
Received October 2, 2020, accepted October 21, 2020, date of publication October 27, 2020, date of current version November 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3034253

One-Shot Voice Conversion Algorithm Based on
Representations Separation
CHUNHUI DENG 1, YING CHEN2, AND HUIFANG DENG 2
1School of Computer Engineering, Guangzhou College, South China University of Technology, Guangzhou 510641, China
2School of Computer Science and Engineering, South China University of Technology, Guangzhou 510641, China

Corresponding author: Huifang Deng (hdengpp@qq.com)

This work was supported in part by the Department of Education of Guangdong Province through Special Innovation Program (Natural
Science), under Grant 2015KTSCX183, and in part by the South China University of Technology through ‘‘Development Fund’’ under
Grant x2js-F8150310.

ABSTRACT Voice Conversion (VC) is a method of converting the source speaker’s speech into the target
speaker’s speech without changing the source speaker’s speech content. The current VC methods have the
following problems: (1) they are only applicable to a limited number of speakers, not to any speakers, as a
result, the application scenarios are greatly restricted; (2) the representation (feature) separation(RS) effect of
the current mainstream technology is not ideal on the source speaker speech and the target speaker speech;
and (3) the voice conversion quality of most models is unsatisfactory, and hence needs to be improved.
Therefore, in this paper, we constructed a one-shot VC model of Representation Separation, called RS-VC
model, implemented by the encoder-decoder structure. The encoder is composed of a content encoder and
a speaker encoder. The content encoder separates the content information of the source speaker voice and
generates a content representation. The speaker encoder separates the target speaker information of the target
speaker voice and generates a speaker representation. The decoder synthesizes the content representation
and the speaker representation to generate the converted voice. In this paper, we obtained the optimized
speaker verificationmodel SVIGEN2E (Speaker Verificationwith InstanceNormalization usingGeneralized
End-to-End loss) by improving the speaker verification (SV) model. The model SVIGEN2E is used as the
speaker encoder. This speaker encoder needs to be trained in advance prior to RS-VCmodel training, and the
pre-trained model of SVINGE2E directly extracts speaker representation of the target speaker’s voice, and
is used for training and testing RS-VC model. A progressive training method is proposed then for training
RS-VC model. Experiments show that the progressive training method can effectively improve the quality
of the converted voice. Compared with the basic speaker verification model, both SVINGE2E and RS-VC
deliver the impressive improvements in EER (Equal Error Rate).

INDEX TERMS Voice conversion, content representation, speaker representation, representation (feature)
separation, speaker verification, one-shot, speaker encoder, content encoder, progressive training method.

I. INTRODUCTION
Although Voice Conversion (VC) is a research branch of
speech synthesis, the research history is also very long. It is
a method of converting source speaker’s speech into tar-
get speaker’s speech without changing the source speaker’s
speech content. With the development of technology, voice
conversion technology has also undergone some changes.
Early VC methods are mainly involved in designing speech
feature extraction methods, extracting personal features in
speech, and then constructing a representation mapping
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model to train features through parallel voice data sets, one
can get the trained feature mapping parameters, and complete
the construction of the VCmodel and the collection of param-
eters. When performing VC, two steps are followed: first
extract the target speech features and source speech features
and then use the feature conversion model to perform VC to
obtain the converted speech. There are mainly two types of
VCs: the channel spectrum based and the prosodic conversion
based. The VC based on channel spectrum is mainly divided
into four categories: (1) Codebook mapping-based meth-
ods [1]–[4], (2) Gaussian mixing model methods [5]–[9],
(3) Hidden Markov model-based methods [10], (4) Neural
network-based conversion methods [11], [12]. At present,
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the main VC methods are based on the neural network
due to rapid development of deep learning and neural
network methods. In 2016, Oord et al. proposed a neu-
ral network-based vocoder model WaveNet [11]. That is a
vocoder. It plays an important role in the field of voice
synthesis and VC, and can synthesize voice features into
original voice with better sound quality. Later, Liu et al. [13]
explored WaveNet vocoder with limited training data for VC
In 2017 Hsu et al. [14] proposed a Variational Autoencoding
Wasserstein Generative Adversarial Network(VAW-GAN)
non-parallel VC framework; Kameoka et al. [15] proposed a
non-parallel data VCmethod and Kaneko et al. [16] explored
parallel-data-free voice conversion using cycle-consistent
adversarial networks. It is called cycle-consistent genera-
tive adversarial network (Cycle-GAN), does not need to
align the data and the model, and can alleviate the exces-
sive smoothness of the generated results to a certain extent.
In 2018, Chou et al. [17] proposed an adversarial learning
framework, in which the Cycle-GAN is used to separate
voice speaker’s representation in the voice signal from the
voice content, and use of the model trained by this frame-
work can achieve VC between multiple speakers. In the
same year, Kameoka et al. [15] proposed a variant of gen-
erative adversarial network named Star-GAN to perform
non-parallel many-to-many VC, and experiments show that
this variant has higher voice similarity and sound quality
than the general Variational Autoencoding Generative Adver-
sarial Network (VAE-GAN). In 2019, Qian et al. [18] pro-
posed anew non-parallel many-to-many VC method. This
method uses an automatic encoder and decoder and realizes
the transfer of distributed matching patterns by training the
self-reconstruction loss. Specifically, this method uses the
automatic encoder to get the voice content information and
uses the decoder to synthesize the content information with
the target person information to generate new voice. The
VC methods proposed in [14], [16] and [17] build the voice
conversion models by improvements to the GAN, but these
methods can only conduct the conversion between limited
speakers, and the quality of the converted voice needs to be
improved. Reference [15] mainly uses an Encoder-Decoder
frame to realize the VC of any speaker, but the effect of
the encoder representation (feature) separation (RS) in this
variant is not obvious and not ideal. Aiming at the above
inadequacies, in this paper, we built a one-shot VC model
based on representation separation.

At present, deep learning technology as a research hotspot
has also made some progress in the field of voice conversion.
Therefore, the current technical research of voice conver-
sion is mainly based on deep learning neural networks. The
current VC methods have the following problems: (1) they
are only applicable to a limited number of speakers, not
to any speakers, as a result, the application scenarios are
greatly restricted; (2) the feature separation effect of the
current mainstream technology is not satisfactory in repre-
sentation separation (RS) on the source speaker speech and
the target speaker speech; (3) the voice conversion quality

of most models is still unsatisfactory, and hence needs to
be improved. In response to the above problems, in this
paper, a new VC model is built based on the Encoder-
Decoder structure of representation (feature) separation and
deep learning and neural network. The Encoder consists of
two parts: The Speaker Encoder and the Content Encoder.
The Speaker Encoder separates the target speaker informa-
tion from the target speaker speech to generate Speaker
Representations or Speaker Features; the content encoder
separates the content information from the source speaker
speech to generate Content Representations or Speaker Fea-
tures, and the Decoder synthesizes speaker representations
and the content representation to generate the target speaker’s
speech with the source speaker’s speech content and target
speaker information. In this paper, the proposed VC model
only needs to input any source speaker speech and target
speaker speech to achieve the voice conversion between
any two speakers, also known as one-shot VC. In order to
improve the representation separation effect and extract more
representative speaker representations, this paper optimizes
the basic speaker verification (SV) model and obtains the
optimized SVmodel called SVINGE2E(Speaker Verification
with Instance Normalization using Generalized End-to-End
loss), which achieved the highest improvement of 41.72% in
EER over the basic speaker verification model. Using trained
SVIGEN2E as the speaker encoder in the VC model, this
speaker encoder can effectively extract the speaker’s timbre
information. In the same time, in order to generate a content
representations without source speaker information, upon
constructing the content encoder, we use the bidirectional
LSTM(Long-Short TermMemory) as an information filter to
filter out content information and the content loss function to
optimize the content encoder, so that the content encoder can
effectively remove the speaker information and extract the
content information in the source speaker’s speech. In order
to improve the quality of the generated speech, a progres-
sive training method is proposed to train the RS-VC model.
In the first step, the reconstruction loss function is used as
the model loss function to train the model’s capability to
reconstruct the speech Mel spectrum. In the second step, the
reconstruction loss function and the content loss function
are used as the model loss function. The model optimizes
the content encoder while reconstructing the speech Mel
spectrum. Experiments show that the progressive training
method produces better speech quality. Through the above
improvements, this paper constructs and implements an arbi-
trary speaker VC algorithm based on feature separation. The
experimental results verify the effectiveness of the algorithm
in this paper, and the conversion effect reaches a good level.

II. SVINGE2E MODEL AND RS-VC MODEL
The one-shot voice conversion model built based on repre-
sentations separation in this paper is implemented by the
Encoder-Decoder structure. The encoder is composed of a
Speaker Encoder and a Content Encoder. By optimizing the
SV model, we obtained the optimized SV model named
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SVINGE2E (Speaker Verification with Instance Normaliza-
tion using Generalized End-to-End loss). We use SVINGE2E
as the Speaker Encoder and construct the Content Encoder
and Decoder in VC model. A progressive training method is
designed for training RS-VC model.

A. SVINGE2E MODEL
In order to get SVINGE2E model, in this paper, we optimize
the structure of the basic SV model [19] which is a three-
layer structure with LSTM by adding a convolutional neural
network (CNN), a fully connected neural network (FCNN)
and an instance normalization (IN) to the middle layer (part)
(Y1 → Y2) of the three layers as shown in Fig.1. The loss
function of the SVINGE2E model is the GE2E (Generalized
End-to-End) loss function which is the same as the one for the
basic SV model [19]. This improved verification model can
more effectively extract features and facilitate the model con-
vergence. The full structure of SVINGE2Emodel is shown in
Fig. 1 and still maintains the three-layer LSTM structure but
with extra CNN, FCNN and IN added to the middle layer.

FIGURE 1. The full structure of SVINGE2E model obtained by improving
the basic SV model – a three-layer LSTM structure.

In Fig. 1, X is a batch of speech utterances. IN represents
instance normalization. These utterances X go through the
model SVINGE2E to obtain the output Y of the last layer
of LSTM. Take the vector yT of the last step of the output
Y as the representation of the each speech utterance in X .
L2 normalization is used to obtain the feature vector e of X ,
which is used to calculate the model loss.

In this paper, the calculation method of the GE2E loss
function of the model is as follows.

Suppose that each batch consists of N speakers, and each
speaker hasM utterances in training process. Then the feature
representation (i.e., representation vector) eji of utterance i
of speaker j obtained after each utterance passes through the

model SVIGENE can be expressed as in (1)

eji =
f
(
Xji,W

)∥∥f (Xji,W )∥∥2 (1)

where Xji is utterance i of speaker j in the batch; f represents
the model SVINGE2E through which the utterance data pass;
W represents the model SVINGE2E parameters; and ‖. . .‖2
denotes L2 normalization. The vector obtained after the utter-
ance passes through the model needs to be L2 normalized
to get eji which is representation vector of utterance i of
speaker j. We expect that the representation (feature) vector
of each utterance is close to the representation vector of other
utterance of the speaker, but different from the representation
vector of the other speaker’s utterance. During the model
training process, we try to make the representation vectors
of the same speaker’s utterances as close as possible with
each other. The representation vectors of different speakers
are separated. The calculation formula of the representation
vector of each speaker is given in (2)

c(−i)j =
1

M − 1

M∑
m=1
m6=i

ejm (2)

c(−i)j is the representation vector of speaker j that excludes
utterance i, For a given representation vector and all speaker
representation vectors in this batch, the similarity Sji,k
calculation formula between the representation vectors is
shown in (3):

Sji,k =

{
w · cos

(
eji, c

(−i)
j

)
+ b, if (k == j)

w · cos
(
eji, ck

)
+ b, otherwise

(3)

where w and b denote weight parameters. cj is representation
vector of the speaker j that includes all utterances of the
speaker j. Sji,k is the similarity between the k-th speaker’s
representation vector and the representation vector of utter-
ance i of speaker j, or in short, it represents the similarity
between speaker k and utterance i of speaker j. The cosine
distance is used in the formula to measure the similarity
between representation vectors. In themodel training process,
when calculating the similarity between the utterance and
the speaker, there are two cases according to whether the
utterance belongs to the speaker: when k = j that repre-
sents the utterance belongs to the speaker, the utterance’s
representation vector and the speaker’s representation vector
are positively correlated, then c(−i)j is used to calculate the
similarity and their similarity should be increased at that time;
when k 6= j that represents the utterance does not belong
to the speaker, the correlated is negative, then cj is used to
calculate the similarity and, their similarity should be reduced
at this time. The formula of the GE2E loss function are as
shown in (4) and (5).

L
(
eji
)
= Sji,j − log

(
N∑
k=1

exp
(
Sji,k

))
(4)
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LG (X ,W ) = LG (S) =
∑
j,i

L
(
eji
)

(5)

where L
(
eji
)
is the loss of each utterance, LG (X ,W ) is the

loss of a batch of utterances.

B. RS-VC MODEL
This paper builds a one-shot voice conversionmodel based on
representation separation (RS-VC). It is an Encoder-Decoder
structure model. Encoder consists of a Content Encoder and a
Speaker Encoder. Decoder compose of a decoder and a post-
network. The Content Encoder encodes content information
in the source speaker speech and remove speaker informa-
tion to get Content Representation. The SE encodes speaker
information in the target speaker speech to get Speaker Rep-
resentation. The decoder synthesizes SR and content rep-
resentation to generate a new synthesized speech, and the
post-network supplements and improves the new synthesized
speech. The trained SVING2E that acts as speaker encoder
encodes the target speaker’s speech and generates a vec-
tor containing the speaker’s features. This vector is called
the (target) speaker representation. The structure of the voice
conversion model in this paper is shown in Figure 2.

FIGURE 2. The whole architecture of the RS-VC.

In Fig. 2, X1 is speech(utterance) of the source speaker
U1; X2 is speech of the target speaker U2; Es is the Speaker
Encoder in RS-VC, and also is the model SVINGE2E, which
is used to extract the speaker representation S2 of voice X2,
the training is done before RS-VC model is trained; EC is the
Content Encoder in RS-VC, which encodes the content infor-
mation of the source speaker’s speech X1 to generate content
representations C1; D (·, ·) is a decoder, which synthesizes
speaker representations S2 and the content representation C1
to generate a new Mel spectrum X̂1→2. P (·) is the post-
network, which supplements X̂1→2 to generate a more perfect
X̃1→2.This is the voice conversion process from speaker U1
to speaker U2.
Suppose thatU represents the speaker and Z represents the

content in voice, X represents the utterance of the content Z
spoken by U . In the RS-VC model, there are two cases to
deal with while the speaker encoder extracting the speaker
representation:

(1) For different utterances of a same speaker, the speaker
representations (features) extracted from his utterances are
the same. For example: if U1 = U2, then Es(X1) = Es (X2).
(2) For the speech utterances from different speakers,

the speaker representations are different from speaker to
speaker. For example: if U1 6= U2, then Es(X1) 6= Es (X2).

During the training of RS-VC model, two loss functions
are used to optimize the model, namely the content loss
function and the reconstruction loss function. The content
loss function mainly optimizes the content encoder, and the
reconstruction loss function mainly helps decoder synthe-
size a new speech Mel spectrum. During the RS-VC model
training, we use the same source speaker and target speaker,
the process of training the RS-VC model is the process of
using the target speaker as the source speaker to recon-
struct the source speaker’s speech. In this model voice con-
version process, first the content encoder learns to remove
the source speaker information from source speaker speech,
retains the content information, and generates a content repre-
sentation, and then the decoder uses speaker representations
and content representations to reconstruct the source speaker
speech. In the test and conversion of RS-VC model, when the
source speaker and the target speaker are different, we can
generate the target speaker’s speech with the source speaker’s
speech content. In order to improve the model training effect,
this paper proposes a progressive training method to train the
RS-VCmodel. The training method is divided into two steps:
spectrum reconstruction and content encoder optimization.

1) SPECTRUM RECONSTRUCTION
The main purpose of this step is to enable the decoder to
correctly complete the reconstruction of the Mel spectrum
by using the content representation and speaker representa-
tion. Therefore, at this step, we only use reconstruction loss
function to train RS-VC model. By randomly selecting two
utterances X1 and X ′1 of the same speaker, then the training
process of the RS-VC model is shown in (6)-(9).

C1 = Ec (X1) (6)

S1 = Es
(
X ′1
)

(7)

X̂1→1 = D (C1, S1) (8)

X̃1→1 = P
(
X̂1→1

)
(9)

where X1 is speech of source speaker U1; X ′1 is a speech of
target speaker U1; C1 is the content representation extracted
from X1 by the Content Encoder; S1 is the speaker represen-
tation extracted from X ′1 by Speaker Encoder; and X̂1→1 is
the speech of the content representation C1 and the speaker
representation S1 generated by the decoder. It is a conversion
process from speaker U1 to speaker U1, i.e., the speech gen-
erated by the conversion of the speech of theU1 to the speech
of theU1, also known as the reconstruction of the spectrum of
the speech of theU1. That is self-reconstruction of the source
speaker’s speech. X̂1→1 goes through post network and then
the Mel spectrum X̃1→1 is generated, so the training process
of the RS-VC model is actually the process of Mel spectrum
self-reconstruction. Therefore, the generated speech and the
source speaker speech should be the same. Therefore, the loss
function is used to measure the distance between the gener-
ated speech and the source speaker speech. Minimizing the
distance between them is the process of reconstructing the
speech. The reconstruction loss function of the RS-VCmodel
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FIGURE 3. Representation (Feature) separation voice conversion (RS-VC) example diagrams: (a) indicates that the filter size is too large; (b) the
filter size is too small; (c) the filter size is just right; and (d) represents the feature separation state in voice conversion test after RS-VC model is
trained with the same filter size as used in (c) and it can be seen that the good voice conversion results are obtained.

is Lrecon, as shown in (10)

Lrecon = E
[∥∥X̂1→1 − X1

∥∥
1

]
(10)

The calculation method of the loss function in this paper
uses the average absolute loss. X̃1→1 is the complement and
perfection to ‖. . .‖1 by the post network, so the post-network
is a network structure that further reconstructs high-quality
voice. It should be pointed out that during the experimental
training, the source speaker and the target speaker are the
same, so it’s a self to self (i.e., 1→1) mapping, and during
the testing, the source speaker is generally different from the
target speaker. The loss function calculated using the source
speaker is called the initial reconstruction loss function, as
shown in (11)

Lrecon0 = E
[∥∥X̃1→1 − X1

∥∥
1

]
(11)

where ‖. . .‖1 represents mean absolute loss. The calculation
methods of the loss function Lrecon0 and loss function Lrecon
are the same, so when training in this step, the loss function
L of the model is as follows (12)

L = Lrecon + Lrecon0 (12)

2) OPTIMIZATION OF CONTENT ENCODER
In this training step, the model optimizes the Content Encoder
on the basis of the reconstruction spectrum. By using con-
tent filters and content loss functions, the Content Encoder
removes the speaker information and extract content infor-
mation. This paper uses the content loss function to optimize
the Content Encoder. The loss function Lcontent is shown in
the (13)

Lcontent = E
[∥∥Ec (X̂1→1

)
− C1

∥∥
1

]
(13)

The speech content before and after the voice conversion is
unchanged, so the distance between content representations
extracted by the content encoder from the two speech is also
close. The content loss function uses the average absolute
to measure the distance between the speech contents. In this
step, the loss function L of the RS-VC model is given by (14)

L = Lrecon + µLcontent + Lrecon0 (14)

where µ represents the weight of content loss function in the
model loss function. This paper uses the content loss function
to optimize the Content Encoder, and at the same time set the

content filter in the Content Encoder to control the content
encoder to filter information, so the conversion principle of
the RS-VC model in this paper is shown in the Fig. 3.

In this paper, the size of the content filter in the content
encoder is set to control the amount of information that passes
through the content filter. In Fig. 3, the grayed bar indicates
speaker information, and the striped bar indicates content
information. (a), (b), and (c) in the figure 3 indicate voice
conversion example diagrams that the filter size is too large,
too small and just appropriate in the training of RS-VCmodel
respectively. The following filter-sizes of 16, 8, 4, 2, and
1 are tried respectively by experiments, and the experimental
results show that size of 2 is more appropriate as used in (c).
(d) shows a schematic diagram of voice conversion during
conversion. (a) shows that the filter is too large when training
the RS-VC model, not only the source content information
is passed through, but also the target speaker information is
passed through, so the generated content C1 contains speaker
information. (b) shows that the filter is too small during the
training of the voice conversion model, which prevents the
speaker information from passing through, and also prevents
portion of the content information passing through. There-
fore, the generated content indicates that C1 contains only
part of the content information, and the spectrum cannot
be well reconstructed. (c) indicates that when the filter size
is appropriate, the content information can completely pass
through while completely preventing the speaker information
from passing through, and the spectrum can be well recon-
structed. (d) represents the feature separation state in voice
conversion test after RS-VC model is trained with the same
filter size as used in (c) and it can be seen that the good voice
conversion results are obtained.

III. EXPERIMENTS
A. EXPERIMENT DATA
SVINGE2E: In this experiment LibriSpeech [20], Vox-
Celeb1 [21], and VCTK are used as training and testing
data sets. The LibriSpeech data set is divided into a training
set, a testing set, and a development set. The numbers of
speakers in these datasets are 2,338, 73, and 73 respectively.
The VoxCeleb1 dataset is divided into a training set and a
testing set, and the total number of speakers is 1,251. The
VCTK data set includes 109 speakers. In the SVINING2E
experiment several numbers of speakers from the above three
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TABLE 1. EER of SVINGE2E evaluated on test set under different training numbers.

TABLE 2. EER of SVINGE2E evaluated on test set under different training numbers.

data sets are selected randomly for training and testing. The
Mel spectrum of the original speech is extracted and used as
the input data ofmodel SVINGE2. SVINGE2E is trainedwith
a batch size of 64× 10, using the ADAM optimizer.
RS-VC: In this paper, the RS-VC experiment uses the

VCTK data set as the training set and the test set. The data
set has a total of 109 speakers, from which 10 speakers are
randomly selected as the testing set. The 10 speakers are
p225, p226, p227, p228, p229, p230, p231, p232, p233, p234.
In the experiment, Wavenet [11] is used as the vocoder to
generate the original speech from the Mel spectrum. In our
implementation, the frame rate of theMel spectrum is 62.5Hz
and the sampling rate of speech waveform is 16 kHz. RS-VC
is trained with a batch size of 24, using the ADAM optimizer.
The weight µ in Eq. (14) is set to 100. We use MOS(Mean
Opinion Score) and ABX Tests as the evaluation criteria of
the RS-VC model experiment. Here A represents the source
speaker’s speech, B represents the target speaker’s speech,
and X is the converted speech to determine whether X is more
similar to A or B. MOS is divided into naturalness of MOS
and similarity ofMOS, and their scores range from 1 to 5. The
larger the score, the higher target similarity or naturalness.
ABX Test determines whether the converted speech is more
similar to the original speech or to the target speech.

B. SVINGE2E EXPERIMENT
The model of SVINGE2E in this paper is improved on
the basis of the simple basic three-layer LSTM model [19]
(3L-LSTM). The model is evaluated on VCTK dataset and
LibriSpeech dataset. Tree-layer LSTM model experiment
data come from paper of [22].When using the dataset VCTK
as the training set of the model, the data set is divided into
a training set and a testing set according to the ratio of 9:1.
Specifically, there are 98 speakers in the training set and
11 speakers in the testing set, when the VCTK training set
is used to train the model. The model is evaluated on VCTK

testing set and LibriSpeech testing set. When LibriSpeech
dataset is used as the model training set, 1,200 speakers
are randomly selected from the training set of the Lib-
riSpeech. After training the model using this LibriSpeech
training set, the model is evaluated on VCTK testing dataset
and LibriSpeech data set. The model test uses Equal Error
Rate (EER) as the evaluation metric which is the main evalu-
ation metric for speaker verification model. In general, there
are three metrics used to evaluate the model of SVINGE2E:
False Acceptance Rate (FAR), which is defined as FAR =
FP

FP+TP ; False Reject Rate (FRR), which is defined as FRR =
TN

TN+FN ; and Equal Error Rate (EER), which is defined as the
value when FAR = FRR. Here FP represents that a speech
actually does not belong to a speaker but is judged by the
model to belong to that speaker; TP represents that a speech
actually belongs to a speaker and is judged by the model to
belong to that speaker; TN represents that a speech actually
belongs to a speaker but is judged by the model as not belong-
ing to the speaker, while FN represents that a speech actually
does not belong to the speaker and is judged by the model
as not belonging to the speaker. The test results are shown
in the Table 1. In this paper, the model SVINING2E uses
GE2E loss as model loss function, so the training effect of
the model based on this loss function is related to the number
of speakers in the training set. Experiments are conducted
with different number of trainees, and the obtained results
are shown in Table 2. From Table 1, it can be seen that when
SVINING2E is trained on the VCTK training set, the EER
tested on the VCTK is 9.58, and compared with 10.46 of
the 3L-LSTM model, decreased by 0.88, which means an
improvement of 8.41% by the model of SVINING2E; The
EER tested on the LibriSpeech testing set is 17.01, and com-
pared with 29.19 of the basic model 3L-LSTM, has a drop of
12.18, corresponding to an improvement of 41.72% with the
model of SVINING2E. When the model of SVINING2E is
trained on the LibriSpeech training set, the EER evaluated on
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FIGURE 4. Dimension reduction graphs of speaker representations extracted by SVINING2E model trained with different training numbers of (a) 98,
(b)1200, (c)2300 and (d) 3500.

the VCTK data set is 5.68, and compared with the 6.26 of the
basicmodel, decreased by 0.58, corresponding to an improve-
ment rate of 9.26%; while the EER tested on the LibriSpeech
testing set is 5.11, rise by a marginal amount of 0.03,. From
Table 1 we can know that our model SVINGE2E is better than
3L-LSTM.

It can be seen from Table 2 that as the number of speakers
(the trainees) in the training set increases, the lower the
EER of the model in each testing set, the better the model
performance. At the same time, it can be seen from the
model experiments in this paper that the performance of
VoxCeleb1 is worse than the other two testing sets. From
Table 2, it can be concluded that when the training number of
speakers reaches 3,500, the model performs best on VCTK,
and the EER is 3.15.

When the EER is smaller, the speaker representations
of the same speaker are better, and the distance between
the speaker representations of different speakers is larger.
Therefore, the speaker representations extracted from the
trained SVINGE2E model data set are displayed on the
two-dimensional image (Fig. 4) which is clustered. In this
paper, the model SWINGE2E is trained on a dataset with
trainees of 98(Fig.4(a)), 1,200(Fig.4(b)), 2,300(Fig.4(c)),
and 3,500(Fig.4(b)) respectively. After training, 30 speakers
are randomly picked up and 100 utterances are randomly
selected from each speaker in the VCTK dataset to extract
the speaker representation. In the Fig.4(a) we use VCTK
test dataset which only contains 10 speakers to extract the
speaker representation of each utterance in this dataset. t-SNE
(t-distributed stochastic neighbor embedding) [23] is used for
dimension reduction display, as shown in Figure 4.

C. RS-VC EXPERIMENT
The RS-VC experiment here is divided into two parts accord-
ing to the test data: the in-set speaker test and the out-set
speaker test. The in-set speaker test means that the source
speaker and the target speaker in test speeches have other
speeches as training set to train themodel. The out-set speaker
test means that neither the source speaker nor the target
speaker in test speeches has any speech as a training set to
train the model. The test data consists of 8 speakers: 4 from
the in-set (two males and two females) and other 4 from the

out-set (two males and two females). 5 voices are selected
from each speaker for the test. There are total 40 voices that
need scoring. During scoring, 10 volunteers are selected to
conduct the in-set speaker test and the out-set speaker test
respectively. First the in-set speaker test is conducted and
then comparison is done with other models. When comparing
scores with the other models, the volunteers are first taught
the scoring criteria of the two evaluation methods, then given
the comparison model samples and the corresponding scores
of the samples, and finally score the test results (converted
voices) on RS-VC experiment. When conducting out-set
speaker test, because themodels under comparison are unable
to realize the speech conversion between out-set speakers, the
testing scores are given according to the criteria for the in-set
speaker test. The main purpose of this research is to realize
the direct speech conversion in the out-set speakers.

TABLE 3. Converted voice MOS scores.

In this RS-VC experiment, this paper uses two evaluation
methods: MOS and ABX Test. Both of these evaluation
methods are subjective evaluation methods. After the model
is trained, the test set is used for voice conversion testing. The
test set focuses on the source speaker and the target speaker,
while the training set does not include them. According to
the gender of speakers, the conversion is divided into male to
female (M2F), female to male (F2M), male to male (M2M),
and female to female (F2F). We train SVINGE2E with a
training set of 3500 trainees and then use it as the speaker
encoder of RS-VC after the training. When neither the source
speaker nor the target speaker belongs to the training set,
the naturalness and similarity of the voices after voice conver-
sion between different genders and within the same genders
are listed below Table 3.
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FIGURE 5. Voice spectrum chart of converted voice.

It can be seen from the Fig.5 that (a) is the speech spec-
trum of the speech p228_001 of the female source speaker
p228; (b) is the speech of the male speaker p228_001×p232
obtained after voice conversion of the original speech (a)
p228_001 via the male target speaker p232; (c) is the
male speaker speech spectrum p232_001 of the male source
speaker p232; (d) is the voice p232_001×p228 of the female
speaker obtained after the voice conversion of (c) p232_001
via the female target speaker p228. It can be seen that
the voice content before and after conversion is basically
unchanged, and the energy distribution changes.

This paper also compares the RS-VC model with other
voice conversion models: Cycle-GAN [16] model and the
StarGANmodel [15] respectively. The two models compared
with RS-VC are called comparison models. In the compara-
tive experiment, the similarity of MOS and the naturalness
of MOS are used as the evaluation criteria. Because the two
comparison models can only conduct the conversion between
speakers in the training set during the voice conversion test,
while in this paper, upon performing the experimental evalu-
ation with the two comparison models, the voice conversion
is done between the speakers from the training set, but the
test speech did not appear in the training set during the con-
version, that is, the speaker’s other speech is used for model
training, but the speaker’s test speech is never used for model
training. The evaluation results are shown in Table 4. From
Table 4, it can be seen that the naturalness of the converted
speech of this model is significantly higher than that of the
two comparison models, and the similarity of the converted
speech is slightly higher than that of the two comparison
models in most cases. In this paper, some examples of the
converted speech of the two comparative models and RS-VC
model is shown in Fig. 6.

In Fig. 6, (a) is the source speaker’s speech p270_001;
(b) is the converted speech p270_001×p256 of the RS-VC

TABLE 4. Comparison on MOS scores between RS-VC model and other
models.

FIGURE 6. The speech spectrum chart of the speech converted by RS-VC
and the comparison models.

model where the target speaker is p256; (c) is the converted
speech p270_001×p256 of the StarGAN voice conversion
model where the target speaker is p256; (d) is the converted
speech p270_001×p256 of the Cycle-GAN voice conversion
model where the target speaker is p256.

IV. CONCLUSION
In this paper, the speaker verification model is applied to
the field of VC, and a one-shot voice conversion algorithm
based on Representation Separation (RS-VC) is designed and
implemented. This algorithm can realize voice conversion
between any speakers. We improved the speaker verification
model and obtained the optimized speaker verification model
called SVINGE2E which reduced the equal error rate (EER)
and enhanced its capability to extract speaker representa-
tion purity. In the RS-VC model, the speaker representation
extracted by SVINGE2E is used for training and testing
the RS-VC. RS-VC model has encoder-decoder structure,
in which the encoder is composed of two encoders: a content
encoder and a speaker encoder, and the decoder is composed
of a decoder and a post network. The decoder synthesizes the
representations generated by the two encoders and generates
new speech, and the post-network complements the speech
generated by the decoder. The reconstruction loss function is
used to help the decoder and the post-network to reconstruct
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the speech. The filter of content encoder and content loss
function are set to help the content encoder effectively remove
the speaker information, and generate the content representa-
tion. The progressive training method is used to train RS-VC
model with a view to improving the quality of the generated
speech.

Further work could include (1) improving the quality of
model speech Mel spectrum reconstruction; (2) merging the
speaker encoder into the voice conversion model for training
to realize a simple end-to-end voice conversion; (3) fur-
ther improving the effect of representation separation; and
(4) expanding the scope of voice conversion, not only for
timbre conversion, but also for prosody and rhythm.
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