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ABSTRACT The power start-up operation of a nuclear power plant (NPP) increases the reactor power to
the full-power condition for electricity generation. Compared to full-power operation, the power-increase
operation requires significantly more decision-making and therefore increases the potential for human errors.
While previous studies have investigated the use of artificial intelligence (AI) techniques for NPP control,
none of them have addressed making the relatively complicated power-increase operation fully autonomous.
This study focused on developing an algorithm for converting all the currently manual activities in the NPP
power-increase process to autonomous operations. An asynchronous advantage actor-critic, which is a type
of deep reinforcement learning method, and a long short-term memory network were applied to the operator
tasks for which establishing clear rules or logic was challenging, while a rule-based system was developed
for those actions, which could be described by simple logic (such as if-then logic). The proposed autonomous
power-increase control algorithm was trained and validated using a compact nuclear simulator (CNS). The
simulation results were used to evaluate the algorithm’s ability to control the parameters within allowable
limits, and the proposed power-increase control algorithm was proven capable of identifying an acceptable
operation path for increasing the reactor power from 2% to 100% at a specified rate of power increase. In
addition, the pattern of operation that resulted from the autonomous control simulation was found to be
identical to that of the established operation strategy. These results demonstrate the potential feasibility of
fully autonomous control of the NPP power-increase operation.

INDEX TERMS Nuclear power plant, autonomous operation, power-increase operation, reinforcement
learning, asynchronous advantage actor-critic.
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RL Reinforcement Learning
RNN Recurrent Neural Network
RPM Revolutions Per Minute
SG Steam Generator

I. INTRODUCTION
Nuclear power plants (NPPs) are highly automated systems
that are designed to increase electricity availability, reduce
accident risk, and decrease operating costs [1]. Regulatory
authorities require the automation of safety systems because
these system functions must be exceptionally reliable and
promptly executed to ensure public safety. These safety
systems require operator intervention only for high-level
decision-making or if the automatic system is not functioning
correctly [2].

During the power-increase operation, which is typically
conducted manually and is also termed the ‘‘start-up opera-
tion,’’ the operators increase the power of the reactor to 100%
of its electricity production capacity. Compared to full-power
operation, the power-increase operation (which is part of the
start-up operation) is more prone to human error due to the
following factors:
• A significantly increased need for decision-making such
as in selecting the power operation target and determin-
ing the control strategy based on guidelines from the
operating procedures;

• Ahuge number of manual actions due to extensivemain-
tenance, tests, and monitoring of plant parameters;

• The manipulation of components for which the auto-
matic system and safety function may be disabled;

• An insufficient or incomplete procedure, which may
provide only the operational goal without detailed
operator’s tasks.

These situations may provide stressful situations or incre-
ase the probability of inappropriate manipulation to the crew.
Therefore, during the power-increase operation, the potential
for human errors is high due to the operator’s significantly
increased workload [3]–[7].

One way to decrese operator’s workload is to improve level
of automation with more-advanced artificial intelligence (AI)
techniques. Hence, AI is an alternative to develop an intelli-
gent controller for power-increase operations in NPPs.

The utilization of AI is a recent trend in increasingly
many industrial fields [8]. AI adoption has grown explosively
due to increased data processing, along with developments
in hardware designs, graphics processing units (GPUs), and
methods [9]. Deep learning is one of the most promising
new AI methods for a wide range of uses, e.g., extracting
high-level features from raw sensor data with numerous vari-
ables and facilitating breakthroughs in computer vision and
speech recognition. Most deep learning applications require
a range of deep neural network architectures, methodologies
for training the neural networks, and vast amounts of labeled
training data. These advantages of AI have increased interest
in applying them to intelligent controllers that would expand
NPP automation capabilities.

This study aimed at developing an algorithm for auto-
nomously increasing the reactor power from 2% to 100%.
This algorithm with AI method conduces higher-level NPP
similarly to the current operation strategy. For performing
similar operator’s operation, this algorithm aims at advanct-
ing from existing manual controller to intelligent controller.
Proposed algorithm can handle the procedure-based opera-
tion (as rule-based system) and the operator’s experience (via
AI agent).

II. REVIEW OF RELATED STUDIES
First, this paper reviews of previous studies related to the use
of deep reinforcement learning (DRL) for the development
and application to advanced control systems, and in practice
to improve automation in NPPs. Based on the summarized
review, the major gaps of this study are identified.

A. DEEP REINFORCEMENT LEARNING
DRL, which is a method for training deep neural networks,
provides a mechanism via AI agents that can optimize
their control of an environment to realize a specified objec-
tive [10]–[13]. The interaction process between the AI
agent and the environment can be represented by a closed-
loop, which is very similar to the process of human learn-
ing [14], [15]. As a result, an AI agent can also develop its
own experiences through trial-and-error, as humans do [16]
and can perform tasks that a classic controller cannot do. Such
actions may include selecting an operation strategy, operating
nonlinear systems, making decisions based on current condi-
tions, and optimizing operations [17]–[20].

Due to these characteristics of DRL, DRL is now an
essential technology for the development of AI agents and
is being used in many industries. Moreover, DRL is becom-
ing a trend in advanced control systems due to increased
safety and efficiency [21]. In the power system field,
Zhou et al. [22] proposed an AI agent that was based on
DRL for handling various operating scenarios for the eco-
nomic dispatch of a combined heat and power system. In an
application to wind turbines [23], DRL has been shown
to overcome one of the most important disadvantages of
the conventional control strategies, which is the tuning of
control parameters and lowering fatigue. In energy manage-
ment, Esmat Samadi et al. proposed the use of decentralized
multiagent systems (MASs) for integrated grid-connected
microgrids. MASs with DRL have shown not only flexi-
ble management while considering customer consumption
but also a reduced operating cost [24]. Hussain Kazmi et al.
optimized the energy efficiency of hot water production by
using a DRL controller, which could reduce the energy con-
sumption by almost 20% for a set of 32 Dutch houses [25].
Tianshu Wei et al. also significantly reduced the energy cost
of an HVAC (heating, ventilation, and air conditioning) sys-
tem by using DRL instead of rule-based and model-based
strategies [26]. In another study [27], DRL was adopted in
urban rail transit to effectively improve energy management
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compared to the genetic algorithms and to provide dynamic
programing.

The advantages of DRL for the development and appli-
cation of advanced control systems through these research
trends are briefly summarized as follows:
• Performance improvement compared to conventional
control strategies (e.g., reducing operating costs, reduc-
ing failures, and increasing energy efficiency);

• Increased flexibility by adaptable control according to
demand and change in practice;

• Optimal control to achieve the required goals.

B. HIGH-LEVEL AUTOMATION IN THE OPERATION OF
NPPs
Various methods have been presented for applying AI to the
tuning of proportional-integral-derivative (PID) controllers,
which are widely used in NPPs [28]–[30]. Upadhyaya et al.
designed an autonomous control system for a space reactor
using a PID controller. The controller’s parameters were
determined using the genetic algorithm, which is an AI
method [31]. Bowen et al. proposed a two-level hierarchical
controller that consisted of a fuzzy controller and a neural-
network-based PID controller for application to a multiunit
small modular reactor [32]. Some researchers have proposed
the use of AI controllers to manage NPPs. Na et al. proposed
a neuro-fuzzy controller for managing the power distribu-
tion without any residual flux oscillation between the upper
and lower halves of the reactor core [33]. Arab-Alibeik and
Setayeshi proposed a neural adaptive inverse controller for
controlling the core power of a PWR reactor. After an emu-
lation of the inverse dynamics of the reactor was obtained
by the multilayer neural networks, it was used as a con-
troller [34]. In [35], an adaptive fuzzy control for power
tracking in a research nuclear reactor was proposed. The
proposed controller could increase the power in a shorter rise
time than the PID controller. In [36] and [37], a fuzzy-PID
composite controller was proposed and exploited with direct
switching between the fuzzy controller and the PID con-
troller for the core power control of a molten salt reactor.
More so, Huang et al. proposed a fuzzy-adaptive recursive
sliding-mode controller that can perform significantly more
mildly with less amplitude power in comparison with a PID
controller [38]. Boroushaki et al. [39], Hatami et al. [40],
and Khorramabadi et al. [41] proposed an intelligent reactor
core controller for a load-following operation that applied AI
techniques, namely, recurrent neural network and fuzzy logic
systems. Ramazan et al. [42] proposed a multi-feedback layer
neural network, which is a type of recurrent neural network,
and presented the proposed controller that can reduce the
power increase time compared to a fuzzy controller.

Studies about start-up operation have investigated the
use of knowledge-based technology to automate the power-
increase operation and, consequently, reduce the operator’s
burden. Sekimizu et al. [43] developed an automation system
for start-up operation and sequential control that executes
the operating procedure through if-then logic. An automatic

FIGURE 1. Target domain of the proposed power-increase algorithm.

start-up intelligent control system (ASICS), which uses
knowledge-based technology and a distributed control sys-
tem, has also been proposed for controlling a pressurized
water reactor (PWR) from the cold shutdown state to 2%
reactor power [44].

These studies of practice to improve automation in NPPs
are briefly summarized as follows:

• AI techniques had been applied to traditional controllers
to tune or identify the optimal parameters of traditional
controllers;

• AI techniques tried to replace the traditional control
logic at the component level;

• To automatically operate NPPs for start-up, knowledge-
based technology was used.

C. SOME GAPS OF RELATED STUDIES
These early studies investigated knowledge-based systems
that use if-then logic, which are robust if the logic can
be clearly defined. However, for automating power-increase
operations in NPPs, these systems have several limitations:

(1) Transforming many operational tasks into clear if-then
logic is challenging, namely, some operating procedure
instructions are not sufficiently specific for execution
using if-then logic. For instance, an operating proce-
dure may instruct operators to adjust the control rods
to increase the reactor power to 20%without specifying
the rate of control rod movement;

(2) Knowledge-based systems poorly handle flexible oper-
ations, changes in operating objectives, and nonlinear
variables, which may be absent from pre-established
knowledge bases. To handle multiple operation object
and conduct control functions similar to the operators,
advanced AI techniques should be applied in the pro-
posed algorithm;

(3) Manual controllers, which are operated physically by
the plant operators, are not considered in these previous
studies. The target domain of this study is the operator’s
actions with manual controllers as illustrated in Fig. 1.
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Therefore, more-advanced artificial intelligence (AI) tech-
niques may be an alternative for the development of an algo-
rithm for power-increase operations in NPPs. In addition,
more extensive use of AI techniques must be considered for
the realization of autonomous control of higher-level NPP
operations [45].

Thus, this paper presents the following:
• A power-increase algorithm for conducing higher-level
NPP operations similarly to the current operation
strategy;

• A classification and analysis of the operator’s tasks
(Decision Making, Discrete Control, and Continuous
Control) so that the AI agent can conduct actions for
increasing the reactor power and electrical power output
based on the current operating procedures, the operator’s
primary tasks, and the timeline of operations;

• An algorithm that not only enables the procedure-based
operation (which is modeled as rule-based system), but
also identifies actions that are typically acquired from
the operator’s experience (via interaction between the AI
agent and NPPs).

First, the current operating procedures, an operator’s pri-
mary tasks, and the timeline of the operations for increas-
ing the reactor power and the electrical power output are
analyzed. An algorithm for controlling the components as
required for increasing the power, which combines Deep rein-
forcement learning (DRL) and a rule-based system, is pro-
posed. The operator tasks for which the establishment of
clear rules was challenging were implemented using an
asynchronous advantage actor-critic (A3C), a kind of DRL
method, while a rule-based system was applied to tasks for
which clear rules could be developed. Then, an algorithm
that combines the A3C agent with the long short-term mem-
ory (LSTM) network and the rule-based operation is pro-
posed and trained to determine the power-increase operation
strategy. Finally, this paper presents validation results, which
demonstrate the applicability of the proposed algorithm.

III. ANALYSIS OF THE OPERATIONAL STRATEGY FOR
INCREASING POWER IN NPPs
Current NPP operating strategies were considered in the
development of an algorithm for increasing the reactor power
from 2% to 100% autonomously. This study analyzed the
operating procedures and the timeline of the control tasks
during the start-up operation of a reference plant, namely,
a Westinghouse 900 MWe PWR. The analysis identified the
operator’s major tasks, and the tasks were categorized into
automatic and manual actions. The manual actions were fur-
ther divided into discrete and continuous actions. The oper-
ational timeline of the main control systems for increasing
power was also analyzed.

A. OVERVIEW OF THE POWER-INCREASE OPERATION
The operation for increasing power from 2% to 100% is
the part of the start-up operation that increases the tem-
perature and power to the normal conditions for generating

electricity after reactor refueling or shutdown. During the
start-up operation, the operators follow general operating
procedures (GOPs) for controlling systems and components.
There were six GOPs for the reference plant’s start-up oper-
ation [9]:
• Reactor coolant system filling and venting,
• Cold shutdown to hot shutdown,
• Hot shutdown to hot standby,
• Hot standby to 2% reactor power,
• Power operation at greater than 2% power,
• Secondary system heat-up and start-up.

Fig. 2 illustrates the trends of six major parameters during
the start-up operation, along with the relevant GOPs. These
parameters also serve as milestones for operators in the suc-
cessful performance of the start-up operation.

FIGURE 2. The trends of the major parameters for the applicable start-up
operation procedures.

To increase the power from 2% to 100%, two GOPs
should be applied in the reference plant, namely, ‘‘Power
operation greater than 2%’’ and ‘‘Secondary system heat-up
and start-up’’, as presented in Fig. 2. The instructions for
increasing the plant load from 2% to 100% are provided in
the ‘‘Power operation greater than 2%’’ GOP, while the pro-
cedure ‘‘Secondary system heat-up and start-up’’ procedure
describes the steps that are necessary for aligning and starting
the secondary systems. These GOPs require the operators
to operate components, such as the rod controller, turbine
load controller, feedwater pumps, condenser pumps, steam
generator feedwater valves, and synchronizer, based on the
planned rate of power increase. Fig. 3 presents a simplified
schematic diagram of the components that are related to the
power-increase operation, and the operation’s initial and final
conditions are presented in Table 1.

The operators’ tasks in the applicable procedures can be
divided into 1) primary system control and 2) secondary
system control. When conducing primary system control,
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FIGURE 3. Simplified schematic diagram of related components.

TABLE 1. Initial and final conditions of the power-increase operation.

the operators withdraw the control rods (reactor coolant sys-
tem, Fig. 3) and manipulate the boron concentration (chem-
ical volume control system, Fig. 3). At the beginning of the
operation for stably increasing the power to 2%, the operators
withdraw all control rods to the 100% position, which is the
final condition, as specified in Table 1, and subsequently
increase the boron concentration to maintain the reactor
power at 2%. Once all the control rods have been withdrawn,
the operators do not manipulate them further, and they reduce
the boron concentration to increase the power from 2% to
100% by increasing the volume of the water from the make-
up tank.

The rate of power increase (percent power per hour) is
determined by considering the reactor cooling system (RCS)

average temperature and the reference temperature. The ref-
erence temperature is the desired RCS temperature, which is
predefined based on the current turbine load, while the RCS
average temperature is the actual temperature in the primary
side [46]. According to the procedure, during the power
increase from 2 to 100%, the difference between the reference
temperature and the RCS average temperature should be
maintained within ± 1 ◦C. This is only a recommendation
and is not mandatory.

Operators must control several components of the sec-
ondary system. First, they increase the turbine speed to
1800 revolutions per minute (RPM) using the turbine RPM
controller (the main steam/turbine system in Fig. 3). When
the turbine and the reactor power reach 1800 RPM and 15%,
respectively, the operators close the breaker to connect the
generator to the grid and synchronize the frequencies (the
electrical system in Fig. 3). In addition, the operators increase
the turbine load setpoint, start the feedwater pumps, and start
the condenser pumps concurrently with the reactor power
increase in the primary system. The primary and secondary
systems must be controlled harmoniously to avoid a reactor
trip.

B. TASK ANALYSIS OF THE POWER-INCREASE OPERATION
Based on a review of the ‘‘Power operation greater than
2%’’ and ‘‘Secondary plant heat-up and start-up’’ proce-
dures, a task analysis was conducted to identify the tasks
that should be automated by the algorithm that is proposed
in this study. As presented in Table 2, this analysis identified
a total of 21 control actions that are performed by the oper-
ators according to these procedures. Only the control-related
actions were extracted for the development of the algorithm,
although the procedures also providemonitoring actions, e.g.,
‘‘confirm the RCS temperature is above 200 ◦C.’’
These actions were also categorized into three task types:

Decision Making, Continuous Control, and Discrete Control.
Decision Making task determines the rate of power increase;
the subsequent control actions depend on this rate, although
it does not include any control action. The continuous con-
trols in this study adjust component states over a range to
realize specified target values for the given parameters, and
the rules that govern the necessary adjustments cannot be
describedwith simple logic. For example, the operators adjust
the RCS boron concentration to manipulate the power level.
In contrast, a discrete control involves the direct setting of a
target value based on a binary condition, as in if-then logic.
An example of a discrete control is as follows: if the power
level is 10%, then the turbine is set to 1800 RPM. The next
section proposes an algorithm that can perform these actions.

C. TIMELINE OF THE POWER-INCREASE OPERATION
The timeline of the power-increase operation was analyzed
to develop a normative operational strategy. This analysis
considered theGOP’s operational rules and the practical oper-
ational practices, which were determined from an interview
with a senior reactor operator who works at a reference plant.
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TABLE 2. Operational tasks for increasing the reactor power.

Fig. 3 presents the timeline that was developed, which asso-
ciates the desired operations with the reactor and electric
powers, RCS temperatures and their differences from the

reference temperature, and the control of related systems,
such as the steam generator (SG) level, control rods, turbines,
valves, and pumps.

The power-increase operation is divided into two opera-
tional ranges: 1) maintaining the reactor power at 2% and
2) increasing the reactor power from 2% to 100%. The objec-
tive of the first operational range is to adjust the positions
of all control rods (Fig. 4 (d)) to 100% while maintaining
the reactor power at 2% (Fig. 4 (a)); the average temperature
is also maintained because it depends on the reactor power
(Fig. 4 (b)). As the control rods are withdrawn, the reactor
power increases, and increasing the boron concentration in
the RCS reduces the reactor power. To maintain the reactor
power at 2%, a boric acid-water solution is injected into the
RCS, as illustrated in Fig. 4 (c).

The objective of the second operational range is to increase
the reactor power from 2% to 100%, as represented by the
red line in Fig. 4 (a). The operators determine the rate of
the power increase (%/h); the power is increased by reducing
the boron concentration in the RCS using make-up water
(Fig. 4 (c)). The electric power is also increased to 100%
by following a load setpoint that is increased stepwise. The
RCS average temperature increases from 294 ◦C to 306 ◦C,
as illustrated in Fig. 4 (b). The difference between the RCS
average temperature and the reference temperature should be
maintained within ± 1 ◦C, as represented by the gray area
in Fig. 4 (b). This condition is applied after the start of the
electrical power generation because the reference tempera-
ture is calculated based on the electrical power.

To increase the reactor power, the operators manipulate
seven systems, as illustrated in Fig. 4 (e). As described
in Table 2, they withdraw the control rods and manipulate
the boron concentration continuously, which corresponds to
Steps 2, 3, 6, and 10. At 10% reactor power, in Steps 4, 5,
and 7, the turbine RPM, acceleration setpoint, and load set-
point are adjusted to 1800 RPM, 2 MWe/min, and 100 MWe,
respectively. Subsequently, the operators adjust the load set-
point with every 10% increase in the reactor power (Steps 11,
12, 14, 15, 17, 18, 20, and 21). At 15% reactor power, the plant
and the grid are synchronized (Step 8). At 20% reactor power,
condenser pump #2 is started (Step 9); condenser pump #1 is
already running. Condenser pump #3 is started at 50% reactor
power (Step 16). Main feedwater pumps #2 and #3 are started
at reactor powers of 40% (Step 13) and 80% (Step 19), respec-
tively; main feedwater pump #1 is already running. This study
applies the pre-established automatic control algorithm for
the SG level control.

IV. DEVELOPMENT OF AN ALGORITHM FOR
POWER-INCREASE CONTROL
This paper presents an algorithm that employs a rule-based
system and deep reinforcement learning to facilitate the
autonomous increase of NPP power from 2% to 100%
by controlling several systems. Fig. 5 illustrates the struc-
ture of the proposed algorithm, which consists of two
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FIGURE 4. Timeline for increasing the reactor power from 2% to 100%.

modules: 1) a discrete control module and 2) a continuous
control module. The discrete control module directs the syn-
chronization, turbine, main feedwater pump, and condenser
pump controls, for which rule-based systems can be devel-
oped based on the operating procedures.

The continuous control module dictates the adjustment
of the control rods and the RCS boron concentration.
The associated procedures do not specify rules for the opera-
tors; e.g., they do not specify the number of steps in which
the control rod should be withdrawn or the volumes of
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FIGURE 5. Overview of the algorithm for the power-increase operation.

make-up or boric acid water that should be added. The pro-
cedures specify only the objective of the control activity,
e.g., ‘‘increase the power to 20% by altering the control rod
position or RCS boron concentration.’’

Deep reinforcement learning was deemed suitable for use
as the continuous control module. A neural network and a
training algorithm are selected by considering the character-
istics of the operational steps inNPPs. The types of control for
NPPs are regulatory control (e.g., adjustment of valve posi-
tion) and discrete control (e.g., on/off control). For discrete
control, the set-point and operating conditions are specified
in detail in the operating procedure. Operators can conduct
discrete control according to rules that are specified in the
operating procedures. In contrast, only operational target val-
ues are provided for regulatory control. Accordingly, regu-
latory control is based on the operator’s experience, which
includes monitoring previous and current plant conditions.
The target of the continuous control module is the requlatory
control. Thus, this study attempted to implement controls in
accordance with the operator’s behavioral pattern through
trial and error using a long short-term memory (LSTM) and
an asynchronous advantage actor-critic (A3C) algorithm.

(1) This study used a LSTM network, a kind of recurrent
neural network (RNN), by considering the characteristics
of the plant parameters. The trends of the plant parameters
are well known to be the same as that of time series data.
To extract and analyze meaningful information, e.g., the tim-
ing of an AI agent’s action, from time-series data, it is impor-
tant to identify the correlations between previous and current
data. The output of an LSTMcan be calculated by considering
previous data, in contrast to other neuronal networks such as
convolutional neural networks and vanilla feedforward neural
networks. Moreover, LSTM not only stores the values that
are calculated from the previous time data in the LSTM cell
but also considers previously saved values when calculating
the next time data. The author’s previous studies showed
that the LSTM can support well the operation of nuclear
systems [3], [5] as well as the diagnosis of events [47], [48].

Moerover, to better support the selection of the LSTM neural
network, this study added Appendix to compare the perfor-
mance of other neural networks such as deep neural network
(DNN), convolutional neural network (CNN), LSTM, and
C-LSTM(CNN + LSTM).

(2) An asynchronous advantage actor-critic (A3C) algo-
rithm was quickly trained in the specified domain. The A3C
algorithm is well known for fast training due to parallel
actor-learners that are based on the central processing unit’s
(CPU’s) multiple threads and the asynchronous network
update. This study used a nuclear simulator to test and train
an AI agent. This simulator does not recommend calcula-
tion acceleration with a stable calculation performance. As a
result, the AI agent takes more than 14 hours per episode
to train the entire power increase operation. To solve this
problem, we not only built multiple environments but also
applied a parallel training algorithm, namely, A3C.

The goal of the continuous control moduleis to select
actions necessary to meet the operational goals of the sequen-
tial plant states. The continuous control module with A3C
algorithm can find an operational path in parallel. An oper-
ational path is a set of actions for controlling a component
to achieve flexible operating goals that are assigned by the
operators. A reward algorithm was developed for training
the agent, and an LSTM network was used for selecting
the actions necessary to meet the operational goals of the
sequential plant states.

A. DESIGN OF THE DISCRETE CONTROL MODULE USING
IF-THEN LOGIC
A rule basis for discrete control was developed for the
synchronizer, turbine, main feedwater pump, and condenser
pump controls by transforming the operating procedures into
if-then rules, which are presented in Table 3.

The tasks that are identified as discrete controls in
Table 2 were analyzed and categorized into four functions
based on the controlled system, and the applicable rules were
extracted from the procedures’ task instructions. The inputs
and outputs that were required for the module to control the
tasks were identified. An input is a plant parameter that must
be obtained to correctly determine the control action that
is needed for accomplishing a task, while an output is the
control action that will be performed as a result.

B. DESIGN OF THE CONTINUOUS CONTROL MODULE
USING THE A3C AGENT
The A3C agent for continuous control aims at managing the
reactor power by manipulating the control rods and boron
concentration, and, if fully trained, can manage the reac-
tor power based on a specified rate of power increase and
the obtained plant parameters. The A3C agent’s strategies
relate to three operational strategies: increase power, decrease
power, and stay.

Fig. 6 illustrates the overall structure of the A3C agent for
continuous control, which consists of a reward algorithm and
an LSTM network model. The reward algorithm evaluates
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TABLE 3. Discrete control module if-then rules for increasing the reactor power from 2% to 100%.

FIGURE 6. Overview of the continuous control module.

the obtained plant parameters to determine whether and the
degree to which the prior operation or action of the A3C

agent was successful, and this reward is used to update the
weights in the LSTM network model. The LSTM network
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model generates an operational strategy using the obtained
and evaluated plant parameters. Then, the A3C agent selects
the option that is associated with the highest probability value
from among the available outputs of the LSTM network:
increase, decrease, or stay.

The operational strategies comprise the control actions
that are required for realizing the objective of each strategy.
For example, for the ‘‘stay’’ strategy, the A3C agent stops
manipulating components, and the boric acid water valve
is opened to increase the boron concentration and, there-
fore, decrease the reactor power. The strategies for ‘‘power
increase’’ consist of two control actions; the A3C agent with-
draws the control rods and changes the control action to the
opening of the make-up water control valve to reduce the
boron concentration.

1) BACKGROUND OF THE A3C
Reinforcement learning (RL) is amethod for training an agent
through its interaction with the environment [10], [49]–[51].
The agent interacts with the environment in a series of inde-
pendent episodes, each of which comprises a sequence of
turns. One episode consists of several discrete time steps,
t=0,1,2,3. . . . At each time step (t), the agent receives a state
(st) from the environment. Then, the agent selects an action
(at) from a set of possible actions based on its policy (π).
The policy is a mapping from states (st) to actions. The
environment provides the next state (st+1) and a reward (rt)
for the action (at) of the agent. Through this interaction with
the environment, the agent is trained tomaximize the returned
reward that is associated with the specified state (st) from the
environment. Through this trial-and-error process, the agent
determines the optimum policy for realizing the specified
operational objective.

FIGURE 7. DQN and A3C training algorithms.

This study utilizes A3C, which is a type of DRL method,
to reduce the agent training time for the continuous con-
trol module. Although the deep Q-learning network (DQN)
is a well-known basic model of DRL, slow training speed
and biased actions are problematic. To address these issues,
A3C utilizes parallel actor-learners that are based on the
central processing unit’s (CPU’s) multiple threads and the
asynchronous network update, while DQN utilizes one
agent on one CPU. Fig. 7 illustrates the A3C and DQN
training algorithms. A3C replaces the experience memory
with the local network memory to reduce the interactions

FIGURE 8. Agent’s weight update process.

between the collected training datasets. In addition, A3C uti-
lizes multiple agents in the multiple simulations for training
an agent that has a local neural network [52]. In A3C, each
local network asynchronously updates the main network at
regular intervals. In this asynchronous approach, after col-
lecting a short memory (which is called a mini-batch) of data
points, each of the local networks computes gradients and
uses them to update the weights [53]. This update process
increases the training speed by providing training datasets
that consist of pairs of various actions that correspond to
similar states. As illustrated in Fig. 8, the A3C agent updates
the network’s weights more frequently than the DQN agent.

2) DESIGN OF THE REWARD ALGORITHM
In DRLs, the reward is an essential element that is used to
update the weights of the A3C agent; learning by the agent is
associated with updating the weights of the network to max-
imize the accumulative reward [13]. The reward algorithm
evaluates the agent’s behavior based on a specified state in the
environment to determine the reward. Therefore, the reward
algorithm guides the agent to obtain a high accumulative
reward in the target domain [54]. To find the best operational
path, the use of operational guidelines or boundaries is a
suggested for designing a reward algorithm [55]. Further-
more, if the operational goal is more than one, like in the
multi-objective problems, Garduno-Ramirez and Lee [56]
proposed defining the upper and lower boundaries for each
operational goal. In this study, the specified operational
objectives were used to design the reward algorithm for
increasing the reactor power.

This study proposes a reward algorithm that is designed
for training the proposed A3C agent to increase the reactor
power. It has two reward criteria, which are based on the
reactor power and the average temperature. Fig. 9 presents
the criteria for providing a reward via the proposed reward
algorithm. The first reward criterion is related to the reactor
power. As illustrated in Fig. 8, two bandwidths were applied.
While maintaining the reactor power at 2% (the blue area
in Fig. 9), the reward boundary was defined as ± 1% of
the reactor power, namely, 1% to 3%. During the power
increase after reaching 2% reactor power, the bandwidth was
determined by the following linear equations that were based
on the pre-determined rate of power increase (the red area in
Fig. 9). The upper boundary was 3% at 2% reactor power and
110% at 100% reactor power, while the lower boundary was
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FIGURE 9. Power reward for the A3C agent.

1% at 2% reactor power and 90% at 100% reactor power.

End of operation time(t100)

= t2 +
100− 2

Pr
(1)

Upper boundary

=


3 (t2 ≥ t)
100− 3
t100 − t2

(t− t2)+ 3 (t100 ≥ t > t2)

110 (t > t100)

(2)

Lower boundary

=


1 (t2 ≥ t)
90− 1
t100 − t2

(t− t2)+ 1 (t100 ≥ t > t2)

90 (t > t100)

(3)

• Pr: Predefined rate of power increase (% /h)
• t: Time
• t2: Time when all rods are 100% withdrawn
• t100: End of operation time

The power reward was calculated as the difference between
the current power at time t and the most desirable power,
which was the predefined power at that time and is repre-
sented by the dashed line in the center of the reward boundary
in Fig. 9. The power reward was calculated via Eq. 4 by
using a normalized value of the distance. The reward was
maximal, namely, 1, when the current power was equal to
the predefined power, while it was 0 when the current power
was located on the upper or lower boundary. For instance,
at t = 8 h in Fig. 8, when the reactor power increased from
2% at 5 h to 100% at 103 h at a 1%/h rate of increase, the
reactor power, the predetermined power that was based on
the rate of power increase, and the upper boundary were 6%,
4.99%, and 6.27%, respectively. The resulting reward was

0.21 by R=1 - (6 - 4.99)/(6.27 - 4.99). Similarly, at t = 10 h
and P = 5.6%, the reward was 0.04, as presented in Fig. 9.

If the power moved outside the boundary, the training was
terminated. In addition, the agent stopped the training when
it realized the objective of the operation, namely, when the
reactor power was 100%.

Power reward(0 ∼ 1)

=



0 (P > Rup)

1−
P− Rmp

Rup − Rmp
(Rup ≥ P > Rmp)

1 (P = Rmp)

1−
Rmp − P
Rmp − Rlp

(Rmp> P ≥ Rlp)

0 (P < Rlp)

(4)

• P: Current power at time t (% )
• Rmp: Middle of power reward boundary, i.e., pre-
determined power at time t

• Rup: Upper power reward boundary
• Rlp: Lower power reward boundary
The second reward criterion relates to the difference

between the average temperature and the reference RCS tem-
perature that is provided by the GOP. This reward represents
that the rule that the average RCS temperature should be
controlled by the agent to within ± 1 ◦C’’ of the reference
RCS temperature (the gray area in Fig. 10). Since the ref-
erence temperature is calculated based on the current turbine
load (MWe), the upper and lower limits of this reward bound-
ary are calculated after the electrical power generation has
begun.

Similar to the power reward, the temperature reward
was also calculated via Eq. 5 based on the difference
between the current temperature at time t and the most
desirable temperature, namely, the reference temperature.
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FIGURE 10. Temperature reward for the A3C agent.

The maximal reward, namely, 1, was obtained when the aver-
age RCS temperature was equal to the reference temperature.
In contrast to the power reward, if the average RCS tem-
perature moved outside the boundary, the training was not
terminated; instead, the reward had a negative value that was
proportional to the distance from the closest boundary, with
−1 being the lowest possible value.

Temperaturereward(−1 ∼ 1)

=



−1 (Rut + 1 < Tav)
−Tav + Rut (Rut + 1 ≥ Tav> Rut)
1− Tav + Trf (Rut ≥ Tav> Trf)
1 (Tav = Trf)
1+ Tav − Trf (Trf> Tav ≥ Rlt)
Tav − Rlt (Rlt − 1 ≤ Tav< Rlt)
−1 (Rlt − 1 > Tav)

(5)

• T: Average RCS temperature at time t
• Trf: Middle of temperature reward boundary,
i.e., the reference temperature at time t

• Rut: Upper temperature reward boundary (Trf + 1) at
time t

• Rlt: Lower temperature reward boundary (Trf−1) at time t

As shown in Fig. 10, when the average RCS temperature
was between the upper and lower boundaries, a positive
reward was returned and was inversely proportional to the
distance from the reference temperature (as shown at t= 10 h
in Fig. 10). Outside this boundary and up to a difference of±
2 ◦C, a negative reward was given proportional to the distance
to the closest boundary (as shown at t= 20 h in Fig. 9). If the

temperature difference was greater than 2 ◦C, the reward
was −1.
The total reward was calculated as the arithmetic mean

of the power and temperature rewards, as expressed in Eq. 6.
The agent conducted the training to obtain the largest total
reward for each episode and, in the process, was incentivized
to shift the reactor power and the average RCS temperature
to the middle values of the reward boundaries. The episode
continued until the reactor power reached 100% or moved
outside the reward boundary.

Total reward(−1 ∼ 1)=
power reward+ temperature reward

2
(6)

3) LSTM NETWORK MODELING
This study used LSTM cells to generate the operational
strategies of the continuous control module. LSTM cells are
an advanced form of RNNs and can calculate time-series
data [47], [48], [57]. An RNN can represent a dynamic sys-
tem naturally, capture the dynamic behavior of the system,
and extract the information features that are related to the
dynamic system in its hidden layer [58]. However, when the
network has five or more layers, an RNN may encounter a
gradient vanishing problem [59], wherein the gradient value
becomes too large or vanishes at an exponential rate to zero
when updating the weights in many layers. This imposes
limitations on the dataset for the long-term memory within
an RNN; LSTM cells have been proposed to address this
problem.

Fig. 11 illustrates the structure of an LSTM cell. Each
LSTM cell is composed of units, namely, ‘‘constant error
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FIGURE 11. Structure of an LSTM cell.

carousels’’ (CECs), that retain the state across time-steps and
three types of specialized gate units (input, output, and forget
gates) [60]. Eq 7–11 describe the output from each gate unit
in an LSTM cell:

it = σ (xtWxi + ht−1Whi + bi) (7)

ft = σ (xtWxt + ht−1Whf + bf) (8)

ot = σ (xtWxo + ht−1Who + bo) (9)

ct = ft ◦ ct−1 + ii ◦ tanh(xtWxc + ht−1Whc + bc) (10)

ht = ot ◦ tanh(ct ) (11)

where xt is the input to the LSTM cell, and it, ft, ot, ct ,
and ht are the input gate, forget gate, output gate, cell
state, and output of the LSTM cell, respectively, at the
current time step t. Wxi, Wxf, and Wxo are the weights
between the input layer and the input gate, between the
input layer and the forget gate, and between the input layer
and the output gate, respectively. Whf, Whi, and Who are
the weights between the hidden recurrent layer and the for-
get gate, between the hidden recurrent layer and the input
gate, and between the hidden recurrent layer and the output
gate, respectively, of the memory block. Finally, bi, bf, and
bo are the additive biases of the input, forget, and output
gates, respectively. The set of activation functions consists
of the sigmoid function, elementwise multiplication (the
inner product of a vector, ◦), and the hyperbolic activation
function. At time step 0, oo and ho are initialized as zero
matrices.

Fig. 12 illustrates the proposed LSTM network of the
continuous control module’s A3C agent for producing an
operational strategy (increase, decrease, or stay). The final
control action of the continuous control module is selected
based on the reactor power and the operational strategy.
Each operational strategy maps to the required control action.
For example, the decrease strategy is mapped to the open-
ing of the boric acid water valve. If the output strategy
of the LSTM network is ‘‘stay,’’ the A3C agent does not
control the component. In the increase strategy, the A3C
agent selects a control according to the current operational
objective:

• Withdraw the control rod (when maintaining the reactor
power at 2%) or

• Open the make-up water valve (when increasing the
reactor power from 2% to 100%).

The proposed LSTM network model consists of an input
layer, an LSTM layer, and an output layer. The sizes of
the input and output layers can be defined based on the
numbers of plant parameters and control actions, respec-
tively. The number of LSTM cells is determined by the time
window.

The input layer of the investigated LSTM network had a
10-step time window, which considered the trends of plant
parameters by exploiting the collected historical data. The
historical data were sampled from the simulator every 30 s
to optimize the dataset size; the trends that were observed
when the data were collected every second did not differ
significantly. The A3C agent used the current and previous
states as a two-dimensional array and as a training dataset,
which included the plant parameters for 300 s. At each time
window, the LSTM network used eight input parameters,
namely, four plant parameters (reactor power, average tem-
perature, reference temperature, and electric power) and four
variables that represented the distances of the current power
and average RCS temperature from their upper and lower
boundaries.

At the LSTM network’s output layer, the probability of
each operational strategy was generated using a softmax
function, which can map a network’s output to a proba-
bility distribution between 0 and 1; the sum of the gener-
ated output values is one. If the A3C agent selected the
strategy with the highest probability among the operational
strategies, it received a large reward or realized the opera-
tional objective. Finally, the A3C agent selected a control
action based on the selected operational strategy. The detailed
structure and hyperparameters of the LSTM network were
determined as illustrated in Fig. 12 through an experimental
optimization.

V. EXPERIMENTS
A. TRAINING ENVIRONMENT
A compact nuclear simulator (CNS) was used as a real-time
testbed for training and validating the proposed autonomous
power increase algorithm. The CNS was originally devel-
oped by the Korea Atomic Energy Research Institute
(KAERI) [61] using a Westinghouse 900 MWe, three-loop
PWR as the reference. Fig. 13 shows the display for the
chemical and volume control system in the CNS.

Fig. 14 shows the A3C agent training environment struc-
ture, which consists of four desktop computers—one main
computer and three sub-computers. One main agent and sixty
local agents for implementing the proposed algorithm were
installed on the main computer. The CNS was installed on
the three sub-computers, which had Intel CoreTM i7-8700K
processors and 16 GB of memory. Each sub-computer could
run 20 CNS simulations at a time; therefore, a total of 60 sim-
ulations could be conducted simultaneously. The A3C global
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FIGURE 12. The structure of the LSTM network for the A3C agent.

FIGURE 13. Chemical and volume control system in the CNS.

network was trained using two Nvidia GeForce GTX 1080 Ti
graphics cards, while the A3C training algorithm was trained
using 60 threads of Intel Core X-SeriesTM i7-7820X CPUs.

FIGURE 14. Structure of the training environment for the A3C agent.

The A3C agent was developed based on the Python pro-
gramming language with the TensorFlow and Keras machine
learning libraries.

B. TRAINING AND STABILITY FOR THE ENTIRE
POWER-INCREASE OPERATION
For a complete (from 0% to 100%) power-increase operation
at a rate of 3%/h, the A3C agent was trained in 8800 episodes.
The A3C agent training was complete when the average
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maximum probability converged to a specified value or when
the value became stable.

FIGURE 15. Average maximum probability per episode for the A3C LSTM
network.

FIGURE 16. Rewards obtained by the A3C LSTM network.

Fig. 15 presents the trend in the average maximum out-
put probability per episode over time. The A3C network
approached a stable probability (larger than 0.9) after approx-
imately 7500 episodes. Fig. 16 shows the trend of the rewards
that were obtained by the A3C agent as the number of
episodes increased. In one episode, the theoretical maximum
cumulative reward during the entire power-increase operation
was 4800 (the green dashed line in Fig. 16); this is because
the largest reward for a training dataset was 1, and the total
number of datasets that increased the reactor power to 100%
over 144 000 s at the rate of 3%/h, plus an additional margin
of 4000 s, was 4800. The maximum practicably feasible
reward for power-increase operation success was observed to
be 3000.

C. EXPERIMENTAL RESULTS
After the algorithm for autonomous power increase control
was trained, an experiment was conducted to demonstrate
that the proposed algorithm could autonomously increase the
power at a specified rate. The continuous control module was
implemented using an A3C and an LSTM network, while the
discrete control module was implemented with a rule-based
system. Fig. 17 (a–h) presents the experimental results for a

3.0%/h rate of power increase, which demonstrate that the
proposed algorithm can increase the power at the intended
rate within the operational boundary (Fig. 17 (a)). In addition,
Fig. 17 (b) shows that the proposed algorithm managed the
average temperature within the mismatch boundary from the
reference temperature over the reactor power of 30% and
could effectively restore an increased or decreased average
temperature to within the mismatch operation range. The
changes in the average temperature that were observed at
approximately 40 000 s were due to connecting to the grid
and starting a condenser pump, which impacted the overall
plant state.

The continuous control module also managed the boron
concentration during the power increase; the results are pre-
sented in Fig. 17 (c) and (d). To maintain the power at 2%,
the boron concentration was increased to compensate for
the effect of the control rod withdrawal, which occurred
at approximately 22 000 s, as shown in Fig. 17 (e). Then,
the controller decreased the boron concentration by increas-
ing the volume of the make-up water to increase the reactor
power from 2% to 100%.

The discrete control model operated the system’s syn-
chronous connection to connect to the electrical grid at a
reactor power of 15%. The discrete control module also
selected the turbine load (Fig. 17 (f)) and RPM setpoints
(Fig. 17 (g)) based on the reactor power. Additional actions
that were performed by the discrete control module during
the power-increase operation are presented in Fig. 17 (h) and
include starting feedwater pumps 2 and 3 and condenser
pumps 2 and 3 to circulate feedwater in the secondary part of
the plant. The controlmodule started these pumps in sequence
according to the general operating procedure.

VI. DISCUSSION
The experimental results demonstrated that the proposed
algorithm successfully controlled the components to increase
the reactor power and generate electrical power at the
intended rate of power increase. The performance of this
algorithm was also compared with that of the established
operation strategy, as presented in Section 2. According to
Fig. 18, the proposed algorithm had a pattern of operation
that was nearly identical to that of the established opera-
tional strategy. Therefore, it is concluded that the proposed
algorithm, which combines a rule-based system and rein-
forcement learning, can successfully control the complicated
power-increase operation.

In this algorithm, the discrete control module operated the
synchronizer controller, turbine controller, main feedwater
pump, and condenser pump according to the operational steps
that are clearly stated in the GOPs. The continuous control
module adjusted the valves to manage the boron concen-
tration and manipulated the rod controller. The continuous
control module can provide experiential control of these
inputs, thereby gradually affecting the power increase, based
on the parameter trends, the predetermined rate of power
increase, and the current operational boundaries. In addition,
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FIGURE 17. Simulation results for a 3%/h autonomous power-increase operation.

the results demonstrate that the continuous control module
effectively managed the boron concentration (Fig. 17 (c))

such that the difference between the average temperature and
the reference temperature was maintained within ± 1 ◦C.
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FIGURE 18. Comparison between the existing operational strategy and the simulation results.

Since this rule is not mandated in the GOPs, the control mod-
ule allowed average temperatures that were outside the mis-
match boundary. However, based on interviews with senior
operators who work at the reference plant, this restriction can
be satisfied after the reactor power reaches 30%; in the earlier
stages of the power-increase operation, the start-up of large
components results in system disturbances that complicate
temperature control. Therefore, these results demonstrate that
the A3C agent in the continuous control module can effec-
tively conduct experience-based control after training with
the simulator and the discrete control module can control
components according to rules that are based on the operating
procedures.

VII. CONCLUSION
This study proposed an algorithm for the power-increase
operation that uses AI techniques. The power increase algo-
rithm was designed through an analysis of the current oper-
ational strategy, which considered the operation staffing and

operating procedures. To train the continuous control, the pro-
posed algorithm used an A3C agent and an LSTM network
and applied a rule-based system for the discrete control com-
ponents. A compact nuclear simulator was used to deter-
mine whether the proposed algorithm could effectively and
autonomously control the power-increase operation at a 3%/h
rate of power increase. Based on the simulation results,
the power increase algorithm was proven capable of identi-
fying an acceptable operation path for increasing the reactor
power from 2% to 100% at a specified rate of power increase.

The suggested approach seems to be applicable to other
operational modes in NPPs, if the reward algorithm is
adjusted according to the operation objectives, strategies,
methods, and required procedure steps for each operating
range. Future studies may suggest developing an agent that
can select and control a contextual operating strategy, either
in the entire operation range or in part. Future studies may
also consider emergency as well as abnormal situations dur-
ing power-increasing operation. More so, to realize a fully
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automated NPP, an autonomous control system should be
capable of: automatic operation of the NPP, fault detection,
diagnosis (identifying the causes of component failures or
incidents), simulation, forecasting the status of the plant,
identifying the possible control options, and recommending
the best option for optimizing the plant performance. This
autonomous control is expected to be a key technology in
small modular reactors that are under development.

Several aspects should be further considered regarding
the practical application of this algorithm: 1) Since the
power-increase operation is only a small part of the overall
plant operation, to cover the entire plant operation, the pro-
posed reward algorithm should be changed according to
the operation objectives, strategies, operational methods, and
required procedural steps for each operating range.Moreover,
the AI agent should be capable of selecting and controlling an
operating strategy based on the context. 2) To further improve
the safety of NPPs, an AI agent requires additional functions
(e.g., fault detection, diagnosis, forecasting the status of the
plant, identifying the possible control options, and recom-
mending the best option) to address emergency, abnormal,
and normal situations. 3) The signal noise in a plant should
be an additional consideration; signals in NPPs contain noise,
while the simulator does not. Therefore, a technique that can
mitigate the signal noise, e.g., signal validation or noise toler-
ance, must be developed. 4) Another issue is the differences
in behavior between the simulator model and actual power
plants, which mandates a thorough validation of the practical
application.

APPENDIX
AN EXPERIMENT ON IDENTIFYING A FAST-TRAINING
NETWORK
This study identifies a network that can be quickly trained in
the specified domain since the A3C network requires more
than 14 hours per episode to train the entire power increase
operation. In this study, the considered networks are DNN
(deep neural network), CNN (convolutional neural network),
LSTM (long short-term memory), and C-LSTM (CNN +
LSTM). DNN is a typical feed-forward neural network that
contains many hidden layers of nonlinear hidden units and a
very large output layer. In CNN, the hidden layers have fewer
connections and parameters because filters that perform con-
volution operations are utilized. CNN has been demonstrated
to outperform DNN in feature extraction from input data.
LSTM can calculate time-sequential input data for units that
are called constant error carousels. It can facilitate the mem-
orization of important events or long-term data. C-LSTM is
a combined model of CNN and LSTM. This network has
been proposed for extracting features of data and for handling
time-sequential data.

To train these networks under the same conditions, they
should have the same number of parameters. The parameters
at each layer of the network model are arranged with a normal
distribution (mean = 0.0 and standard deviation = 1.0),
which supports stable training under the same conditions.

TABLE 4. Architectures of the compared networks.

Table 4 describes the architectures of the networks that are
used in the A3C algorithm for the experiment. Each network
consists of three layers: common, actor, and critic. The actor
and critic layers are linked to the common layer.

FIGURE 19. Average duration of each network.

Before training on the entire power increase operation,
the A3C agent is trained between 2% and 15% power to
identify the optimal network. Each network has been trained
by 6500 episodes. Fig. 19 shows the trend of the duration
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of each network versus the number of episodes. Each line
represents the average duration over 10 episodes. The agent’s
objective is to increase the power within the operational
boundary, which is the power reward boundary in this paper,
for 600 seconds. For strict comparison of these networks,
an operation with a duration of less than 600 seconds is
regarded as a failed operation. These networks are trained
until the average duration is 600 seconds. In Fig. 19, the
LSTM network is the best performing network as it realized
an average duration of 600 seconds in 6500 episodes. The
second-best performing network is CNN, which realized a
duration of approximately 400 seconds in 6500 episodes.
C-LSTM and DNN show poor performance (durations of less
than 250 seconds). The results of this experiment demonstrate
that the LSTM network can realize the operational objective
in fewer training episodes than the other networks.
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