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ABSTRACT Zagreb indices and their modified versions of a molecular graph are important molecular
descriptors which can be applied in characterizing the structural properties of organic compounds from
different aspects. In this article, by exploring the structures of the quasi-tree graphs with given different
parameters (order, perfect matching and number of pendant vertices) and using the properties of the general
multiplicative Zagreb indices, we determine the minimal and maximal values of general multiplicative
Zagreb indices on quasi-tree graphs with given order, with perfect matchings, and with given number of
pendant vertices. Furthermore, we present the minimal and maximal values of general multiplicative Zagreb
indices on trees with perfect matchings.

INDEX TERMS General multiplicative Zagreb indices, quasi-tree graph, tree, perfect matching, pendant
vertex.

I. INTRODUCTION
Topological molecular descriptors are mathematical invari-
ants reflecting some biological and physico-chemical prop-
erties of organic compounds on the chemical graph, and they
play a substantial role in materials science, chemistry and
pharmacology, etc. (see [6], [7], [15]). The famous Zagreb
indices is one of the first topological molecular descriptors.
They are first introduced by Gutman and Trinajstić [8] and
used to examine the structure dependence of total π -electron
energy on molecular orbital. The first and second Zagreb
indices M1 and M2, respectively, of a graph G are defined
as:

M1(G) =
∑

v∈V (G)

dG(v)2, M2(G) =
∑

uv∈E(G)

dG(u)dG(v),

where dG(v) is the degree of vertex v.
These two classical topological molecular descriptors (M1

and M2) and their modified versions have been applied in
studying heterosystems, ZE-isomerism, chirality and com-
plexity of molecule, etc. Todeschini et al. [16] had pre-
sented a version of Zagreb indices which nowadays are called
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multiplicative Zagreb indices, and they are expressed by

51(G) =
∏

v∈V (G)

dG(v)2,

52(G) =
∏

uv∈E(G)

dG(u)dG(v) =
∏

v∈V (G)

dG(v)dG(v).

Many investigations of mathematical properties on the mul-
tiplicative Zagreb indices have been obtained, recent results
see [10], [19]–[21], [23] and the references cited therein.

Recently, Vetrík and Balachandran [18] defined the first
general multiplicative Zagreb index Pα1 and the second gen-
eral multiplicative Zagreb index Pα2 , respectively, of a graph
G as

Pα1 (G) =
∏

v∈V (G)

dG(v)α,Pα2 (G) =
∏

v∈V (G)

dG(v)αdG(v) (1)

for any real number α 6= 0. Vetrík and Balachandran [18]
determined the minimal and maximal general multiplica-
tive Zagreb indices for trees with fixed order or seg-
ments or branching vertices or number of pendant vertices,
and they also identified the extremal trees. Other relevant
conclusions on general multiplicative Zagreb indices can be
found in [1]–[3], [17].

The mathematical properties of general multiplicative
Zagreb indices deserve further study since they can be used
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to detect the chemical compounds which may have desir-
able properties. Namely, if one can find some properties
well-correlated with these two descriptors for some value
of α, then the extremal graphs should correspond to com-
pounds with minimum or maximum value of that property.
Furthermore, one such property has already been found for
multiplicative Zagreb indices. Since general multiplicative
Zagreb indices for some value of α can correlate with bio-
logical, physico-chemical and other properties of chemical
compounds, we use graph theory to characterize these chem-
ical structures. The vertices and edges of graphs represent the
atoms and the chemical bonds of a compound, respectively.

We only deal with the simple connected graphs in this
work. Let G = (V (G), E(G)) be the graph having vertex
set V (G) and edge set E(G). Let G + xy and G − xy be
the graphs obtained from G by adding the edge xy /∈ E(G)
(x, y ∈ V (G)) and removing the edge xy ∈ E(G), respectively.
Denoted by G − u the graph obtained from G by removing
the vertex u (u ∈ V (G)) with its incident edges. Let us
denote the number of vertices of degree i by ni and the
neighbourhoods of a vertex v in G by NG(v), respectively.
If there exists u ∈ V (G) such that G − u is a tree, we call
G a quasi-tree graph and u a quasi vertex. Suppose H1 and
H2 are two vertex disjoint graphs. Let H1 ∨ H2 be the graph
having vertex set V (H1 ∨ H2) = V (H1) ∪ V (H2) and edge
set E(H1 ∨ H2) = E(H1) ∪ E(H2) ∪ {v1v2|v1 ∈ V (H1), v2 ∈
V (H2)}. As usual, let us denote the n-vertex cycle, n-vertex
complete graph, n-vertex star and n-vertex path by Cn, Kn, Sn
and Pn, respectively. We can refer [4] for other terminologies
and notations.
In this work, by exploring the structures of the quasi-

tree graphs with given different parameters (order, perfect
matching and number of pendant vertices) and using the
properties of the general multiplicative Zagreb indices, the
minimal andmaximal values of general multiplicative Zagreb
indices on quasi-tree graphs with given order, with perfect
matchings, and with given number of pendant vertices are
determined. Furthermore, the minimal and maximal values
of general multiplicative Zagreb indices on trees with perfect
matchings are presented.

II. PRELIMINARIES
By simple calculation, we can get the following
Lemmas 1 and 2.
Lemma 1: f1(x) = x+c

x is strictly decreasing for x ≥ 1,
where c ≥ 1 is a constant.
Lemma 2: f2(x) =

(x+c)x+c
xx is strictly increasing for x ≥ 1,

where c ≥ 1 is a constant.
By the definition of Pαi (i = 1, 2), the Lemma 3 is

immediate.
Lemma 3: Suppose G = (V ,E) is a simple connected

graph, for e = xy /∈ E(G), x, y ∈ V (G), then
(i) Pαi (G) < Pαi (G + e), Pαi (G) > Pαi (G − e) (i = 1, 2)

for α > 0;
(ii) Pαi (G) > Pαi (G + e), Pαi (G) < Pαi (G − e) (i = 1, 2)

for α < 0.

Lemma 4: Let

g(m) =
22(m−2)(m+ 1)m+1

33(m−1)
,

where m ≥ 3. Then g(m) > 1.
Proof: Let h(m) = ln g(m) = 2(m − 2) ln 2 + (m +

1) ln(m+ 1)− 3(m− 1) ln 3. Then

h′(m) = 2 ln 2+ ln(m+ 1)+ 1− 3 ln 3

≥ ln 4+ ln 4+ 1− ln 27 = ln
16e
27

> 0.

So h(m) is strictly increasing for m ≥ 3. Therefore, g(m) ≥
g(3) = 2244

36
=

1024
729 > 1. �

III. GENERAL MULTIPLICATIVE ZAGREB INDICES OF
QUASI-TREE GRAPHS
Let G be a quasi-tree graph and u ∈ V (G) be a quasi
vertex such that G − u is a tree. If dG(u) = 1, G is a tree
with extremal general multiplicative Zagreb indices, that had
been determined in [18]. Therefore, in what follows, we only
discuss the case of dG(u) ≥ 2. Let
QTQTQT(n) = {G|G is an n-vertex quasi-tree graph with

dG(u) ≥ 2, where u is a quasi vertex of G}.
Denoted byCCC n the graph obtained fromC3 by adding n−3

pendant edges on its one vertex.
Lemma 5: Suppose G ∈ QTQTQT(n) such that G has the largest

value of Pαi for α > 0, i = 1, 2. Let u ∈ V (G) be a quasi
vertex such that G− u is a tree. Then dG(u) = n− 1.

Proof: If dG(u) ≤ n − 2, then G contains a vertex w
with uw /∈ V (G). Obviously, G+ uw ∈ QTQTQT(n). By Lemma 3,
Pαi (G + uw) > Pαi (G) for α > 0, i = 1, 2, a contradiction.
Hence dG(u) = n− 1. �
Theorem 1: Suppose G is in QTQTQT(n) with n ≥ 3, then

4α(n− 1)α ≤ Pα1 (G) ≤ 4α(n− 1)α3α(n−3)

for α > 0, the left (resp. right) equality holds only when G ∼=
CCC n (resp. G ∼= Pn−1 ∨ K1).

Proof: By induction on n. For n = 3, G ∼= C3 and the
theorem is true. Suppose n > 3 and the theorem is still valid
for QTQTQT(n− 1).
To begin with we determine the minimal Pα1 (G) for α >

0. If G contains no pendant vertex, it can be seen that there
exists x ∈ V (G) with dG(x) = 2 for G ∈ QTQTQT(n). Denote
NG(x) = {y1, y2}. If y1y2 /∈ E(G), setG′ = G−x+y1y2. Then
G′ ∈ QTQTQT(n − 1). By induction hypothesis and (1), it follows
that

Pα1 (G) = 2α
∏

y∈V (G)\{x}

dG(y)α = 2αPα1 (G
′)

≥ 2α · 4α(n− 2)α = 4α(2(n− 2))α

> 4α(n− 1)α

for α > 0.
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If y1y2 ∈ E(G), set G′′ = G− x, then G′′ ∈ QTQTQT(n− 1). By
induction hypothesis and Lemma 1, it follows that

Pα1 (G) = 2αdG(y1)αdG(y2)α
∏

y∈V (G)\{x,y1,y2}

dG(y)α

= 2α
dG(y1)α

(dG(y1)− 1)α
dG(y2)α

(dG(y2)− 1)α
Pα1 (G

′′)

≥ 2α
(n− 1
n− 2

)α(n− 1
n− 2

)α
4α(n− 2)α

> 4α(2(n− 2))α > 4α(n− 1)α

for α > 0.
Otherwise,G contains pendant vertices. Suppose v ∈ V (G)

with dG(v) = 1. Clearly, G − v ∈ QTQTQT(n − 1). We use w
to denote the neighbour of v. By induction hypothesis and
Lemma 1, it follows that

Pα1 (G) = dG(w)α
∏

y∈V (G)\{v,w}

dG(y)α

=
dG(w)α

(dG(w)− 1)α
Pα1 (G− v)

≥

(n− 1
n− 2

)α
4α(n− 2)α

= 4α(n− 1)α

for α > 0. With equality only when dG(w) = n − 1 and
G− v ∼= CCC n−1. This implies G ∼= CCC n.
Next, we determine the maximal Pα1 (G) for α > 0. Choose

G ∈ QTQTQT(n) with the maximum value of Pα1 (G) for α > 0.
Let u ∈ V (G) be a quasi vertex such that G − u is a tree. By
Lemma 5, dG(u) = n − 1. Thus G contains y ∈ V (G) with
dG(y) = 2 for G ∈ QTQTQT(n). Denote NG(y) \ {u} = {z}. Clearly,
dG(z) ≥ 3 and G − y ∈ QTQTQT(n − 1). By induction hypothesis
and Lemma 1, it follows that

Pα1 (G) = dG(y)αdG(u)αdG(z)α
∏

x∈V (G)\{y,z,u}

dG(x)α

= 2α
(n− 1)α

(n− 2)α
dG(z)α

(dG(z)− 1)α
Pα1 (G− y)

≤ 2α
(n− 1
n− 2

)α(3
2

)α
4α(n− 2)α3α(n−4)

= 4α(n− 1)α3α(n−3)

for α > 0. With equality holds only if dG(z) = 3 andG−y ∼=
Pn−2 ∨ K1. This implies G ∼= Pn−1 ∨ K1. �
Theorem 2: Suppose G is in QTQTQT(n) with n ≥ 3, then

22αn ≤ Pα2 (G) ≤ 22α(n−2)(n− 1)2α(n−1)

for α > 0, the left (resp. right) equality holds only when G ∼=
Cn (resp. G ∼= Sn−1 ∨ K1).

Proof: By induction on n. For n = 3, G ∼= C3 and the
theorem is true. Suppose n > 3 and the theorem is still valid
for QTQTQT(n− 1).

To begin with we determine the minimal Pα2 (G) for α >

0. If G contains no pendant vertex, it can be seen that there
exists x ∈ V (G) with dG(x) = 2 for G ∈ QTQTQT(n). Denote
NG(x) = {y1, y2}. If y1y2 /∈ E(G), setG′ = G−x+y1y2. Then

G′ ∈ QTQTQT(n − 1). By induction hypothesis and (1), it follows
that

Pα2 (G) = 22α
∏

y∈V (G)\{x}

dG(y)αdG(y)

= 22αPα2 (G
′)

≥ 22α22α(n−1) = 22αn

for α > 0. With equality holds only when G′ ∼= Cn−1. This
implies that G ∼= Cn.
If y1y2 ∈ E(G), set G′′ = G− x, then G′′ ∈ QTQTQT(n− 1). By

induction hypothesis and Lemma 2, it follows that

Pα2 (G) = 22αdG(y1)αdG(y1)dG(y2)αdG(y2)

·

∏
y∈V (G)\{x,y1,y2}

dG(y)αdG(y)

= 22α
dG(y1)αdG(y1)

(dG(y1)− 1)α(dG(y1)−1)

·
dG(y2)αdG(y2)

(dG(y2)− 1)α(dG(y2)−1)
Pα2 (G

′′)

> 22α22α22α22α(n−1) > 22αn

for α > 0.
Otherwise,G contains pendant vertices. Suppose v ∈ V (G)

with dG(v) = 1. Clearly, G − v is in QTQTQT(n − 1). Denoted by
NG(v) = {w}. It is evident that dG(w) ≥ 2. For dG(w) = 2, we
haveG−v � Cn−1 sinceG ∈ QTQTQT(n). By induction hypothesis
and (1), we have

Pα2 (G) = 22αPα2 (G− v) > 22α22α(n−1) = 22αn

for α > 0.
If dG(w) ≥ 3, by (1), induction hypothesis and Lemma 2,

we have

Pα2 (G) =
dG(w)αdG(w)

(dG(w)− 1)α(dG(w)−1)
Pα2 (G− v)

≥
33α

22α
22α(n−1) =

(27
16

)α
22αn > 22αn

for α > 0.
Next, we determine the maximal Pα2 (G) for α > 0. Choose

G ∈ QTQTQT(n) with the maximum value of Pα2 (G) for α > 0. In
view of Lemma 5, we can see that G contains a vertex y with
dG(y) = 2 sinceG ∈ QTQTQT(n). From Lemma 5, we haveG−y ∈
QTQTQT(n−1). Let NG(y) = {z1, z2}. If dG(z1) = dG(z2) = n−1,
it follows that G − {z1, z2} has no edges since G ∈ QTQTQT(n).
And this implies G ∼= Sn−1 ∨K1. If one of dG(z1) and dG(z2)
is less than n − 1, then G � Sn−1 ∨ K1. By (1), induction
hypothesis and Lemma 2, it follows that

Pα2 (G) = 2αdG(z1)αdG(z1)dG(z2)αdG(z2)

·

∏
x∈V (G)\{y,z1,z2}

dG(x)αdG(x)

= 2α
dG(z1)αdG(z1)

(dG(z1)− 1)α(dG(z1)−1)

·
dG(z2)αdG(z2)

(dG(z2)− 1)α(dG(z2)−1)
Pα2 (G− y)
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< 2α
( (n− 1)n−1

(n− 2)n−2

)α( (n− 1)n−1

(n− 2)n−2

)α
·22α(n−3)(n− 2)2α(n−2)

= 22α(n−2)(n− 1)2α(n−1)

for α > 0.
The proof is completed. �
In [18], Vetrík and Balachandran determined the minimum

and maximum general multiplicative Zagreb indices on trees
of order n. The results for α > 0 are as follows.
Theorem 3 [18]: Let T be a tree on n vertices and T �

Pn, Sn. Then

Pα1 (Sn) < Pα1 (T ) < Pα1 (Pn),

Pα2 (Pn) < Pα2 (T ) < Pα2 (Sn).

for α > 0.
Therefore, by Theorem 3, one can expand the conclusions

for G ∈ QTQTQT(n) to the whole quasi-tree graphs, as described
next.
Theorem 4: SupposeG is a quasi-tree graphwith n vertices,

then

(n− 1)α ≤ Pα1 (G) ≤ 3α(n−3)4α(n− 1)α

for α > 0, with the left (resp. right) equality only when G ∼=
Sn (resp. G ∼= Pn−1 ∨ K1).
Theorem 5: SupposeG is a quasi-tree graphwith n vertices,

then

22α(n−2) ≤ Pα2 (G) ≤ 22α(n−2)(n− 1)2α(n−1)

for α > 0, with the left (resp. right) equality only when G ∼=
Pn (resp. G ∼= Sn−1 ∨ K1).

IV. GENERAL MULTIPLICATIVE ZAGREB INDICES OF
TREES WITH A PERFECT MATCHING
Let T2m be the tree of order 2m arisen from Sm+1 by adding
one pendant edge to its m− 1 pendant vertices.
Theorem 6: Suppose T is an 2m-vertex tree with a perfect

matching, where m ≥ 2, then

Pα1 (T ) ≥ 2α(m−1)mα and Pα2 (T ) ≤ 22α(m−1)mαm

for α > 0, with equalities only when T ∼= T2m.
Proof: If m = 2, T ∼= P4 = T4, the theorem holds.

If m ≥ 3, choose T such that T has the minimum Pα1
(maximum Pα2 ) for α > 0. LetM be a perfect matching of T .
Suppose v ∈ V (T ) is a vertex with the maximum degree of T .
Claim 1. dT (x) ≤ 2 for each vertex x ∈ V (T ) different

from v.
On the contrary suppose that there exists v′ ∈ V (T )\{v}

such that dT (v′) ≥ 3. Denote NT (v) = {x1, x2, · · · , xr } and
NT (v′) = {y1, y2, · · · , ys}, where r ≥ s ≥ 3. Suppose P is the
only path from v to v′ in T . Without loss of generality, assume
that x1, y1 ∈ V (P) (perhaps x1 = v′ or y1 = v). Note that |M∩
{y2v′, y3v′, · · · , ysv′}| ≤ 1. We assume that y3v′, · · · , ysv′ /∈
M . Set T ′ = T−{y3v′, · · · , ysv′}+{y3v, · · · , ysv}. Obviously,

T is also an 2m-vertex treewith a perfectmatching. By (1) and
Lemmas 1,2 (c = s− 2), for α > 0, it follows that

Pα1 (T
′)

Pα1 (T )
=

(r + s− 2)α2α

sαrα
=

( r+s−2
r

2+s−2
2

)α
< 1,

and

Pα2 (T
′)

Pα2 (T )
=

(r + s− 2)α(r+s−2)22α

sαsrαr

=

( (r+s−2)r+s−2
rr
ss
22

)α
> 1,

a contradiction to the choose of T .
By Claim 1, T is a tree having some pendant paths attached

to v.
Claim 2. dT (v) > 2.
To the contrary suppose that dT (v) ≤ 2. Since v is the

maximum degree vertex of T , then dT (v) ≥ 2. Hence dT (v) =
2 and T ∼= P2m. Since m ≥ 3, then T2m � P2m. By
Theorem 3, Pα1 (T2m) < Pα1 (P2m) and P

α
2 (T2m) > Pα2 (P2m),

a contradiction with the choose of T .
We use P1,P2, · · · ,Pl (l ≥ 3) to denote the paths attached

to v in T .
Claim 3. The length of Pi (i = 1, 2, · · · , l) is of

equal or less than 2 in T .
On the contrary, if there exists Pi (i ∈ {1, 2, · · · , l}) with

length greater than 2 in T , assume without loss of generality
that |E(P1)| ≥ 3 in T . Let P1 = v1v2 · · · vr , where v1 = v and
r ≥ 4. Then P1 contains at least one edge vjvj+1 with vjvj+1 /∈
M and j ∈ {2, 3, · · · , r − 1}. Set T ′′ = T − vjvj+1 + vvj+1.
Clearly, T ′′ is also an 2m-vertex tree with a perfect matching.
By (1) and Lemmas 1,2, for l ≥ 3 and α > 0, we have

Pα1 (T
′′)

Pα1 (T )
=

(dT (v)+ 1)α

2αdT (v)α
=

( l + 1
2l

)α
=

( l+1
l
2
1

)α
< 1,

and

Pα2 (T
′′)

Pα2 (T )
=

(dT (v)+ 1)α(dT (v)+1)

dT (v)αdT (v)22α
=

( (l + 1)l+1

l l22

)α
=

( (l+1)l+1

ll

22
11

)α
> 1,

a contradiction again.
Denote V1 = {x ∈ V (T )|dT (x) = 1, xv ∈ E(G)}. Since

T has a perfect matching, from Claim 3, it can be concluded
that |V1| = 1. This implies T ∼= T2m. �
In view of Theorem 3, the following Theorem 7 is imme-

diate.
Theorem 7: Let T be a tree on 2m vertices with a perfect

matching, where m ≥ 2. Then

Pα1 (T ) ≤ 22α(m−1) and Pα2 (T ) ≥ 24α(m−1)

for α > 0, with equalities only when T ∼= P2m.
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FIGURE 1. The graphs T1T1T1 and T2T2T2.

FIGURE 2. The graphs G1G1G1, G2G2G2, G3G3G3 and QT1(4)QT1(4)QT1(4).

V. GENERAL MULTIPLICATIVE ZAGREB INDICES OF
QUASI-TREE GRAPHS WITH A PERFECT MATCHING
Suppose G is a quasi-tree graph with a perfect matching and
u ∈ V (G) is a quasi vertex such that G − u is a tree. In view
of Lemma 3, if G has the minimal value of Pαi (i = 1, 2) for
α > 0, then dG(u) = 1.When dG(u) = 1, thenG is a tree with
minimum Pαi (α > 0) for i = 1, 2, that had been presented
in Theorems 6 and 7. Thus, in this section, we only find the
maximal value of Pαi (i = 1, 2) of G.
Let T1 be the tree on 2m− 1 vertices obtained from Sm+1

by attaching one pendant edge to its m− 2 pendant vertices,
see Figure 1. Let T2 be the tree on 2m− 1 vertices obtained
from Sm by attaching one pendant edge to its each pendant
vertex, see Figure 1. LetQT1(2m) = T1∨K1 andQT2(2m) =
T2 ∨ K1.
Lemma 6: Suppose m ≥ 3 is a positive integer, then

Pα2 (QT1(2m)) > Pα2 (QT2(2m)) (2)

for α > 0.
Proof: By (1) and Lemma 2, it follows that

Pα2 (QT1(2m))

Pα2 (QT2(2m))

=
22αm33α(m−2)(m+ 1)α(m+1)(2m− 1)α(2m−1)

22α(m−1)33α(m−1)mαm(2m− 1)α(2m−1)

=

(22(m+ 1)m+1

33mm

)α
≥

(2244
3333

)α
=

(1024
729

)α
> 1

for α > 0 and m ≥ 3. �
Theorem 8: Suppose G is an 2m-vertex quasi-tree graph

with a perfect matching, where m ≥ 2, then

Pα1 (G) ≤ (2m− 1)α3α(2m−3)22α

for α > 0, with equality only when G ∼= P2m−1 ∨ K1.
Proof: If m = 2, G ∈ {G1,G2,G3,QT1(4)} (as

displayed in Figure 2). From Lemma 3, it follows that
Pα1 (QT1(4)) > Pα1 (Gi) for α > 0, i=1,2,3.
If m ≥ 3, choose G with the maximal value of Pα1 for α >

0. We suppose that there is a quasi vertex u ∈ V (G) such that

FIGURE 3. The graphs Q2
7,2Q2
7,2Q2
7,2 and Q2

10,5Q2
10,5Q2
10,5.

T = G − u is a tree since G is a quasi-tree graph. Suppose
v ∈ V (T ) is a vertex with the maximum degree of T .
Claim 1. uy ∈ E(G) for each y ∈ V (T ).
A similar proof of Lemma 5, omitted.
Claim 1 implies that G ∼= T ∨ K1.
Claim 2. dT (v) = 2.
On the contrary assume that dT (v) ≥ 3. Denote NT (v) =
{x1, x2, · · · , xr }, r ≥ 3. Since 2m ≥ 6, then there exist xi
(i ∈ {1, 2, · · · , r}) such that dT (xi) ≥ 2 and vxi /∈ M . Assume
without loss of generality that dT (x1) ≥ 2 and vx1 /∈ M .
Suppose z is a pendant vertex in T such that x1 is not belongs
to the vertices of the path from z to v of T . Set T ′ = T−x1v+
zx1. Then G′ = T ′∨K1 is also a quasi-tree graph of order 2m
with a perfect matching. In view of (1) and Lemma 1, it can
be concluded that

Pα1 (G
′)

Pα1 (G)
=

(r)α3α

(r + 1)α2α
=

( 3
2

r+1
r

)α
> 1

for α > 0, which contradicts the choose of G. So T is a path
on 2m− 1 vertices. �
Theorem 9: Suppose G is an 2m-vertex quasi-tree graph

with a perfect matching, where m ≥ 2, then

Pα2 (G) ≤ 22αm33α(m−2)(m+ 1)α(m+1)(2m− 1)α(2m−1)

for α > 0, with equality only when G ∼= QT1(2m).
Proof: If m = 2, G ∈ {G1,G2,G3,QT1(4)} (as

depicted in Figure 3). In view of Lemma 3, it follows that
Pα2 (QT1(4)) > Pα2 (Gi), i=1,2,3.
If m ≥ 3, choose G with the maximum value of Pα2 for

α > 0. Let M be a perfect matching of G. We suppose that
there is a quasi vertex u ∈ V (G) such that T = G−u is a tree
since G is a quasi-tree graph. Suppose v ∈ V (T ) is a vertex
with the maximum degree of T .
Claim 1. uy ∈ E(G) for every y ∈ V (T ).
A similar proof of Lemma 5, omitted.
Claim 2. dT (x) ≤ 2 for each x ∈ V (T ) except v.
On the contrary suppose that there exists v′ ∈ V (T )\{v}

such that dT (v′) ≥ 3. Denote NT (v) = {x1, x2, · · · , xr }
and NT (v′) = {y1, y2, · · · , ys}, where 3 ≤ s ≤ r . From
Claim 1, we have dG(v) = r + 1 and dG(v′) = s + 1.
Assume that P is the only path from v to v′ in T . Without
loss of generality, suppose that x1, y1 ∈ V (P) (perhaps v′ =
x1 or v = y1). Note that |M ∩ {y2v′, y3v′, · · · , ysv′}| ≤ 1.
Assume without loss of generality that y3v′, · · · , ysv′ /∈ M .
Let G′ = G − {y3v′, · · · , ysv′} + {vy3, · · · , vys}. Obviously,
G′ is also a quasi-tree graph on 2m vertices with a perfect
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matching. By (1) and Lemma 2 (c = s− 2), it follows that

Pα2 (G
′)

Pα2 (G)
=

33α(r + s− 1)α(r+s−1)

(r + 1)α(r+1)(s+ 1)α(s+1)

=

( (r+s−1)r+s−1

(r+1)r+1

(s+1)s+1

33

)α
> 1

for α > 0, which contradicts the choice of G.
By Claim 2, T is a tree with some pendant paths attached

to v.
Claim 3. dT (v) > 2.
To the contrary suppose that dT (v) ≤ 2. Since v is the

maximum degree vertex of T , then dT (v) ≥ 2. Hence dT (v) =
2 and T is a path of order 2m−1. In view of Claim 1, we have
G ∼= P2m−1 ∨K1. One can easily come to the conclusion that
Pα2 (G) = (2m − 1)α(2m−1)33α(2m−3)24α . By Lemma 4, for
m ≥ 3 and α > 0, it follows that

Pα2 (QT1(2m))

Pα2 (G)

=
(2m− 1)α(2m−1)(m+ 1)α(m+1)33α(m−2)22αm

(2m− 1)α(2m−1)33α(2m−3)24α

=

( (m+ 1)m+122(m−2)

33(m−1)

)α
> 1,

a contradiction to the choose of G.
We use P1,P2, · · · ,Pl (l ≥ 3) to denote the paths attached

to v in T .
Claim 4. The length of Pi (i = 1, 2, · · · , l) is of

equal or less than 2 in T .
On the contrary, if there exists Pi (i ∈ {1, 2, · · · , l}) with

length greater than 2 in T , without loss of generality, assume
that |E(P1)| ≥ 3 in T . Let P1 = v1v2 · · · vr , where v1 = v
and r ≥ 4. Then P1 contains at least one edge vjvj+1 (j ∈
{2, 3, · · · , r−1}) such that vjvj+1 /∈ M . SetG′′ = G−vjvj+1+
vvj+1. Obviously, G′′ is also a quasi-tree graph of order 2m
with a perfect matching. By (1) and Lemma 2, for l ≥ 3 and
α > 0, we have

Pα2 (G
′′)

Pα2 (G)
=

22α(dG(v)+ 1)α(dG(v)+1)

33αdG(v)αdG(v)

=

( (l + 2)l+222

(l + 1)l+133

)α
=

( (l+2)l+2

(l+1)l+1

33
22

)α
> 1,

a contradiction again.
Denote V1 = {x ∈ V (T )|dT (x) = 1, xv ∈ E(G)}. Since

G has a perfect matching, in view of Claim 4, it can be
concluded that |V1| = 0 or |V1| = 2.
If |V1| = 0, then G ∼= QT2(2m). If |V1| = 2, then G ∼=

QT1(2m). By (2), for α > 0 and m ≥ 3, Pα2 (QT1(2m)) >
Pα2 (QT2(2m)). Thus, G ∼= QT1(2m). �

VI. GENERAL MULTIPLICATIVE ZAGREB INDICES OF
QUASI-TREE GRAPHS WITH GIVEN
PENDANT VERTICES
Let G be an n-vertex quasi-tree graph having k pendant
vertices and u ∈ V (G) be a quasi vertex such that G − u is a

tree. If k = n− 1, G is a star. If k = n− 2, G is a double star
which belongs to trees and trees having n−2 pendant vertices
with extremal Pαi had been obtained in [18]. Furthermore,
by Lemma 3, if G has the minimum Pαi (i = 1, 2) for α > 0,
then dG(u) = 1. For dG(u) = 1, G is a tree with minimum Pαi
for i = 1, 2, that had been presented in [18]. Thus, we only
consider the maximum Pαi (i = 1, 2) ofGwith 1 ≤ k ≤ n−3
in this section.

Let QQQ1
n,k be the graph arisen from Sn−1 and an isolated

vertex u by adding edges to connecting u with the centeral
vertex and n− k − 2 pendant vertices of Sn−1.
Let QQQ2

n,k be the n-vertex quasi-tree graphs having
k pendant vertices and degree sequence (n − k −
1, t + 2, · · · , t + 2︸ ︷︷ ︸

2n−k−4−t(n−k−1)

, t + 1, · · · , t + 1︸ ︷︷ ︸
t(n−k−1)−n+3

, 1, · · · , 1︸ ︷︷ ︸
k

), where t =

b
2n−k−4
n−k−1 c. In Figure 3, we have drawn QQQ2

7,2 and QQQ2
10,5.

Obviously, sometimes the graphQQQ2
n,p is not unique.

Theorem 10: LetG be a quasi-tree graph on n vertices with
k pendant vertices, where 1 ≤ k ≤ n− 3, then

Pα1 (G) ≤ (n− k − 1)α(t + 2)α[2n−k−4−t(n−k−1)]

·(t + 1)α[t(n−k−1)−n+3]

for α > 0, where t = b 2n−k−4n−k−1 c, with equality only when
G ∼=QQQ2

n,k .
Proof: Choose G with the maximum value of Pα1 for

α > 0. We suppose that there is a quasi vertex u ∈ V (G) such
that T = G−u is a tree sinceG is a quasi-tree graph. Clearly,
u is not adjacent to the pendant vertices of G, otherwise G−
u is unconnected. Denoted by {y1, y2, · · · , yk} the pendant
vertices of G.
Claim 1. uy ∈ E(G) for each vertex y ∈ (V (T ) \
{y1, y2, · · · , yk}).

Similar to the proof of lemma 5, omitted.
Claim 2. If dT (v), dT (w) ≥ 2, then |dT (v)− dT (w)| ≤ 1.
Suppose that T contains two vertices v,w satisfying
|dT (v)− dT (w)| ≥ 2. Assume dT (v)− 2 = r − 2 ≥ dT (w) =
s ≥ 2. Choose v′ ∈ NT (v) such that v′ is not on the path from
v to w in T . Set G′ = G− vv′ + wv′. Then G′ is also a quasi-
tree graph on n vertices with k pendant vertices. By Lemma 1,
we have

Pα1 (G
′)

Pα1 (G)
=

(s+ 1)α(r − 1)α

rαsα

=

( s+1
s
r

r−1

)α
> 1.

A contradiction to the choose of G.
ByClaims 1 and 2, one can get thatG has degree 1, i or i+1,

n− k − 1, where i ≥ 2. Hence

1+ k + ni + ni+1 = n. (3)

Since
∑

y∈V (G) dG(y) = 2|E(G)|, then

k + ini + (i+ 1)ni+1 + n− k − 1

= 2(n− k − 1+ n− 2) = 2(2n− k − 3). (4)
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FIGURE 4. Transformation AAA.

By (3) and (4), we have i = 2n−k−4
n−k−1 +

ni
n−k−1 . By (3), ni ≤

n− k − 1, hence i = b 2n−k−4n−k−1 c + 1.
Furthermore, we have ni = (n − k − 1)b 2n−k−4n−k−1 c − n +

3, ni+1 = 2n− k − 4− (n− k − 1)b 2n−k−4n−k−1 c.

Therefore we can get the degree sequence of G, that is

(n− k − 1, i+ 1, · · · , i+ 1︸ ︷︷ ︸
ni+1

, i, · · · , i︸ ︷︷ ︸
ni

, 1, · · · , 1︸ ︷︷ ︸
k

)

= (n− k − 1, t + 2, · · · , t + 2︸ ︷︷ ︸
2n−k−4−t(n−k−1)

, t + 1, · · · , t + 1︸ ︷︷ ︸
t(n−k−1)−n+3

,

1, · · · , 1︸ ︷︷ ︸
k

),

where t = b 2n−k−4n−k−1 c. �
Transformation A: Let G be the graph as shown in

Figure 4, and x, y ∈ V (G1), where x1, x2, · · · , xr are pen-
dant vertices adjacent to x, and y1, y2, · · · , ys are pendant
vertices adjacent to y. Set G′ = G − {yy1, yy2, · · · , yys} +
{xy1, xy2, · · · , xys}, G′′ = G − {xx1, xx2, · · · , xxr } +
{yx1, yx2, · · · , yxr }, as shown in Figure 4.
Lemma 7: SupposeG′,G′′ andG are the graphs in Figure 4,

then either Pα2 (G
′) < Pα2 (G) or P

α
2 (G
′′) < Pα2 (G) for α < 0,

and either Pα2 (G
′) > Pα2 (G) or P

α
2 (G
′′) > Pα2 (G) for α > 0.

Proof: By (1), it follows that

Pα2 (G
′)

Pα2 (G)
=

(
(dG(x)+ s)dG(x)+s(dG(y)− s)dG(y)−s

dG(x)dG(x)dG(y)dG(y)

)α
,

Pα2 (G
′′)

Pα2 (G)
=

(
(dG(y)+ r)dG(y)+r (dG(x)− r)dG(x)−r

dG(x)dG(x)dG(y)dG(y)

)α
.

If dG(x) > dG(y) − s, by Lemma 2, we have
(dG(x)+s)dG(x)+s(dG(y)−s)dG(y)−s

dG(x)dG(x)dG(y)dG(y) >
dG(y)dG(y)

(dG(y)−s)dG(y)−s ·
(dG(y)−s)dG(y)−s

dG(y)dG(y) =

1; otherwise, dG(x) ≤ dG(y)−s, we have dG(y) ≥ dG(x)+s >

dG(x) − r , so (dG(y)+r)dG(y)+r (dG(x)−r)dG(x)−r

dG(x)dG(x)dG(y)dG(y) >
(dG(x)−r)dG(x)−r

dG(x)dG(x)

·
dG(x)dG(x)

(dG(x)−r)dG(x)−r = 1. �

Theorem 11: LetG be a quasi-tree graph on n vertices with
k pendant vertices, where 1 ≤ k ≤ n− 3, then

Pα2 (G) ≤ (n− 1)α(n−1)(n− k − 1)α(n−k−1)22α(n−k−2)

for α > 0, with equality only when G ∼=QQQ1
n,k .

Proof: Choose G with the maximum value of Pα2 for
α > 0. We suppose that there is a quasi vertex u ∈ V (G) such

that T = G−u is a tree sinceG is a quasi-tree graph. Denoted
by {y1, y2, · · · , yk} the pendant vertices of G.

Claim 1. uy ∈ E(G) for each vertex y ∈ (V (T ) \
{y1, y2, · · · , yk}).

Similar to the proof of lemma 5, omitted.
By Lemma 7, the following Claim 2 can be obtained

immediately.
Claim 2. y1, y2, · · · , yk are attached to the same vertex,

say v, in G.
Claim 3. Every vertex of V (T ) \ {v, y1, y2, · · · , yk} is the

neighbor of v in T .
On the contrary, suppose that there exists a vertex

z ∈ (V (T ) \ {v, y1, y2, · · · , yk}) such that the path P =
vz1z2 · · · ztz from v to z is of length greater than 1 in T , where
t ≥ 1. If dG(v) ≥ dG(zt ), let G′ = G − zzt + vz. Then G′ is
also a quasi-tree graph on n vertices with k pendant vertices.
By (1) and Lemma 2, for α > 0, we have

Pα2 (G
′)

Pα2 (G)
=

(dG(zt )− 1)α(dG(zt )−1)(dG(v)+ 1)α(dG(v)+1)

dG(v)αdG(v)dG(zt )αdG(zt )

=

( (dG(v)+1)dG(v)+1

dG(v)dG(v)

dG(zt )dG(zt )

(dG(zt )−1)dG(zt )−1

)α
> 1,

a contradiction with the choose of G. If dG(v) < dG(zt ), let
G′′ = G−{y1, y2, · · · , yk}+ {zty1, zty2, · · · , ztyk}. Then G′′

is also a quasi-tree graph on n vertices with k pendant vertices.
By (1) and Lemma 2, for α > 0, we have

Pα2 (G
′′)

Pα2 (G)
=

(dG(v)− k)α(dG(v)−k)(dG(zt )+ k)α(dG(zt )+k)

dG(v)αdG(v)dG(zt )αdG(zt )

=

( (dG(zt )+k)dG(zt )+k

dG(zt )dG(zt )

dG(v)dG(v)

(dG(v)−k)dG(v)−k

)α
> 1,

a contradiction again.
By Claims 1, 2 and 3, it can be concluded that G ∼=QQQ1

n,k .
�

VII. BOUNDS OF GENERAL MULTIPLICATIVE ZAGREB
INDICES ON QUASI-TREE GRAPHS FOR α < 0
Let b be a positive constant. Then we have the following two
facts:

(i) If 0 < b < 1 and α < 0, then bα > 1,
(ii) If b > 1 and α < 0, then 0 < bα < 1.
By these two facts and similar proof of Theo-

rems 1,2,6−11, the conclusions of general multiplicative
Zagreb indices on quasi-tree graphs for α < 0 can be
determined.
Theorem 12: Let G be in QTQTQT(n) with n ≥ 3. Then

3α(n−3)4α(n− 1)α ≤ Pα1 (G) ≤ 4α(n− 1)α

for α < 0, with the left (resp. right) equality only when G ∼=
Pn−1 ∨ K1 (resp. G ∼= CCC n).
Theorem 13: Let G be in QTQTQT(n) with n ≥ 3. Then

(n− 1)2α(n−1)22α(n−2) ≤ Pα2 (G) ≤ 22αn
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for α < 0, with the left (resp. right) equality only when G ∼=
Sn−1 ∨ K1 (resp. G ∼= Cn).
Theorem 14: Suppose G is an 2m-vertex quasi-tree graph

with a perfect matching, where m ≥ 2, then

(2m− 1)α3α(2m−3)22α ≤ Pα1 (G) ≤ m
α2α(m−1)

for α < 0, with the left (resp. right) equality only when G ∼=
P2m−1 ∨ K1 (resp. G ∼= T2m).
Theorem 15: Suppose G is an 2m-vertex quasi-tree graph

with a perfect matching, where m ≥ 2, then

Pα2 (G) ≥ (m+ 1)α(m+1)22αm33α(m−2)(2m− 1)α(2m−1)

for α < 0, with equality only when G ∼= QT1(2m); and

Pα2 (G) ≤ 22α(2m−2)

for α < 0, with equality only when G ∼= P2m.
Theorem 16: Suppose G is an n-vertex quasi-tree graph

having k pendant vertices, where 1 ≤ k ≤ n− 3, then

Pα1 (G) ≥ (n− k − 1)α(t + 2)α[2n−k−4−t(n−k−1)]

·(t + 1)α[t(n−k−1)−n+3]

for α < 0, where b = b 2n−k−4n−k−1 c, with equality only when
G ∼=QQQ2

n,k .
Theorem 17: Suppose G is an n-vertex quasi-tree graph

having k pendant vertices, where 1 ≤ k ≤ n− 3, then

Pα2 (G) ≥ (n− 1)α(n−1)(n− k − 1)α(n−k−1)22α(n−k−2)

for α < 0, with equality only when G ∼=QQQ1
n,k .

VIII. MULTIPLICATIVE ZAGREB INDICES OF
QUASI-TREE GRAPHS
For a (molecular) graph G, it follows that P21(G) = 51(G)
and P12(G) = 52(G). By Theorems 1,2,6−11, one can get
the following corollaries.
Corollary 1: Let G be in QTQTQT(n), where n ≥ 3. Then

16(n− 1)2 ≤ 51(G) ≤ 16 · 32(n−3)(n− 1)2,

with the left (resp. right) equality only when G ∼= CCC n (resp.
G ∼= Pn−1 ∨ K1).
Corollary 2: Let G be in QTQTQT(n), where n ≥ 3. Then

22n ≤ 52(G) ≤ 22(n−2)(n− 1)2(n−1),

with the left (resp. right) equality only when G ∼= Cn (resp.
G ∼= Sn−1 ∨ K1).
Corollary 3: Suppose G is an 2m-vertex quasi-tree graph

with a perfect matching, where m ≥ 2, then

m222(m−1) ≤ 51(G) ≤ 16(2m− 1)232(2m−3),

with the left (resp. right) equality only when G ∼= T2m (resp.
G ∼= P2m−1 ∨ K1).
Corollary 4: Suppose G is an 2m-vertex quasi-tree graph

with a perfect matching, where m ≥ 2, then

22(2m−2)≤52(G)≤22m33(m−2)(2m−1)(2m−1)(m+1)(m+1),

with the left (resp. right) equality only when G ∼= P2m (resp.
G ∼= QT1(2m)).
Corollary 5: Suppose G is an n-vertex quasi-tree graph

having k pendant vertices, where 1 ≤ k ≤ n− 3. Then

51(G) ≤ (n− k − 1)2(t + 2)2[2n−k−4−t(n−k−1)]

·(t + 1)2[t(n−k−1)−n+3],

where b = b 2n−k−4n−k−1 c, with equality only when G ∼=QQQ2
n,k .

Corollary 6: Suppose G is an n-vertex quasi-tree graph
having k pendant vertices, where 1 ≤ k ≤ n− 3. Then

52(G) ≤ 22(n−k−2)(n− k − 1)(n−k−1)(n− 1)(n−1),

with equality only when G ∼=QQQ1
n,k .

IX. CONCLUSION
The extremal value of many topological indices on
quasi-tree graphs have been studied extensively, such
as [5], [9], [11]–[14], [22]. However, there are few results
on the topological indices of quasi-tree graphs with given
graph parameters. In our work, we obtained the extremal
value of the general multiplicative Zagreb indices on quasi-
tree graphs with given order, with perfect matchings, and
with fixed pendant vertices. The methods of this article
studying quasi-tree graphs with perfect matchings and quasi-
tree graphs with fixed pendant vertices can also be used to
study some other topological indices (belongs to the class
ϕ1(G) =

∑
v∈V (G) f (dG(u)) or ϕ2(G) =

∏
v∈V (G) f (dG(u)) for

a graph G, such as the variable sum exdeg index, the zeroth-
order general Randić index, the first Zagreb index and its
modified versions, etc.) of quasi-tree graphs with given graph
parameters.
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