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ABSTRACT This paper presents a look-up table (LUT)-based focal beamforming system that can effectively
transmit RF power up to mid-range distances (≤ 3 m) including when the Rx is in the near-field zones. The
Tx elements control and radiate signals for the Rx even at the near-field zone ensuring the received signals
are in-phase. Since the proposed system uses a LUT for storing the phase sets of the signals for the Tx
elements, it requires only very simple hardware and a very simple adaptive control algorithm compared to
conventional retroreflective method. In order to track the moving Rx, a 2-D adaptive sequential searching
algorithm is proposed. The system can find the optimum phase set by sequentially searching the phase sets
for a pre-determined 2-D area. The LUT of the phase sets are generated using geometric analysis over the
entire 2-D area where the Rx could be located. To verify the proposed method, a 5.2 GHz mid-range (≤ 3 m)
MPT system composed of a 4× 8 Tx array and a 2× 3 Rx array was designed and implemented. Using the
proposed 2-D adaptive sequential searching algorithm, the optimum phase set for focal beamforming can
be quickly found for a given position of the Rx. In our experiments, the results showed an RF power level
of 177.8 mWwas received at the Rx with a distance of 1 m with a total radiated RF power of 16W. Since the
measured received power levels for various Rx positions agree well with the simulation results, the proposed
system was proved to be an excellent candidate for the practical application.

INDEX TERMS Microwave power transfer, look-up table, focal beamforming, 2-D adaptive sequential
searching algorithm.

I. INTRODUCTION
With the development of the internet of things (IoT) and
wireless sensor networks (WSN) for smart home and smart
factory applications, the problem of supplying power to
the numerous sensors needed has emerged. Wired charging
methods for these sensors are not suitable due to how the
sensors tend to be installed. While sensors often rely on
batteries for power supply, it becomes very difficult and rather
expensive to continuously replace batteries over the device’s
lifecycle.

The associate editor coordinating the review of this manuscript and

approving it for publication was Giorgio Montisci .

Wireless power transfer (WPT) can be used to solve this
problem. There are four main methods of providing WPT:
magnetic induction, EM resonance, capacitive coupling, and
MPT [1]. Magnetic induction and EM resonance methods
require coils for both Tx and Rx and have a transmission
distance of just a few centimeters. In addition, there are tight
alignment requirements between the Tx and Rx coils for high
efficiency, this is inconvenient in many applications [2]–[4].
Nevertheless, their ability for high power transmission
(> several kW) and high transmission efficiency (> 70%) has
fostered a lot of active research and development, especially
for applications related to mobile devices, electric vehicles,
and biomedical devices [5]–[8].
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Since MPT is based on RF radiation, a distance of several
meters or even several tens of kilometers can be achieved
using beamforming technique [9]–[12]. However, path loss
due to high operation frequency can be seriously increased
as the transmission distance becomes longer. This path loss
can be mitigated by beamforming using massive Tx antenna
arrays. Beamforming can be conducted by adjusting the
phases and magnitudes of the signals at the Tx elements. The
main purpose of beamforming for MPT is so that the EM
waves radiated from the Tx antenna elements are combined
in-phase at the antenna of the Rx.

For far-field or long-range (more than several meters
in general) MPT applications, retrodirective methods have
been conventionally used. The Tx for retrodirective systems
requires the Rx to have additional antennas to sense the direc-
tion of the Rx using the received signal which is transmitted
from the Rx [13]–[18]. Then, using the direction of the Rx,
the Tx antenna array can form its main beam toward the Rx.

However, for short- or mid-range (less than a few meters
in general) MPT applications, a technique that covers appli-
cation at both far- and near-fields is required. The retrore-
flective method has been used for such short- or mid-range
MPT systems [19]–[22]. To obtain the optimum phase sets
for transmitting signals from the Tx elements, the Tx using
the retroreflective method needs an additional Rx at each
Tx element to receive pilot signals which are transmitted
from the Rx. Hence, a Rx is required for the Tx to receive
the pilot signal. As a result, any MPT system based on the
retroreflective method has very complex Tx and Rx circuits,
control circuits to extract the optimum Tx phase set, and
additional in-band or out-band communication circuits for
signals sent between the Tx and Rx.

In [19], a retroreflective beamforming system using four
Tx antenna elements was presented for the 2.08 GHz band.
With a total transmitted power of 1W, 0.25Wper antenna, RF
power of 14 mW was received at a distance of 0.5 m through
a single Rx antenna. In [20], a distributed retroreflective
beamforming system using eight Tx antenna elements was
reported for the 2.125 GHz frequency band. With a total
transmitted power of 1.4 W, 0.175 W per antenna, RF power
of 7 mW was received at a distance of 0.5 m through a single
Rx antenna. In [21], a retroreflective beamforming system
using 16 Tx antenna elements and 8 Rx antenna elements
was reported for the 2.45 GHz frequency band. The received
power was improved by adaptively adjusting the number of
rectennas in the Rx using the calculated size of the focal point
in the near-field zone. By transmitting 250 mW, dc power
of about 10 mW was obtained through three rectennas at a
distance of 1m. In [22], a retroreflective beamforming system
using 64 Tx antenna elements and 6 Rx antenna elements was
reported for the 5.2 GHz frequency band. A new calibration
method was proposed to calculate the phase offsets for the
unit’s Tx and Rx circuits in the Tx.

Especially, for fixed near-field positions, a focused antenna
array can effectively transmit RF energy to an Rx [23]–[30].
The optimum phase sets for the multiple Tx antennas are

implemented at each Tx element to focus the beam at the
point where the Rx is located. In [29], a focused antenna array
with 64 Tx antenna elements and 16 Rx antenna elements
were reported for the 5.8 GHz frequency band. The phases
for the Tx antenna elements were controlled using different
lengths of the transmission lines at the inputs of the antennas.
For a total transmitted power of 100 mW, RF power levels
of 19.9 and 33.2 mW received by an Rx at a fixed point
40 cm away were reported using a conventional far-field
beamforming method and a focused antenna array method,
respectively. In [30], a focused antenna array 1×1 m2 in size
for the Tx and Rx antennas was used in the 5.8 GHz frequency
band. The phases of the Tx antenna elements were controlled
using different lengths of the coaxial transmission lines at the
inputs of the antennas. For a total transmitted power of 500W,
received RF power levels of 164.89 and 209.26 W for the Rx
at a fixed point with a distance of 10 m were reported using a
conventional far-field beamforming method and the focused
antenna array method, respectively. The above results show
that a focused antenna array can be an effective alternative
for short- and mid-range MPT including the near-field zone.
However, for most MPT applications that involve a moving
Rx, for acceptable performance these system need to have
the ability to quickly find the optimum phase sets for the Tx
signals and to adaptively control the phases of the signals of
the Tx elements according to the changing position of the Rx.

In this paper, an LUT-based adaptive focal beamforming
system is proposed for short- or mid-range (≤ 3 m, including
the near-field zone) MPT applications. The LUT contains the
optimum phase sets, extracted for the Tx elements, to focus
the beam at each position in a 2-D zone where the Rx could
be located. The proposed MPT system is designed to find
the optimal phase set among the pre-stored sets in the LUT
and to apply it to the Tx using a 2-D adaptive sequential
searching algorithm based on the received power from the
Rx. Compared to the retroreflective method which finds and
sets the optimum phase for each Tx element in a one-by-one
manner in the control domain, the proposed method may well
be much faster by finding and setting the optimal phase set at
one time for all the Tx elements. In addition, the hardware
complexity of the proposed method becomes a lot lower than
that of the retroreflective method.

To verify the proposed method, an LUT-based focal beam-
forming system equipped with a 4 × 8 Tx array and 2 × 3
Rx antennas was designed and implemented for the 5.2 GHz
frequency band. Each element of the Tx array radiates RF
power of 0.5W through a patch antenna and has an embedded
micro-controller unit (MCU) for running the beamforming
algorithm.Measurement results according to various Rx posi-
tions in the mid-range (≤ 3 m) including the near-field zone
will be presented with the simulation results.

II. LUT-BASED FOCAL BEAMFORMING
Fig. 1 shows a conceptual diagram of the LUT-based focal
beamforming system using an M×N Tx antenna array and
K×L focal points where the Rx could be located. The opti-
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FIGURE 1. Conceptual diagram of the LUT-based focal beamforming
system composed of M×N Tx antenna array.

mum phase set for a Tx element can be calculated using a
geometric method. The path difference between the distance
from the origin to the the (k ,l)-th focal point (Fkl) and the
distance from the (m,n)-th Tx antenna element to the Fkl can
be translated as a relative phase difference of (θmn(Fkl)) as
follows.

θmn(Fkl) =
2π
λ0

(rmn(Fkl)− r0(Fkl)), (1)

where λ0 is the wavelength in free space, rmn(Fkl) is the dis-
tance between the (m,n)-th Tx antenna element and the focal
point (Fkl), and r0(Fkl) is the distance between the origin and
the focal point (Fkl). The position of the (m,n)-th Tx antenna
array can be expressed as (xmn,ymn,0) in Cartesian coordi-
nates, while the (k ,l)-th focal point (Fkl) can be expressed
as (xkl ,ykl , zkl). Then, (1) can be rewritten as:

θmn(Fkl) =
2π
λ0

√
(xmn − xkl)2 + (ymn − ykl)2 + (zmn − zkl)2

−

√
x2kl + y

2
kl + z

2
kl, (2)

The relative phase difference of θmn(Fkl) can be used as
the phase to control the (m,n)-th Tx element for a focal
point of Fkl that compensates for the relative path difference.
Therefore, the conditions for optimal focal beamforming at

FIGURE 2. Block diagram of the proposed LUT-based focal beamforming
system.

the (k ,l)-th focal point can be expressed using a M×N phase
matrix as follows.

2Tx,opt (Fkl) =

 θ11(Fkl) . . . θ1N (Fkl)
...

. . .
...

θM1(Fkl) . . . θMN (Fkl)

 , (3)

where 2Tx,opt (Fkl) are the optimum phase sets for the M×N
Tx antenna elements, this allows the system to perform opti-
mal focal beamforming to the (k ,l)-th focal point. The LUT
has a K×L number of the M×N phase matrices (2Tx,opt )
for the K×L focal points at the Rx. To adaptively focus the
beam at the moving Rx, an adaptive control algorithm and a
control system to find the optimal phase set among the K×L
phase matrices stored in the LUT are required to maximize
the received power at the Rx.

It would be possible to extract LUTs for multiple planes
that cover the entire possible set of 3-D positions of the Rx.
But for the limited range between the Tx andRx, simply using
an LUT for a plane with a fixed z can be rather effective by
making the system and the adaptive beamforming algorithm
simpler. In this work, the LUT was extracted at a single plane
of the focal points with a fixed z of 1.0 m. To demonstrate
the beam focusing ability of the proposed short-range WPT
system with sufficient angular resolution, a square zone of
1.0× 1.0 m2 for 13× 13 individual focal points was selected
to extract the LUT.

III. SYSTEM DESIGN AND IMPLEMENTATION
A. SYSTEM DESIGN
For the proposed LUT-based focal beamforming system, a Tx
composed of a massive antenna array and an Rx composed
of a rectenna array for the 5.2 GHz frequency band were
designed. Fig. 2 shows the block diagram of the proposed
LUT-based focal beamforming system. The Rx consists of
a 1 × 5 rectenna array that receives RF signals and converts
them from RF to dc. A voltage doubler based on single-stage
class-F structure was applied to maximize the conversion
efficiency [31]. A 2-section input matching network for the
individual rectifier based on a series transmission line and an
open stub was designed for class-F operation and fundamen-
tal impedance matching. The individual rectifier used in the
1 × 5 rectenna array exhibited an efficiency of 64.1% and
an output dc voltage of 5.1 V at an input power of 24 dBm
in 5.2 GHz frequency band. The dc outputs of the 1 × 5
rectenna arraywere directly combined in current and supplied
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FIGURE 3. Block diagram of the unit Tx module.

FIGURE 4. Simulated results of the Tx antenna array: (a) gain, (b) beam
patterns.

as electrical load. The received RF power wasmeasured using
an additional antenna in the Rx and a spectrum analyzer. The
measured power is to be recorded on a PC in order to run
the 2-D adaptive sequential searching algorithm for optimum
focal beamforming. For the Rx antenna, a trimmed rectangu-
lar patch with left-handed circular polarization (LHCP) was
designed on an RF-35 substrate with a thickness of 1.52 mm,
a dielectric constant of 3.5, and a loss tangent of 0.0018.
The width and length of the substrate for the unit antenna
are 35.85 mm (0.62 λ0) and 45 mm (0.78 λ0), respectively.
In the broadside direction, the LHCP antenna exhibited a gain
of 6.563 dBic.

The 4 × 8 Tx array is composed of four 1 × 8 unit mod-
ules. The RF input power is amplified using a drive power
amplifier and is distributed to the four unit modules using
a Wilkinson power splitter. A 1 × 8 unit module includes

FIGURE 5. Simulation setup for received power.

FIGURE 6. Photograph of the implemented Tx unit module: (a) top view,
(b) bottom view.

8 Tx elements with 8 antennas. The Tx element was designed
to include a drive power amplifier, a 1:8 Wilkinson power
splitter, an attenuator, a phase shifter, power amplifier, and an
internal MCU to control the attenuator and the phase shifter,
as shown in Fig. 3. The 1:8 Wilkinson power splitter was
designed to be used on the RF-35 substrate. The 6-bit digital
attenuator has an LSB of 0.5 dB, and a maximum attenua-
tion of 31.5 dB. The 6-bit digital phase shifter has an LSB
of 5.625◦ and a phase coverage of 360◦. The drive and power
amplifiers have a power gain of 32 dB and a P1dB of 32 dBm.
For the Tx antenna, a patch based on the Koch-curved rect-
angular structure for LHCP was implemented on the same
RF-35 substrate [22]. In the broadside direction, a single
Tx antenna exhibited a gain of 6 dBic. The width and
length of the square substrate used for a single antenna is
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TABLE 1. Component list used in the unit Tx module.

FIGURE 7. Photograph of the implemented Tx: (a) front view, (b) rear view.

34 mm (0.59 λ0). Since the gain of a single Tx antenna is
6 dBic, the gain of the total 4 × 8 antenna array can be
approximated as about 21 dBic as shown in Fig. 4a and b.

B. 2-D ADAPTIVE SEARCHING ALGORITHM
Since a LUT extracted from a single plane (z = 1.0 m)
of 13 × 13 focal points will be used, a 2-D search of the
optimum phase matrix would be very effective. If the LUT
would be extracted from multiple planes, a 3-D searching
algorithm is a simple extension of the proposed 2-D algorithm
could be applied. The operation principle of the proposed
2-D searching algorithm is very simple. The algorithm starts
with the LUT that has 13 × 13 phase matrices. Each phase
matrix is assigned for a position of the focal point and has
4×8 elements each of which is assigned to the respective Tx
elements. The proposed 2-D sequential searching algorithm
works as follows. It sets an initial phase matrix for the Tx
with LUT(k ,l), where LUT(k ,l) indicates the phase matrix
for the (k ,l)-th focal point. The algorithm consists of searches
in the horizontal (x) and vertical (y) axes. First, the algo-
rithm begins with the search in the horizontal axis with
LUT(k ,l).
The procedure for the search in the horizontal axis is

as follows. The received power levels with LUT(k − 1,l),

FIGURE 8. Photograph of the implemented Rx.

FIGURE 9. Experimental setup for the LUT-based focal beamforming
system.

LUT(k ,l), and LUT(k + 1,l) are recorded, where LUT(k ,l)
is the current LUT. If the power with LUT(k ,l) among the
three measured power levels is highest, the algorithm jumps
to search in the vertical axis. Else if the power with either
LUT(k + 1,l) or LUT(k − 1,l) is highest, the LUT with the
highest power is set as the current LUT i.e., LUT(k ,l). Then,
the search in the horizontal axis is repeated.

The procedure for search in the vertical axis is as follows.
The received power levels with LUT(k ,l − 1), LUT(k ,l), and
LUT(k ,l + 1) are recorded, where LUT(k ,l) is the current
LUT. If the power with LUT(k ,l) among the three mea-
sured power levels is highest, the algorithm jumps to search
in the horizontal axis. Else if the power with either LUT
(k ,l − 1) or LUT(k ,l + 1) is highest, the LUT with the
highest power is set as the current LUT i.e., LUT(k ,l). Then,
the search in the vertical axis is repeated.

C. SIMULATION FOR THE RECEIVED POWER
The received power for the various Rx positions was simu-
lated using the LUT generated for the multiple planes with
fixed z. Fig. 5 shows the simulation setup for the received
power which illustrates the grid of focal points and the sim-
ulated points on the same plane. The sizes of the planes for
the focal points were calculated by considering the azimuthal
angle and elevation angle from the Tx for each focal plane.
Using (3), four LUTs were generated from four square zones
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TABLE 2. Measured and simulated received RF power levels at the Rx.

FIGURE 10. Measured and simulated received RF power levels for the
various positions of the Rx: (a) z of 1 m, (b) z of 2 m, (c) z of 3 m.

with a fixed z of 0.5, 1.0, 2.0, and 3.0 m. The LUT consists of
a 13 × 13 phase matrix for each focal plane. The simulation
was performed using CST.

D. IMPLEMENTATION
Fig. 6 shows photographs of the top view (in (a)) and bottom
view (in (b)) of an implemented Tx unit module. The size of
the implemented unit module is 272 × 280 × 34 mm3. The
top side of the unit module consists mainly of RF circuits,
while the bias and digital circuits are implemented on the
bottom side. The phase and magnitude of the RF signals
supplied to the antenna array are adjusted using the digital
circuit. Table 1 shows the component list used in the unit
module.

Fig. 7 shows the photographs of the implemented 4 × 8
(four 1 × 8) Tx array: a front view in (a) and a rear view
in (b). The implemented Tx has total dimensions of 272 ×
280×136 mm3. The external RF input power is split using a
Wilkinson power splitter and is applied to the four unit mod-
ules. Fig. 8 shows a photograph of the implemented Rx. The
size of the Rx is 75×135× 15.2 mm3. The RF-dc converters
are implemented using Schottky diodes, HSMS286C.

IV. EXPERIMENTAL RESULTS
Fig. 9 shows the experimental setup for the LUT-based focal
beamforming system. An Rx holder with a size of 2 × 2
m2 was fabricated to move the Rx to various positions.
A signal generator was used to provide the input RF signal.
The 2-D sequential searching algorithm was implemented
in a PC using Labview. Among the 6 Rx antennas, 5 Rx
antennas were used as rectennas to obtain dc power, while
one antenna was used to detect the received RF power, this
data is then used to run the 2-D adaptive sequential searching
algorithm.

Using the experimental setup shown in Fig. 9, adaptive
focal beamforming was performed using the 2-D adaptive
sequential searching algorithm for various Rx positions. Each
Tx antenna transmitted 0.5 W, which results in a total trans-
mitted power of 16 W with the 4 × 8 array. Fig. 10 shows
the 3-D contours of the received RF power levels for the
various positions of the Rx. Table 2 shows the measured and
simulated RF and dc power levels. Received RF power levels
of 22.5, 21.2, and 18.6 dBm were obtained in measurements
at Rx positions of (0,0,1), (−0.2,0.2,1), and (−0.4,0.4,1),
respectively. The table also shows the measured dc power
levels using the 5 rectennas and the electrical load at the
Rx. The measured dc power levels of 191.1 mW, 136.9 mW,
and 98.5 mW were obtained at the Rx positions of (0,0,1),
(−0.2,0.2,1), and (−0.4,0.4,1), respectively. Even at the Rx
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TABLE 3. Performance comparison with previous work.

FIGURE 11. Normalized distance error for the various positions of the Rx:
(a) z of 1 m, (b) z of 2 m, (c) z of 3 m.

position of (0,0,3), a distance of 3 m, a measured dc power
level of 14.3 mW was obtained, this could be sufficient to
charge some low-power sensors.

Fig. 11 shows the 3-D contours of the normalized distance
errors (END’s) for the various positions of the Rx. END is

defined as follows.

END =
r ′0(Fkl)− r0(Fkl)

r0(Fkl)
, (4)

where r0(Fkl) is a distance between the Tx and Rx for (k,l)-
th focal point which was originally set for the measurements.
r ′0(Fkl) is a calculated distance between the Tx and a virtual
position of the Rx for (k,l)-th focal point. The virtual posi-
tion of the Rx is the position where the Rx can receive the
same power using the simulation with the measured received
power.

There are small mismatches between the simulated and
measured results, which can be explained as follows. First,
the full-wave simulation using CST Studio Suite was per-
formed in an ideal situation where the transmitting and
receiving antennas exist in free space. However, since the
actual experiment was conducted in a cavity environment
with several scattering bodies around (as shown in Fig. 9),
the effect of multiple scattering can be reflected to the
measurement results. Second, errors can occur due to the
geometric mismatch between the transmitting and receiving
antennas. The relative position between the transmitting and
receiving antennas in the measurement may be slightly dif-
ferent when compared to the accurate values set in the sim-
ulation. Since the measurement results are slightly different
from the simulation results, the proposed LUT-based focal
beamforming system is proved to be effective and practical.

Table 3 includes a performance summary of this work and
compares our results to previous works. Compared to con-
ventional retroreflective systems, the proposed MPT system
has a very simple structure. The proposed LUT-based focal
beamforming system equipped with a 4× 8 Tx antenna array
and Rx array achieved high received power levels in various
Rx positions by using an 2-D adaptive sequential searching
algorithm.

V. CONCLUSION
In this paper, an LUT-based focal beam focusing system using
a 2-D adaptive sequential searching algorithm was proposed
for short- or mid-range (≤3 m, including near-field zones)
MPT applications. Using the proposed methods based on an
LUT and a focused antenna array, fast adaptive focal beam-
formingwith relatively simple hardware compared to conven-
tional retroreflective methods was achieved for moving Rx’s
in the near-field zone. The LUT is composed of phase sets
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for the Tx antenna elements for a given 2-D zone somewhere
in which the Rx array could be located. Each phase set for
the LUT was calculated using a geometric method based on
the distances between each Tx antenna element and the focal
point.

For verification of the proposed method, a 4 × 8 Tx array
and an Rx array for the 5.2 GHz band were designed and
implemented. The 4× 8 Tx array was composed of four unit
modules. Each 1× 8 unit module consists of 8 active phased
arrays and 8 antenna elements. Each Tx element of a unit
module consists of a digital attenuator, a phase shifter, power
amplifiers, and an MCU. A 2-D sequential searching algo-
rithm was implemented with a PC using Labview. The size of
the implemented 4×8 Tx array is 272×280×136 mm3. The
total radiated power from the Txwas 16W, while the received
dc power was 191.1 mW using 5 rectennas at a distance of
1 m. The measured and simulated received power levels for
the various positions of the Rx were in good agreement with
simulation results, the results prove that the proposed adap-
tive focal beamformingmethod is very effective and excellent
candidate for practicalMPT applications with short- andmid-
ranges. Compared to the conventional retroreflective method,
the proposed system has significantly compact circuits with
a limited range of operation.
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