimize the database search
in the third step. Zhang et al. [28] adopted a grid search
algorithm that optimizes the parameters of the kernel sup-
port vector, which improves the computational efficiency of
the positioning algorithm. Each RP stores data from all the
available APs, whichmakes them high-dimensional. Process-
ing data with high-dimensions increases the computational
complexity of the positioning algorithm. By using an effi-
cient principal component analysis model, the researchers
reduced the dimension and complexity of the algorithm.
Moreover, Luo et al. [29] used a machine learning approach
and employed linear discriminant analysis based classifi-
cation model for floor identification for three-dimensional
indoor positioning using Wi-Fi RSS only. In addition, they
used a modified algorithm based on K-nearest neighbors
algorithm named LL_KNN for positioning on a particular
floor. Their approach uses only two APs for floor detection,
which significantly reduces the computational complexity.
Furthermore, a convolutional neural network (CNN)-based
indoor localization system was proposed by Song et al. [30],
which uses the SAE network to extract one-dimensional CNN
and key features of the dataset. Their optimized CNN replaces
general matrix multiplication, which reduces computational

complexity. Subedi and Pyun et al. [31] proposed an affinity
propagation clustering (APC)-based fingerprinting localiza-
tion systemwith Gaussian process regression to estimate RSS
values in the offline phase and used APC to reduce the search
space during the online phase; this method improved the
accuracy and reduced the computational load.

However, all the proposed approaches are based on the
application layer. A network-level optimization of an indoor
positioning and navigation system has not been studied.Mak-
ing the network layer more efficient can further optimize an
indoor positioning and navigation system. To implement the
fingerprinting-based indoor positioning system with NDN,
a more traditional and widely accepted weighted K-nearest
neighbors (WKNN) approach was applied. Because this
study focuses more on the network layer optimization,
the application layer was simplified with fundamental algo-
rithms.

While GPS for outdoor navigation is fairly common and
part of our daily lives, navigating indoors and fine-grained
navigation have seen a recent increase in popularity
[32]–[34]. Dijkstra’s algorithm is being widely used for
pathfinding problems because it is simple to use and pro-
vides robust results [35]. Algorithms like Floyd–Warshall
and Bellman–Ford are also used in some indoor navigation
systems to optimize the results [36]. One of the most common
algorithms is A*. It is more efficient and used in outdoor
environments [37] and for indoor navigation [38], [39]; A* is
efficient because it calculates the path with heuristic values.
Provided a graph, A* will find the shortest path from the
given source node to the destination node. While traversing
the graph, A* calculates the cost of each possible route with
the cost function F(n) = G(n)+ H (n) at each node n, where
H is the heuristic cost and G the covered distance. A* always
chooses the route to the next node with the minimal cost.
The algorithm is both optimal and complete. In this study,
A* was used for finding the shortest path and navigating the
user. All navigation calculations were handled by an external
server. By improving the communication protocol with NDN,
it was possible to further optimize the indoor navigation
system and make it more efficient.

Many researchers study indoor localization and navigation
with diverse technologies and techniques. However, an NDN-
based indoor positioning and navigation system has not been
explored. Because NDN is designed to optimize IoT applica-
tions, the use of NDN in indoor positioning and navigation
systems can provide various benefits. The possibility and
potential of an NDN-based indoor positioning and navigation
system was the focus of this research study. Therefore, a
Wi-Fi RSS fingerprinting-based indoor positioning and navi-
gation system with barometer sensors for floor detection was
implemented with NDN.

III. SYSTEM ARCHITECTURE
Most modern smartphones include micro-electromechanical
system (MEMS) pressure sensors, which can mea-
sure the pressure with relatively high accuracy [40].
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FIGURE 1. Application layer framework of the system.

Recent studies [41]–[43] have proved that barometer sensors
are compatible with other sensors and systems. For floor
detection, two barometer sensors are used: one is the refer-
ence barometer sensor connected to the server, and the other
is the user device’s barometer sensor. The air pressure values
from these two barometer sensors are compared to identify
the floor. The reference barometer sensor can be placed on
any floor.

As previously mentioned, there are two phases in a Wi-Fi
RSS fingerprinting-based positioning system. In the offline
phase, someWi-Fi routers are selected as APs, and some RPs
in the indoor area are selected. The RPs are selected such that
an almost uniform grid is created. The RSS values of each AP
are recorded from all the selected RPs. Each RP contains RSS
fingerprints and the corresponding two-dimensional coordi-
nate. This way, a radio map is generated. In the online phase,
the user device records the RSS values from the selected
APs and sends them to the server where they are matched
with the pre-recorded RSS values from the calibration phase
with WKNN. Subsequently, the current position of the user
is estimated. The grid of the RPs from the generated radio
map is also used as the traversal tree for navigation with A*
pathfinding. The navigation algorithm generates a path from
the user’s nearby RP to the nearest destination RP.

The setup in Figure 2 presents the server and client which
are connected to an NDN router. The server has a local
database for storing the fingerprint data. A barometer sensor

FIGURE 2. Network setup of the system.

is also connected to the server. First, the user’s floor is
detected, and information required to generate the map of
that specific building floor is sent to the client’s device. The
location of the user is estimated by matching the observed
RSS values of the selected APs from the client’s device and
the existing RSS values of the RPs from the radio map. Indoor
navigation requires users to send destination information to
the server. Once the server has the destination information,
it can calculate the shortest possible route and send the result
to the client’s device. Figure 1 demonstrates the flow of the
system.

A. NDN ARCHITECTURE
There are two types of packets in NDN: 1) the interest
packet, which is sent by the consumer (client) and contains
information about the requested data and 2) the data packet,
which is produced by the producer (server) and contains the
data requested by the consumer. NDN maintains three data
structures: forwarding information base (FIB), pending inter-
est table (PIT), and content store (CS). the FIB contains the
information about next hops, the PIT stores all the identical
interest packets that are currently being processed, and the
CS is responsible for caching all the previously requested
data packets. In NDN, the routers are stateful, i.e., the router
knows which data the user is asking for.

When an interest packet arrives at a router, the router first
checks if it has the requested data in its CS. If the requested
data is available, the router can satisfy the request. If the data
is unavailable in the CS, the router checks the PIT in which
all the pending requests are stalled. If the requested data is
already pending, the router puts the interest packet in the PIT
while waiting for the response from its next hop. If the router
receives multiple interest packets for identical data from the
same consumer, the router only keeps one interest packet in
the PIT. Moreover, if there is a new incoming interest packet
(which is unavailable in the CS or PIT), the router searches
its FIB table to forward the interest packet accordingly and
create a new PIT entry. Once the data packet arrives, it is
cached in a new CS entry for future requests. Figure 3
presents this process.

B. DIFFERENT SERVICES AND ALGORITHMS
Floor detection, map generation, indoor positioning, and
indoor navigation use different services to process individual
NDN requests from the user. In this section, the application
layer implementations are discussed in this section. the net-
work layer NDN implementation is discussed in Section IV.

1) FLOOR DETECTION SERVICE
The atmospheric pressure decreases with the altitude.
By using a barometric sensor to measure the air pressure
changes, it is possible to calculate the change of altitude
corresponding to change in the pressure with the following
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FIGURE 3. Processing of NDN interest packets in a router.

equation:

h =
(
1− 5.255

√
p

1013.25

)
×

288.15
0.0065

, (1)

where h is the altitude in meters, and p is the pressure in
hectopascal [44]. Using (1), when the height is increased
by approximately 8.37 m (27.46 ft), the pressure changes
by approximately 1 hPa [45]. Therefore, (1) can be further
simplified to following the equation:

p =
h

8.37
, (2)

because the absolute altitude is not required for floor detec-
tion. The height of each floor of the building is stored in the
database of the server.With (2), The user’s floor is determined
from the difference in height between the two sensors and
the floors. In this study, the reference barometer sensor was
installed on the ground floor. The equation for estimating the
floor can be defined as follows:

floor ≈ (altref − altuser )/hfloor , (3)

where altuser and altref are the estimated vertical distances of
the user and reference sensor from the ground, respectively;
hfloor is the height of each floor of the building. The air
pressures Pref from the reference sensor and Puser from the
user are used to calculate altref and altuser using (2). With
these values, Algorithm 1 uses (3) to detect the user’s current
floor.

2) POSITIONING SERVICE
The positioning service uses the WKNN algorithm to esti-
mate the user’s current location on a specific floor. This
algorithm is one of the most widely used algorithms for
indoor localization. The observed RSS values from all the
pre-selected APs are sent from the user’s device to the server
through NDN. Subsequently, The server calculates the user’s
current location with the WKNN algorithm.

Algorithm 1 Floor Detection
Input : The reference pressure Pref (hPa), the user

device pressure Puser (hPa), height of each
floor hfloor (m) from the database

Output: floor number
begin

altref = 8.37 ∗ Pref ;
altuser = 8.37 ∗ Puser ;
floor = Round((altref − altuser )/hfloor );
return floor

end

If there are NAP number of APs and NRP number of RPs,
the RSS vector of the ith RP from the existing fingerprint
database is RSSi = RSSi1,RSSi2, . . . ,RSSij, where i =
1, 2, . . . ,NRP and j = 1, 2, . . . ,NAP. The RSS vector from
the user’s device is RSSuser = RSS1,RSS2, . . . ,RSSj. First,
the Euclidean distanceDi between RSSuser and all the RSSi is
calculated with the following equation:

Di =

√√√√√NAP∑
j=1

(RSSij − RSSj)2. (4)

Because the WKNN is used, the weight is assigned with the
following equation:

wi =
1/Di∑k
j=1(1/Dj)

, i = 1, 2, . . . , k, (5)

where the value of k is 4. Finally, the user’s coordinates (xu,
yu) are estimated using the following equation:

(xu, yu) =
k∑
i=1

wi(xi, yi). (6)

3) NAVIGATION SERVICE
For the navigation service, the system uses the existing grid
of RPs to create a graph, and A* algorithm is used to find
the path. Each RP has a corresponding two-dimensional
coordinate used by the server to identify the user’s cur-
rent location and destination. The A* algorithm works with
heuristic values. Because a uniform grid is used, the heuristic
value is calculated with the Euclidean distance. By using
Algorithm 2, the service calculates all the required nodes to
create the shortest path from the user’s current nearest RP
to the nearest RP of the destination. Thus the algorithm uses
the current location node (x1, y1, z1) and destination location
node (x2, y2, z2), where x and y indicates the two-dimensional
coordinates an RP, and z is the floor number. When a user
requests navigation to a different floor, the algorithm shows
the path to the nearest exit point. Closed andOpen keep track
of all the visited nodes and next possible nodes, respectively.
By using the heuristic cost H and covered distance G, F =
G+ H can be calculated to determine the shortest path from
(x1, y1) to (x2, y2).
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Algorithm 2 Navigation Using A*

min_cost = function to find min cost of an RP node;
Input : current location (x1, y1, z1), destination

(x2, y2, z2)
Output: route
begin

if z1 6= z2 then
return route to the nearest exit point;

Closed ←− empty set;
Open←− include (x1, y1);
while Open set 6= ∅ do

Current ←− min_cost(Open);
if Current == (x2, y2) then

route←− Backtrack to (x1, y1);
return route;

for each neighbor N of Current do
if N is in Closed then

Continue;
end
else

calculate N ’s G and H ;
F = G + H ;
N ’s parent←− Current;
Open←− N ;

end
end

end

C. THEORETICAL ANALYSIS OF SYSTEM PERFORMANCE
A uniform grid of RPs and APs (with δ and 1 intervals,
respectively) is considered as a model (Figure 4). This sim-
plified model helps to correlate the numbers of RPs and APs
with the area size to understand how different algorithms
are impacted when the indoor area increases. In addition
the model helps to demonstrate how NDN cache reliance

FIGURE 4. AP and RP selection for an indoor area.

can improve the performance and efficiency compared to the
traditional TCP/IP approach.

The number of RPs varies with the area size and distance
between them. For example, if the width and length of a
rectangle are x units and y units, respectively, the number of
squares in the grid with one unit width that would fit into the
rectangle can be easily calculated. Because the model does
not consider points along the edges, they must be subtracted
and one unit must be added because of the intersection of two
edges. Thus, the number of squaresN in the grid is as follows:

N = (x − 1)(y− 1). (7)

Hence, the model has a uniform grid of RPs with δ intervals.
Dividing the edges by δ and determining the ceiling of the
value will provide the exact number of squares. By modify-
ing (7) for the model, the following equation is obtained:

NRP =
(⌈w
δ

⌉
− 1

)(⌈ l
δ

⌉
− 1

)
, where δ < w, l, (8)

where NRP is the number of RPs required for the system, w
the width, l the length of the area, and δ the interval between
each RP. For square areas, (8) can be rewritten as follows:

NRP =
(⌈

l
δ

⌉
− 1

)2

, where δ < l. (9)

In addition, the AP positions for the model are selected in a
grid formation (Figure 4). However, in a real-life scenario,
it may not be possible to select APs in a grid formation as
the model proposes. The main purpose of this model is to
correlate the numbers of APs and RPs with the area size
which is impossible without considering the uniformity of the
APs. Similar to (8), the number of APs can be calculated.
However, unlike the RPs, the APs are selected along the
edge in this model. Thus, the value is floored, and one unit
is added to each edge to determine the exact number. The
required number of APs for an indoor area can be calculated
as follows:

NAP =


(⌊w
1

⌋
+ 1

)(⌊ l
1

⌋
+ 1

)
, if 1 ≤ w, l

4, otherwise.
(10)

For square areas, (10) can be rewritten as follows:

NAP =


(⌊

l
1

⌋
+ 1

)2

, if 1 ≤ l

4, otherwise,
(11)

where NAP is the number of required APs, and1 the distance
between two APs. At least four APs are required for the sys-
tem to work properly. The value of 1 should be sufficiently
small such that it remains within the range the of Wi-Fi radio
signal.

The performance heavily relies on the NDN router’s data
cache. WKNN is a very common algorithm used in indoor
positioning systems based on Wi-Fi RSS fingerprinting.
The A* algorithm is another common path finding algo-
rithm. These algorithms have high computational complexity.
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FIGURE 5. Computational complexity analysis of different algorithms
with respect to area size.

When the indoor area increases, the complexity increases
because the numbers of RPs and APs increase. By using the
presented model, the numbers of RPs and APs can be calcu-
lated, and the performance characteristics of the algorithms
for an increasing area size can be compared. For the position-
ing algorithm, the computational complexity for the distance
computation for a single RP is O(d) where d is the size of
the vector. The distance computation for n number of RPs
require O(nd) runtime. Finding the nearest K-number of the
neighbors require O(kn) time. Thus, the total computational
complexity for the positioning algorithm is O(nd + kn).
In this study, WKNN is used which requires additional O(k)
time to assign weight. However, because the value of k is
considered 4, it becomes a constant. The A* algorithm has a
computational complexity ofO(bd ), where b is the branching
factor, and d is the depth. The tree is a uniform grid in this
model. As a result, the branching factor b is 3 on average, and
the depth d is the total number of RPs.
An NDN router stores cache in the CS, and the CS uses Set

as its underlying data structure [46]. Set uses a red–black tree
which has a computational complexity ofO(log n) for search-
ing, inserting, and deleting data. Moreover, the CS stores data
in packets. A data packet can carry a maximum of 8800 bytes
of data. The default size of the CS is 65536 packets, which
correspond to approximately 500MB; however, the value can
be increased if required.

The scenario considered for the theoretical model has a
square indoor area in which δ is 2 m and1 is 15 m. By using
(11) and (3), it is possible to calculate the numbers of RPs
and APs for that square area. When the length of the area
is increased, the numbers of APs and RPs increase propor-
tionally, thus increasing the complexity. Figure (5) presents
the length of the square area on the x axis and the growth of
algorithmic computational complexity t(n) of the algorithms
on the y axis. For each sample from the length on the x
axis, numbers of RPs and APs are calculated using (11) and
(3). The growth of algorithmic computational complexity

FIGURE 6. Computational complexity analysis of positioning algorithm
with respect to numbers of APs and RPs.

is calculated using the numbers of RPs and APs and the
aforementioned big O notation for each algorithm. For NDN,
the cache size increases with the increasing length to accom-
modate every possible combination of RSS (up to the tenth
decimal place) along with every navigation combinations.
Although it may be unfeasible in real life to increase the
cache infinitely, theoretically, the caching algorithm still out-
performs other algorithms when comparing the growth of
algorithmic computational complexity for large indoor areas;
thus, NDN’s caching algorithm is more efficient.

In addition, the algorithm complexity can be compared
based on the numbers of RPs and APs instead of the area size.
The growth of the algorithmic computational complexity t(n)
of the algorithms is directly proportional to the numbers of
RPs and APs used in the indoor positioning and navigation
system. Figure 6 presents the growth of the computational
complexity of the positioning algorithm and Figure 7 shows

FIGURE 7. Computational complexity analysis of navigation algorithm
with respect to numbers of APs and RPs.
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the growth of the computational complexity of the navigation
algorithm with respect to the numbers of RPs and APs. In the
positioning algorithm, the growth depends on the numbers
of RPs and APs used, whereas in the navigation algorithm,
the growth only depends on the number of RPs because it uses
a grid of RPs as the tree. Figure 8 presents the computational
complexity of the NDN caching algorithm with respect to
the numbers of APs and RPs. Because the RSS values vary
more (from 0 to -110 dBm in this study), the APs create
significantly more combinations than the RPs, which causes
the complexity to grow significantly when the number of APs
increase.

FIGURE 8. Computational complexity analysis of NDN caching algorithm
with respect to numbers of APs and RPs.

D. PROBABILITY OF HITTING NDN CACHE
The probability of hitting cache in an NDN router can be
calculated with respect to the CS size of that router. The same
model as in Figure 4 is used. The data will be retrieved from
the cache if users request data with identical information; this
will generate the same name, thereby enabling the routers to
understand if the user is asking for the same data. The more
often one service is used, the more combinations of data will
be generated and stored in the CS of a router. An increase
in the CS entries for a service will increase the probability
of hitting cache for that service. For a sufficient cache size,
if every possible combination is generated and stored in the
CS, the probability of hitting cache will be 1. All the notations
used throughout the paper are available in Table 1.
The navigation service requires two values: the current

position (nearest RP) of the user and the the destination
position. Both values must be identical to produce the same
name in NDN. The probabilities of having the same current
location and destination can be calculated and combined. The
destination can be any RP except for the current location.
However, the current position’s RP is limited to the router’s
wireless radio signal range. Because the RPs form a grid,
the number of squares n that will fit into a circle can be

TABLE 1. Notation for system model.

calculated. If the radius of a circle is R, and the length of each
square of the grid is L, the ratio of the area is πR2/L2. For the
approximation of squares removed at the circle’s circumfer-
ence,

√
2L is used as the average, which is the diagonal length

of the square. By using this average, the number of cutoff
squares can be calculated with 2πR/

√
2L. Hence, the total

number of squares can be defined as follows:

n ≈
πR2

L2
−

2πR
√
2L
. (12)

Equation (12) can be used to estimate the number of RPs
within a Wi-Fi router’s range with:

nRP ≈
π(r + δ/2)2

δ2
−

2π (r + δ/2)
√
2δ

, (13)

where nRP is the number of RPs within the range of that
router, and r is the theoretical range of the Wi-Fi router.
Here, the diameter of the circle is increased by δ. This results
in a better approximation of the maximal RPs if the AP is
not perfectly aligned with the grid of RPs. The value of nRP
from (13) is used for the following equation:

P(Hit)nav =
1
nRP
×

1
NRP − 1

× CSnav, (14)

to determine the probability of hitting cache in the navigation
service;NRP is the total number of RPs, andCSnav is the num-
ber of CS entries in the NDN router for navigation requests.

For the positioning service to hit cache, all the RSS values
from the selected APs must be the same. This way, the name
will be the same, and the router will be able tell whether the
user is requesting identical data or not. Owing to multipath
propagation, it is difficult for each RSS value to be identical,
even when standing in the exact same location. However, for
enough tries and a sufficient CSpos size, it is possible to hit
cache. Section III-C theoretically demonstrated that having
more cache size does not affect the performance significantly.
Here, the minimal signal strength for an AP is assuned to be
−110 dBm to guarantee an adequate number of APs within
the users range; This number can be changed if necessary.
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If RSS ≤ −110 dBm, it is considered out of range. Thus, for
the service to hit cache, only the APs within the acceptable
range must match. The APs outside the range will always
generate −110 dBm. The theoretical maximal distance from
an AP before it is considered out of range is calculated with
the free space path loss model for Wi-Fi signals:

110 = 20 log(dmax)+ 20 log(f )− 27.55

H⇒ dmax = 10(27.55−20 log(f ) +110)/20, (15)

where dmax is the maximal distance in meter from the router
for −110 dBm, and f is the frequency of the radio signal
in mHz. With (15), the maximal number of acceptable APs
within the user’s range can be determined as follows:

nAP ≈
π (dmax +1/2)2

12 −
2π (dmax +1/2)

√
21

. (16)

eqnarray (16) provides nAP, which is the number of APs
within the user’s range. This is based on the assumption
that the APs form a grid. The probability of generating the
same request can be calculated if a user stands in the exact
same location. If the standard deviation of the RSS is known,
the probability of hitting the cache in one location can be
calculated as follows:

P(Hit)pos =
nAP∑
n=1

1
σn
× CSpos, (17)

where σ is the standard deviation of the RSS for each AP,
which depends on the fluctuation of the RSS; CSpos is the
number of CS entries for the positioning requests.

During floor detection, the system measures the air pres-
sure in hectopascal and rounds the value off to one decimal
place. If the change in altitude for 0.1 hPa difference in the
air pressure is known, the maximal number of air pressure
samples within the router’s range can be calculated. The
equation for calculating the probability of hitting cache in the
floor detection service is as follows:

P(Hit)floor =
1alt

2r
× CSfloor , (18)

where r is the theoretical range of the Wi-Fi router, 1alt the
change in altitude for 0.1 hPa difference in the air pressure,
CSfloor the number of CS entries for floor detection requests.

IV. NDN IMPLEMENTATION
To implement and test the proposed NDN-based indoor posi-
tioning and navigation system, a server was created with Java.
MongoDB was used as the local database for storing the
RSS fingerprints. The database was running on the server
computer. MongoDB is a NoSQL document-based database.
Consequently, the database can access large volumes of data
at a very high speed and can be scaled-out easily with a
minimal performance loss. Moreover, an Android mobile
application was developed to test the performance of the
system. The application had TCP/IP and NDN options to
communicate with the server. This enabled the comparison
of the performance difference between the TCP/IP and NDN.

Another computer (Raspberry Pi) was installed between the
server (producer) and client (consumer) as a router because no
NDN router was available at the time of this research study.
NDN forwarding daemon (NFD) was running on that router.
Although NDN has the native capability of running over Eth-
ernet, there is no global-scale native NDN network because
NDN is still at a very early development stage. Instead, NDN
can run as an overlay network on top of a traditional IP
network using NFD. This router computer was connected
to the server and the client with WLAN 802.11ac wireless
connection; it was responsible for handling the TCP/IP and
NDN connections.

The smartphone application was designed to show a sim-
plified view of the map. It shows the user’s estimated posi-
tion inside the building and provides navigation to the given
coordinate. In addition, the application shows the time inter-
val between sending a request and receiving a response in
milliseconds. The BCS Computer City, which is a shopping
complex in Dhaka, Bangladesh, was chosen as the test site
(Table 2). The RPs and APs with intervals of approximately
3 and 15 m were chosen, respectively. The test was done in
a relatively small-scale environment to show the potential of
the NDN in indoor positioning and navigation systems. The
authors assumed that if NDN can deliver promising perfor-
mance in a small scale environment in which the complex-
ity is already low for the traditional TCP/IP-based systems,
it will be suitable for large-scale deployments.

TABLE 2. Test site information.

In NDN, naming the data is one of the crucial tasks. Each
interest and data packet should generate non-identical names.
Based on the requirements, NDN allows flexible naming con-
ventions for different applications. The NDN names follow a
hierarchical naming structure, and the components are sepa-
rated with ‘/’. The names for all the services were designed
such that they could take the advantage of NDN’s advanced
features. The naming structure of all the services has this pat-
tern: ‘‘/ips/place_name/service_name/floor_number/service-
specific_information’’.

By the time of the experiment, there was no dedicatedNDN
capable router available. Therefore, a Raspberry Pi 3Model B
that ran the NFD was used as a router. The server application
ran on aMacBook Pro 2019, and SamsungGalaxyNote 9was
used as the client device (Table 3).

A. FLOOR DETECTION SERVICE NAMING METHOD
As previously mentioned, the floor detection service used in
this research study requires at least two barometer sensors:
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FIGURE 9. Android client application: (a) Map view, (b) Current location, (c) Route to destination.

TABLE 3. Test device information.

one on the server side and one on the client side. The client
device records the atmospheric pressure in hectopascal and
sends the request to the server. Subsequently, the server cal-
culates the distance from its reference point with the value
from its own reference air pressure sensor. The database
contains information about the building, which: the server
uses to detect the floor; ‘‘/ips/idb/floor_detection/1013.4’’
is an example for the naming method used in this service.
Because names in NDN are hierarchical, each part of the
name narrows down the information the client or consumer is
looking for. In this case, ‘‘/ips’’ indicates that this component
is for the indoor positioning system. The next part in the
name, which is ‘‘/idb’’, contains the name of the building.
The following part represents the service (in this case, it is
the floor detection). The last part contains the value of the
air pressure from the client’s device (which is 1013.4 hPa in
this example). When the server satisfies the request for the
first time, the floor information for that specific air pressure
is stored in the router’s CS.Whenever there are other requests
with the same air pressure value, the names of the NDN
interest packets will be identical. Thus, the router can send
the data packet from its cache.

B. MAP SERVICE NAMING METHOD
After successfully detecting the floor, the map must be gen-
erated in the client’s device to compare the performance

of NDN; ‘‘/ips/idb/load_map/3’’ is an example of how the
name for loading the map is structured. The ‘‘/ips/idb/’’ part
represents the floor name. The following part indicates the
service used for loading the map of the floor. Finally, ‘‘3’’ is
the floor number, for which the map is generated. The NDN
data packet contains all necessary coordinate information for
generating the map. In addition, it contains the information of
the APs on that floor and the sequence, which is crucial for
positioning. After acquiring the map information, the appli-
cation uses the coordinates from the map information to draw
the map on the user’s device (Figure 9).

C. POSITIONING SERVICE NAMING METHOD
The client device first records the signal intensity from the
selected Wi-Fi APs in decibel and sends the information
to the server. The server accesses the database, which con-
tains the information of all the RPs and corresponding RSS
values of the APs. Based on the observed RSS from the
client and existing RSS values from the database, the WKNN
algorithm is used to estimate the user’s location. The name
is constructed as follows: ‘‘/ips/idb/position/3/-43_-32_-84_-
57_-55. . . ’’, where ‘‘/ips/idb/’’ part is identical to the floor
detection name. The next part represents the service used to
detect the user position. Moreover, ‘3/’ is the floor number.
Finally, the last part contains all the observed RSS values
from the client device. The values are in a specific order such
that the server can understand which RSS value corresponds
to which AP. They are separated by ‘‘_’’.

Similarly to the floor detection, after supplying the client
device with the position information for that specific name,
the cache will be stored in the NDN router’s CS. The future
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interest packets with identical RSS values will be satisfied
by the NDN router. As previously mentioned, it is difficult
to match all the RSS values for each AP, even if the user
is standing in the exact same spot. However, after several
requests, some interest packets with identical names might
be generated. The approximate location of the user is shown
on the application screen (Figure 9).

D. NAVIGATION SERVICE NAMING METHOD
Once the position of the user is determined, navigation to
a desired location can be provided. The destination coordi-
nates and destination floor are sent to the server from the
client device. The server calculates the shortest possible route
using Algorithm 2 and the route information is sent to the
client device; ‘‘/ips/idb/navigation/21_79_3_7_38_3’’ is an
example of the naming method for the navigation service.
Again, ‘‘/ips/idb/’’ represents the same information as the
floor detection, map, and positioning service. The follow-
ing part indicates the service name (which is the navigation
service in this case). In the last part, the first three values
(21_79_3) represents the current position of the user. In this
example, the current x coordinate is 21, y coordinate is 79,
and 3 is the current floor. The last three values (7_38_3) indi-
cates the destination information. the destination x coordinate
is 7, Y coordinate is 38 and the destination floor is 3. By using
the route information, the application can draw the navigation
path on the map of the application (Figure 9).

All services follow similar processes when requesting
information from the server (Figure 10). The server appli-
cation (i.e., ‘‘the producer’’ in NDN) receives the interest
packet from the client device (i.e., ‘‘the consumer’’ in NDN).
Algorithm 3 is developed for the server to handle the naming
methods of NDN used in different services. When an interest
packet arrives at the producer, it can see the full Name.
The components of the name are extracted and stored in the
Components list in which the first item indicates the indoor
positioning and navigation system, the second item represents
the Place, and the third item indicates the Service. The other
items in the Components list are service-specific information
for other algorithms.

V. PERFORMANCE EVALUATION
As the NDN-based indoor positioning and navigation system
was implemented in the BCS Computer City, data for the
proposed methodology could be gathered. Therefore, con-
ducted multiple tests with different scenarios were conducted
to compare NDN with TCP/IP. The following tests were
conducted to compare NDN with TCP/IP.

• Response Time: the time it takes to receive data from
the server for the client for each service was mea-
sured. The time was measured in nanoseconds and
then converted to milliseconds. Because the client was
an android application, System.nanoTime() method was
used to measure the precise time required to execute
one method. Each mode was measured 20 times with

Algorithm 3 NDN Request Processing in Server Appli-
cation
input : Interest Packet
output: Data Packet
begin

Name←− get Name from the received Interst
Packet;
Components←− List of components from Name
separated by ‘/’;
Request ←− Components [0];
if Request == ips then

Place←− Components [1];
Service←− Components [2];
access database using Place information;
if Service == floor_detection then

Puser ←− Components [3];
run floor detection service (Algorithm 1)
with Puser ;
return Data Packet containing floor
information;

else if Service == load_map then
Floor ←− Components [3];
get map information of the Floor from
database;
return Data Packet containing map
information;

else if Service == position then
Floor ←− Components [3];
RSSuser ←− Components [4];
run positioning service with RSSuser ;
return Data Packet containing location
information;

else if Service == navigation then
x1, y1, z1, x2, y2, z2←− Components [3];
run navigation service (Algorithm 2) with
(x1, y1, z1), (x2, y2, z2);
return Data Packet containing route
information;

else
Continue;

end
else

Continue;
end

end

the NDN and TCP/IP protocols. For NDN, two different
measurements were taken: one for the best-case sce-
nario for NDN, in which same requests were generated
to hit the cache. Instead of manually generating the
same request with hard-coded data, a more real-world
approach was considered for all of the services. The
other scenario was the worst-case scenario in which the
test subject tried to generate different requests each time;
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FIGURE 10. Packet handling process of the system.

thus, the requests did not hit the cache. This result should
provide an idea about how NDN performs compared to
TCP/IP when no cache is hit. There was only one test
case for TCP/IP.

• Server Load: because server was created with Java,
JProfiler was used to measure and monitor the server
resource utilization for the previously mentioned test
runs.

Because the implementation of the proposed system was
a test, it was done with a single device that generated one
request at a time for each attempt. This test should be suffi-
cient for providing an idea about the advantages NDN will
provide for a large-scale implementation with real users. The
large-scale implementation and testing will be considered in
the future.

A. ANALYSIS OF FLOOR DETECTION SERVICE
PERFORMANCE
For the NDN best-case scenario test, the test subject stood
on the same floor, and the height of the device from the

floor remained constant. Thus, the barometer sensor data did
not change, and the requests were identical. Every request
was expected to be identical and hit the cache after the first
request. To collect the worst-case results, the test was con-
ducted on different floors, and the device height was changed
to generate different requests. This way, the requests were not
identical and did not hit the NDN router’s cache stored in
the CS. In addition, the test subject requested floor detection
service with TCP/IP to compare the results with those of
NDN.

1) FLOOR DETECTION RESPONSE TIME
According to the results in Figure 11, when the user and the
device remained in the same location (which was the best-
case scenario), the response time was much shorter after the
first request. This is because after the first request, the infor-
mation was retrieved from the NDN router. There is one spike
in the graph owing to a slight change in the air pressure during
the test. All the remaining results were between approxi-
mately 50 and 75 ms. In the worst-case scenario in which
each requests reached the server for a response, the results
were similar to those of TCP/IP (mainly between 100 and
250 ms).

FIGURE 11. Floor detection response time with TCP/IP, NDN in the
worst-case, and NDN in the best-case.

2) FLOOR DETECTION SERVER LOAD
During the test of the response time of the floor detec-
tion service, the server load was measured with JProfiler
(Figure 12). With TCP/IP, every single request was handled
by the server. The spikes indicate that when ever a request was
made, the server responded by running the service-specific
algorithm. (For the worst-case) scenario with NDN in which
every request was different, showed similar results because
every request was unique and handled by the server. However,
for similar requests in the NDN best-case scenario, the server
load was significantly reduced. This was because after the
first request, most requests hit the router’s CS cache and were
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FIGURE 12. Floor detection server load with TCP/IP, NDN in the
worst-case, and NDN in the best-case.

processed by the router. This prevented the need to handle
identical requests.

B. ANALYSIS OF POSITIONING SERVICE PERFORMANCE
When testing the NDN’s positioning service performance in
the worst-case scenario, the user moved on the floor. Thus,
each request was different because of unique RSS values.
In the best-case, testing the NDN caching performance was
challenging because obtaining the same RSS values from the
APs within the user’s range.

1) POSITIONING RESPONSE TIME
According to Figure 13, in TCP/IP, all the positioning
requests took similar times (approximately 200–300 ms).
In the NDN best-case test, only 10 out of 20 requests hit
the cache although the test subject remained in the same
position. Those that did not hit the cache were processed by
the server instead of the router. However, when the requests
hit the cache, a response time of approximately 50–80 ms
of response time was recorded. This should provide an idea
about the NDN cache performance in the positioning service.
In the worst-case scenario, TCP/IP and NDN both produced
similar results (response time of approximately 200–300 ms).

2) POSITIONING SERVER LOAD
The server loads for the positioning service in different
test cases were obtained by measuring the response time
(Figure 14). The spikes in the graph indicate the requests,
which were handled by the server. Such as for the floor detec-
tion service, when the requests were identical and handled by
the router, the server loadwas significantly reduced compared
to that of TCP/IP.

C. ANALYSIS OF NAVIGATION SERVICE PERFORMANCE
Two different measurements were taken for NDN: one for
the best-case scenario in which the test user remained in

FIGURE 13. Positioning response time with TCP/IP, NDN in the
worst-case, and NDN in the best-case.

FIGURE 14. Positioning server load with TCP/IP, NDN in the worst-case,
and NDN in the best-case.

the same location and requested the same destination for
the navigation route. This way, all requests were expected
to have identical names. Thus, the data could be retrieved
from the router’s CS. In the worst-case scenario, the user
requested different destinations each time during the test. The
requests were expected to be different and generate different
names.

The NDN worst-case test was conducted by sending dif-
ferent destinations from the same position of the device; thus,
every request was different. In this test, coordinate (1,1) was
the current position, which was in the farthest south-west
corner. The chosen destination coordinates were (27,119),
(27,118), (27,117), (27,116), (27,115), (27,114), (27,113),
(27,112), (27,111), (27,110), (28,119), (28,118), (28,117),
(28,116), (28,115), (28,114), (28,113), (28,112), (28,111),
and (28,110); they were in the farthest north-east corner of
the test site. For the worst-case and TCP/IP test, the staring
point was (1,1), and the destination was (27,119).
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FIGURE 15. Navigation response time with TCP/IP, NDN in the worst-case,
and NDN in the best-case.

1) NAVIGATION RESPONSE TIME
According to Figure 15, the TCP/IP response time was
approximately 150–250 ms because all requests were han-
dled by the server. The worst-case NDN results were similar
to those of the TCP/IP. However, the navigation perfor-
mance benefited from the NDN best-case scenario. After the
first attempt, which took approximately 180 ms, all follow-
ing attempts took approximately 45–80 ms because those
responses were from the router’s CS cache instead of the
server.

2) NAVIGATION SERVER LOAD
When testing different cases with TCP/IP and NDN,
the server load was recorded (Figure 16)). The results were as
expected.In both TCP/IP and NDNworst-case scenario, there
were greater numbers of spikes than in the best-case NDN
scenario. Thus, every request was handled by the server. In the
NDN best-case scenario, after the first request, the server
load was drastically reduced because the router’s cache was
responsible for satisfying all the identical requests.

D. SERVER LOAD ANALYSIS FOR MULTIPLE REQUESTS
The previously presented test cases were conducted with a
single device that sent one request at a time. To simulate the
server load with multiple requests, the test device applica-
tion was modified to send multiple requests at a time. The
request number was increased from 1 to 100 at intervals
of 20 requests. All of the requests were identical. Thus,
NDN could use its caching feature. According to Figure 17,
increasing the number of identical requests affects the server
load in TCP/IP but does not affect in NDN.

E. OVERALL COMPARISON OF NDN WITH TCP/IP
According to the results, the NDN-based system performance
is as good as that of TCP/IP when no cache is hit. However,
NDN outperforms TCP/IP when hitting the cache. On aver-
age, the floor detection took 159.9 ms response time with

FIGURE 16. Navigation server load with TCP/IP, NDN in the worst-case,
and NDN in the best-case.

FIGURE 17. Server load with multiple requests of Floor Detection,
Positioning and Navigation service.

TCP/IP, 144.7 ms with NDN in the worst-case scenario, and
70.6 ms with NDN in the best-case scenario. For positioning,
an average response time of 223.2 ms was measured with
TCP/IP, 159.4 ms with the NDN in the best-case scenario,
and 206.6 ms with NDN in the worst-case scenario. For nav-
igation, an average response time of 191.9 ms was measured
with TCP/IP, 195.9 ms with NDN in the worst-case scenario,
and 64.4 ms with NDN in the best-case scenario, as shown
in Figure 18.

By taking the average time for each mode, it can be seen
that the proposed system has a 77.5% better response time for
floor detection, 33.4% better response time for positioning,
and 99.5% better response time for navigation than TCP/IP in
the best-case scenario.Moreover, NDN can drastically reduce
the server load for all services for identical requests. The
improved performance and server load may seem insignif-
icant as there was only one test user. Nevertheless, this
improvement will increase when more users start using the
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FIGURE 18. Average response time of NDN in compression to TCP/IP in
different services.

services and more NDN routers are employed, which will
help to offloadmore data from the server. This type of caching
can be implemented in the server application with TCP/IP.
However, it will not be as efficient as NDN because pro-
cessing the cache in the server will cause extra server load.
In NDN, the cache is handled by the routers.

VI. CONCLUSION
This paper presents the design, implementation and test-
ing of a new NDN-based indoor positioning and naviga-
tion system with the existing localization and navigation
algorithms. The overall performance and efficiency of the
proposed NDN-based system is better than those of the tradi-
tional TCP/IP. The implementation of NDN in the network
layer reduces the server load and response time. Because
the traditional TCP/IP-based solutions are not very efficient,
the proposed NDN-based approach can improve the existing
solutions through its data caching and diverse packet forward-
ing features. When NDN is used as the communication pro-
tocol between the server and client, the routers can reduce the
server load through data caching, which prevents the server
from processing duplicate requests. In addition, the router’s
cache lookup performance is better than that of the algorithms
running in the server, which reduces the response time. Thus,
the proposed approach significantly improves the response
time and server load of the existing indoor positioning and
navigation technologies. The improvements of floor detec-
tion, localization, and navigation are approximately 77%,
33%, and 99%, respectively. However, in its current state,
the improvements in indoor positioning and navigation can
only be achieved in certain environments. Setting up this
kind of environment is difficult, and the benefits can only
be observed as long as the user is connected to an NDN
network. NDN is at its early stage of development and
requires further research. Although NDN does not require
specialized hardware, it needs special application software
and router firmware to work in an NDN network. Large-scale

implementation and testing with more optimized position-
ing algorithms with better accuracy should be conducted in
the future to assess the true potential of NDN-based indoor
positioning and navigation systems. In addition, other indoor
positioning technologies that require a server may be investi-
gated with NDN communication protocol as additional future
research direction.
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