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ABSTRACT As a non-iterative linear inverse scattering imaging method, the linear sampling method (LSM)
has the merits of easy implementation and high computational efficiency. In this article, based on the LSM
and T-matrixmethod, we propose a fast method to reconstruct the target medium parameters. First, we use the
LSM qualitative imaging method to estimate the contour of the target. Then, the preprocessing information
of the LSM is applied to the virtual experiment circles in the framework of T-matrix method. In this way,
we avoid the inversion of the matrix and only need to solve a series of univariate equations. Numerical
simulation results show that the reconstruction accuracy of the proposed method is similar to that of LSM
quantitative imaging method, but it has higher calculation accuracy and wider application range. Although
the calculation accuracy is not as good as the contrast source inversion (CSI) method, the proposed method
has huge advantages in terms of calculation efficiency.

INDEX TERMS Electromagnetic inverse scattering, linear sampling method, microwave imaging, T-matrix,
virtual experiments.

I. INTRODUCTION
Electromagnetic inverse scattering is dedicated to
reconstructing the characteristics of the object from the
measured scattered field data. It has a wide range of appli-
cations in biomedical imaging, ground-penetrating radar,
non-destructive testing, through-the-wall imaging, and so
forth [1]–[4]. As a typical inverse problem, electromagnetic
inverse scattering has two major characteristics: nonlinearity
and ill-posedness [5].

According to the way of dealing with nonlinearity, tra-
ditional inverse scattering imaging methods can be divided
into linear methods and nonlinear methods. Linear methods
include Born approximation (BA) [6], Rytov approxima-
tion [7], and iterative methods derived from these two meth-
ods [8], [9]. They generally linearize the problem through
field approximation. Although these methods are simple and
easy to implement, they are only suitable for weak scatterers,
that is, objects with small size and contrast. Literature [10]
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indicates that BA is only suitable for objects whose size and
refractive index product does not exceed 0.35λb. Nonlinear
methods include modified gradient method (MGM) [11],
contrast source inversion (CSI) method [12], [13], subspace
optimization method (SOM) [14], and so on. Unlike lin-
ear methods, these methods use iteration to optimize recon-
struction results. Since there is no approximation, nonlinear
methods usually have higher reconstruction accuracy. The
disadvantage of nonlinear methods is that they have a heavy
computational burden. In addition, the nonlinearity methods
depend on the initial value of the iteration, a bad initial
selection may cause the iterative process to fall into a local
optimum [15].

In addition to the quantitative inversion methods men-
tioned above, there is a class of methods called qualita-
tive inversion methods, such as linear sampling method
(LSM) [16]–[19] and factorization method [20]. The
so-called qualitative approaches mean only retrieving
information such as the target’s position and profile,
but not directly retrieving the target’s electromagnetic
parameters. LSM can obtain the target’s morphology
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by solving the indicator function related to the
target position. Since there is no approximation,
LSM is widely used in various targets including metal
objects.

In recent years, on the basis of LSM qualitative
inversion method, LSM has also begun to be used in quan-
titative imaging through virtual experiments and postpro-
cessing strategies. The virtual experiment is a process of
weighted combination of the original measurements, so that
the rearranged scattered field or contrast source meets spe-
cific characteristics, and these specific field or contrast
sources are beneficial to the inversion of target. By spec-
ifying different characteristics of the rearranged scattered
field or contrast source, different virtual experiment strate-
gies have been produced [21]–[23]. It is worth noting that
the virtual experiment itself will not bring additional tar-
get information, but in this process, the morphology infor-
mation of the target obtained by LSM is used as a priori
information.

In literature [21], by applying virtual experiment and intro-
ducing a convenient total field approximation, the measure-
ment equation is transformed into a linear equation. The
linearization is achieved by replacing the unknown total
field with the LSM preprocessing result, which has consid-
ered the scattering effect in the imaging domain. However,
literature [24] pointed out that the total field approxima-
tion in [21] is only applicable for targets whose size and
refractive index product is less than 1.22λb. In this article,
we apply the total field approximation to the framework
of T-matrix method [25], but not based on the measure-
ment equation. The T-matrix method is a forward problem
algorithm, and later it was also used to solve inverse prob-
lems [26], [27]. In the T-matrix method, all field components
are written in the form of multipole expansion. By match-
ing the boundary conditions, the coefficients of the inci-
dent field and the scattered field are connected through the
T-matrix [28].

First, we use LSM qualitative imaging method to get the
approximate contour of the object to be reconstructed. Then
take a point within the contour, and we regard a fixed radius
circle centered at this point as the ‘‘virtual experiment circle.’’
By matching the boundary conditions on the virtual exper-
iment circle, we can obtain a univariate equation about the
media parameters at the sampling point. If we traverse all
the sampling points inside the contour, we can get the media
parameters in the entire target contour. In this way, we avoid
matrix inversion, which further reduces the computational
burden.

The structure of this article is as follows. In Section II,
the structure of the inverse scattering imaging problem is
described and the T-matrix method is reviewed. In Section III,
the LSM qualitative imaging method and our new virtual
experiment strategy are introduced. The simulation results
and analysis are given in Section IV. Finally, the conclusion
is drawn in Section V. Throughout this article, the time factor
ejωt is adopted.

II. IMAGING STRUCTURE AND T-MATRIX METHOD
A. IMAGING STRUCTURE
We consider the incidence of TMwaves in a two-dimensional
plane, and its structure is shown in Fig. 1. The region D is
embedded in a homogeneous and lossless background.
We call the region D the imaging domain or the region
of interest (ROI). Domain D contains one or more objects,
the shape and electromagnetic parameters of which are
unknown. The support of the target is �. The magnetic per-
meability is everywhere equal to that of free spaceµ0. Define
the contrast function of the target as χ (r) = εr (r)− 1, where
εr represents the complex relative permittivity. Nr receiving
sensors are distributed on the curve 0 outside the imaging
domain. Use plane waves to illuminate the imaging domain
Ninc times from different directions, the scattered field at the
location of Nr receiving points can be measured during each
illumination, so we can get the data matrix of Nr × Ninc.
Inverse scattering imaging is to reconstruct the characteristics
of the target through these data.

FIGURE 1. The configuration of the inverse scattering problem.

B. IMAGING FRAMEWORK BASED ON T-MATRIX METHOD
The T-matrix method first meshes the imaging domain D into
N subunits, and then all the subunits are equivalent to equal-
area circles, assuming that the radius of these equal-area cir-
cles is r0. We assume that there is an infinite stretch of space
in the direction perpendicular to the 2-D plane in Fig. 1, which
maps circles on the plane to cylinders in the 3-D space. So the
inverse scattering problem is transformed into reconstructing
the medium parameters of theseN small cylinders. In order to
facilitate the description of the T-matrix method, we establish
a multi-cylinder system as shown in Fig. 2. Under the global
cylindrical coordinate system, the center coordinate of the ith
cylinder is ρi = (r0,i, ϕ0,i), i = 1, 2, · · · ,N .

Since the incident field is TM plane wave, the electric
field only has a component in the z direction. Under the
global coordinate system, the incident electric field at the
observation point r can be expressed as

E inczi (r, ϕ) = E0ejk0rcos(ϕ−ϕ0), (1)

where ϕ0 is the angle between the propagation direction of
the incident wave and the negative x-axis, and k0 = ω

√
µ0ε0

is the wavenumber in free space.
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FIGURE 2. Geometry of multiple cylinders and coordinate systems.

Under the ith local cylindrical coordinate system with
ρi = (r0,i, ϕ0,i) as the origin, the incident electric field can
be expressed as the form of multipole expansion

E inczi (ri, ϕi)=E0
∞∑

m=−∞

aimJm(k0ri)ejmϕi , i = 1, 2 · · · ,N

(2)

where Jm represents the mth order Bessel function of the first
kind, ri = (ri, ϕi) is the coordinate of the observation point r
under the ith local coordinate system, with ri = r − ρi.
And aim = ejk0r0,i cos(ϕ0,i−ϕ0)jme−jmϕ0 is the coefficient of the
multipole expansion, which can be easily derived from (1).

Under the ith local coordinate system, the scattered electric
field corresponding to the ith cylinder is

Eszi(ri, ϕi)=E0
∞∑

m=−∞

cimH (2)
m (k0ri)ejmϕi , i = 1, 2, · · · ,N

(3)

where H (2)
m is the mth order Hankel function of the second

kind, cim denotes the unknown expansion coefficient of the
scattered electric field corresponding to the ith cylinder.

Inside the ith cylinder, the total electric field can be
expressed as

E trzi (ri, ϕi) = E0
∞∑

m=−∞

bimJm(kiri)ejmϕi , i = 1, 2, · · · ,N

(4)

where bim represents the unknown expansion coefficient. ki =
k0
√
εriµri denotes the wavenumber inside the ith cylinder,

εri and µri represent the relative permittivity and relative
permeability of the ith cylinder, respectively.
It can be derived from Maxwell’s equations, the ϕ compo-

nent of the magnetic field can be expressed as

Hϕi =
1
jηk

∂Ezi
∂ri

, i = 1, 2, · · · ,N (5)

where η and k represent the wave impedance and wavenum-
ber in the corresponding medium, respectively.

On the surface of the ith cylinder, the boundary conditions
of the electric and magnetic fields can be expressed as

E inczi +
N∑
p=1

Eszp = E trzi , ri = r0, 0 ≤ ϕi ≤ 2π (6)

H inc
ϕi +

N∑
p=1

H s
ϕp = H tr

ϕi, ri = r0, 0 ≤ ϕi ≤ 2π (7)

where the first term on the left side of the above two formulas
is the incident field, and the right side is the total field. The
second term on the left is the sum of the scattered fields of
the N cylinders on the surface of the ith cylinder. It is worth
noting that these N terms are all expressed in their respective
local coordinate systems. Since in (2), (3) and (4), the expres-
sion of the fields has considered the multiple interactions
between cylinders, so the fields in (6) and (7) includemultiple
scattering between cylinders. Using the addition theory of
Hankel function [29], all scattered fields can be converted to
the ith local coordinate system. After using the orthogonality
of ejmϕi to eliminate the total field in (6) and (7), the following
formula can be obtained [28]

ail =
N∑
p=1

M∑
m=−M

cpm
[
glmip

(
1− δip

)
+ dilδlmδip

]
,

i = 1, 2, · · · ,N ; l = −M , · · · ,M (8)

where M is the truncation order of the multipole expansion.
δip = 1 if i = p, other cases δip = 0. The expression of glmip
and dil can be found in literature [28].
For these N cylinders, each cylinder can get equations

similar to (8), write them in the form of largematrix equations
as follows

a = (G+ O)c, (9)

where a and c are the vector form of ail and cpm in (8),
respectively. a and c are both N (2M + 1)× 1 column vector,
and they represent the unknown expansion coefficients in (2)
and (3), respectively. G and O are square matrix of size
N (2M +1)×N (2M +1), and they are the matrix form of glmip
and dil in (8). It is worth noting that O is a diagonal matrix.
By defining T = O−1, we can easily get the following

formula from (9)

T (a− Gc) = c. (10)

ThematrixT is also a diagonal matrix, andT is closely related
to the media parameters of the N cylinders. If the matrix T
is obtained, the media parameters of the N cylinders can be
easily obtained from it. Therefore, the above framework is
called the T-matrix method.

For Nr observation points on 0, the scattered field at
each observation point can be written as the superposition of
the scattered fields contributed by the N cylinders, and this
process can be expressed in the form of the following matrix
equation

usca = Kc, (11)
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where K is a matrix of size Nr × N (2M + 1). The ele-
ments Km

qi of matrix K can be obtained from (3), and Km
qi =

E0H
(2)
m (k0diq)ejmϕiq , where diq is the distance between the

center of the ith subunit and the qth observation point, and
ϕiq is the azimuth angle from the center of the ith subunit to
the qth observation point.

Equations (10) and (11) are the state equation andmeasure-
ment equation of the T-matrix method. For the inverse scat-
tering problem, T and c are the unknowns in the equations.
The purpose of the inverse scattering problem is to obtain
the T-matrix by solving these two equations, and further
obtain the media parameters of all the subunits in the imaging
domain.

III. APPLY VIRTUAL EXPERIMENT TO T-MATRIX SCHEME
A. LINEAR SAMPLING METHOD FOR QUALITATIVE
IMAGING
LSM is a qualitative imaging method for reconstructing the
shape of scatterers. The basic idea is to project the scattered
field containing the target position information as the radi-
ation field generated by a point source (line source in the
two-dimensional case). This process can be expressed as∫

0

ξ (ϕ, rs)Es(r, ϕ)dϕ = G(r, rs), r ∈ 0; rs ∈ D (12)

where rs is the sampling point, and ξ (ϕ, rs) represents the
weighting coefficient of the scattered field, which is a func-
tion of the location of the sampling point. G(r, rs) is the
Green’s function in the backgroundmedium, and ϕ represents
the angle of the incident wave.

The left side of (12) is the form of continuous integration.
In the actual measurement process, we illuminate the target
Ninc times, and then (12) can be written into the following
discrete form

2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)Es(rm, ϕt ) = −
j
4
H (2)
0 (k0 |rm − rs|),

m = 1, 2, · · · ,Nr (13)

where the subscript t denotes the tth illumination.
On the surface, the above process is a weighted

superposition of the scattered fields of different illumina-
tion directions, but in fact, different weights are assigned to
the illumination sources in different directions, and they are
recombined to meet certain characteristics. Solving (13) we
can get the weighting coefficient ξ (ϕ, rs) of the sampling
point rs. But (13) is ill-posed and needs to be dealt with
by regularization strategy, here the Tikhonov regularization
strategy is used. If we sample sequentially at the center point
of all subunits, the weighting coefficient of the entire imaging
domain can be obtained. After obtaining these weighting
coefficients, we use the formula given in the literature [23]
as the indicator function

ϒ(rs) =
log10 ‖ξs‖ − log10 ‖ξs‖max

min
[
log10 ‖ξs‖ − log10 ‖ξs‖max

] ,
s = 1, 2, · · · ,N (14)

where ‖·‖ represents the 2-norm of a vector.ϒ is the indicator
function of target’s support, and those points whose indicator
function value is close to 1 belong to the target area. There-
fore, we can set a threshold9 and consider that the sampling
points with an indicator function value greater than9 belong
to the target area. In this way, the target’s contour can be
obtained.

B. NEW VIRTUAL EXPERIMENTS STRATEGY
After the weighting coefficients of all sampling points are
obtained, for the boundary conditions in (6) and (7), the field
components on both sides of the equation can be multiplied
by the same coefficient, and the following equation can be
obtained

2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)E inczi (ri, ϕt )+
2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)

×

N∑
p=1

Eszp(ri, ϕt )

=
2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)E trzi (ri, ϕt ), (15)

2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)H inc
ϕi (ri, ϕt )+

2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)

×

N∑
p=1

H s
ϕp(ri, ϕt )

=
2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)H tr
ϕi(ri, ϕt ). (16)

As shown in Fig. 3, rs is the sampling point within the target’s
contour. ri is located on the circle centered on the center of
the ith subunit, and we call this circle the virtual experiment
circle. Note that (15) and (16) are established under the
assumption that the target’s medium parameters are uniform
in the virtual experimental circle.

In the T-matrix method, ri is located on the circumference
of equal-area circle which equivalent to the meshed subunit.
As long as the mesh is determined, the position of ri is
determined. In our proposed method, ri is located on the
virtual experiment circle, but the virtual experiment circle is
no longer restricted by the mesh. The radius of the virtual
experiment circle, that is, Ri, may not be equal to the radius
of the equal-area circle. Ri is adjusted according to the size
of the target contour, so the choice of Ri is flexible. We will
elaborate on the choice of Ri later.
The basic Equation (12) of LSMwas originally established

outside the imaging domain. Here wemake an approximation
and think that this equation holds in the imaging domain.
In fact, the classic LSM quantitative imagingmethod does the
same [21]. Therefore, the rearranged scattered field in (15)
and (16) can be replaced by the right side of (13).
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FIGURE 3. Schematic diagram of virtual experiment circles.

If we force the sampling point rs to coincide with the center
of the ith subunit, then (15) and (16) can be written as follows

2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)E inczi (ri, ϕt )+
[
−
j
4
H (2)
0 (k0ri)

]

=
2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)E trzi (ri, ϕt ), ri = Ri, 0 ≤ ϕi ≤ 2π

(17)

2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)H inc
ϕi (ri, ϕt )+

1
jη0k0

∂

∂ri

[
−
j
4
H (2)
0 (k0ri)

]

=
2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)H tr
ϕi(ri, ϕt ), ri = Ri, 0 ≤ ϕi ≤ 2π

(18)

where η0 =
√
µ0/ε0 is wave impedance in the free space,

and Ri represents the radius of the virtual experiment circles.
Equations (17) and (18) are derived by matching boundary
conditions and are valid in ri, so they are different from the
approach in [21] wherein the basic equation holds true in all
the point of the imaging domain. This implies that: a) the field
approximation has a wider range of validity, b) there is no
need of filtering the Hankel function, and c) the virtual circle
probably implies an average operation which deletes possible
inaccuracies.

Considering the influence of Ri on the inversion results,
we must choose Ri carefully. In Equations (17) and (18),
according to the framework of the T-matrix method,
we assume that the parameters inside the virtual experiment
circle are uniform. Therefore, when Ri is too large, the media
parameters of subunits close to each other will tend to be con-
sistent. In addition, for sampling points located near the edge
of the target’s contour, a large Ri will cause the virtual exper-
imental circle to contain too many non-target areas, resulting
in inaccurate imaging results. On the other hand, the value
of Ri cannot be too small. Because when Ri approaches zero,
the Hankel function term on the left of (17) and (18) will tend
to a singular value, which will increase the approximate error
of the rearranged scattered field. After a lot of experiments,
our experience is that when the value of Ri is close to the size
of the truncated target region, the error of the second term

in (17) and (18) is small, and the inversion accuracy can be
take into account, although there is no strict proof.

After simplifying (17) and (18), the following equation can
be obtained. The specific calculation process is given in the
Appendix.

2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)ejk0r0,icos(ϕ0,i−ϕt )

=
j
4
+

1
4
ηriJ0(kiRi)Y1(k0Ri)− J1(kiRi)Y0(k0Ri)
ηriJ0(kiRi)J1(k0Ri)− J0(k0Ri)J1(kiRi)

(19)

where Y0 and Y1 represent the 0th and 1st order Bessel
functions of the second kind, respectively. ηri =

√
1/εri

and ki =
√
εrik0 respectively represent the relative wave

impedance and wavenumber of the ith virtual experiment
circle. From Equation (19), we know that for a fixed radius
Ri, the right side is only the function of relative permittivity.
Since the left side of (19) is known, we can solve it to get the
relative permittivity. But the right side of (19) is nonlinear,
so it is not easy to solve it directly. In order to study the
characteristics on the right side of (19), we let

f (εri) =
j
4
+

1
4
ηriJ0(kiRi)Y1(k0Ri)− J1(kiRi)Y0(k0Ri)
ηriJ0(kiRi)J1(k0Ri)− J0(k0Ri)J1(kiRi)

.

(20)

Fig. 4 shows the curve of Re [f (εri)] when Ri takes dif-
ferent values. It can be seen from the figure that no matter
how much the value of Ri is taken, Re [f (εri)] is monotonic.
Therefore, as long as the left side of (20) is obtained, the value
of relative permittivity can be uniquely determined. What’s
more, because the curve of Re [f (εri)] changes slowly, a small
change of Re [f (εri)] will cause a large difference in εri. This
requires that the error on the left side of (20) cannot be too
large, otherwise the reconstruction error will be relatively
large. It is worth noting that we only considered the case

FIGURE 4. The change curve of the real part of function f with εri .
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where εri is real. If εri is a complex value, that is, the material
of the target is a lossy medium, then (20) is a binary function.

After obtaining the left side of (20), we select an appro-
priate Ri according to the size of the truncated area, and the
εri of this subunit can be obtained by means of the look-
up table method. By sequentially selecting each subunit
center in the truncated area as the sampling point, the rel-
ative permittivity distribution in the target area can be
obtained. Compared with the LSM quantitative imaging
method, we avoid solving the linear system of equations,
which greatly improves the computational efficiency.

The proposed method has some things in common
with [21] and [22]. The proposed method and [21] adopt a
similar total field approximation in the imaging area, which
simplifies the problem. Literature [22] assumes that the con-
trast changes slowly around each pivot point, and we assume
that the target is uniform within virtual experimental circles.
In addition, the proposed method and [22] both use algebraic
methods to solve the contrast.

IV. NUMERICAL SIMULATIONS
A. SIMULATION CONDITIONS
We use simulation data to verify the effectiveness of the
proposed method, and compare it with the LSM quantitative
imagingmethod and the CSImethod. In order to avoid inverse
crime, the measurement data is generated by the CG-FFT
method [30], [31] and is contaminated byGaussian noise with
SNR = 20dB. The range of the domain D is 2λb×2λb, where
λb is thewavelength in the backgroundmedium.According to
the principle of freedom degree in the literature [32], we take
the number of incident waves Ninc = 20, the number of
receiving points Nr is also 20, and the receiving sensors are
evenly distributed on a circle with a radius of 3λb. For the
selection of the LSM truncation threshold, we uniformly take
9 = 0.5. After a lot of experiments, we believe that this is a
reasonable choice.

For the reconstruction results of the LSM quantitative
imaging method given in Section IV B, we used the method
mentioned in [21] to deal with the singularity of H (2)

0 , and
performed low-pass filtering onH (2)

0 . When solving ill-posed
linear equations, Tikhonov regularization strategy is adopted.
In order to compare the reconstruction accuracy of different
algorithms, we define the reconstruction error as shown in the
following formula

err =

∑N
i=1 ‖χi − χ̃i‖

2∑N
i=1 ‖χi‖

2
, (21)

where χ̃i is the estimated contrast of the ith subunit and χi the
actual one.

In fact, it is unfair to compare the reconstruction errors
between the proposed method and LSM quantitative imaging
method. Because the contour information of the target is
exploited to calculate the reconstruction error of the proposed
method, while the whole imaging area is considered when
calculating the reconstruction error of the LSM quantitative

imagingmethod. Even so, using (21) to define the reconstruc-
tion error of the proposed method still has reference value.

B. EXAMPLES
Example 1: The first example is a circler object as shown
in Fig. 5(a), whose radius is 0.5λb. The relative permittivity
is εr = 2.5, then the electrical size of this target is 1.58λb.
For this example, the entire imaging domain is meshed into
a 40 × 40 grid. We first exploit LSM to estimate the target
geometry, the indicator map is shown in Fig. 5(b). According
to the contour obtained by truncating the LSM indicator
function, we take Ri = 0.4λb as the radius of the virtual
experiment circle. Fig. 5(c) shows the reconstruction result of
the proposed method, from which we can see that the target
has been basically restored. In order to compare the perfor-
mance of the algorithm, we also used the LSM quantitative
imaging method to reconstruct the object. Fig. 5(d) shows the
pivot points in LSM quantitative method. In Fig. 5(e), we give
the reconstruction result of the LSM quantitative imaging
method.

FIGURE 5. Single cylinder target. (a) Original pattern. (b) Normalized
logarithmic LSM indicator map. (c) Reconstruction pattern by the
proposed method. (d) The selected pivot points in LSM quantitative
imaging method. (e) Reconstruction pattern by LSM quantitative imaging
method.

The reconstruction error of the proposed method is err =
31.8%, and the reconstruction error of the LSM quantitative
imaging method is err = 129%. Since the electrical size
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of this target exceeds 1.22λb, it cannot be reconstructed by
the LSM quantitative imaging method, which confirms the
conclusion in literature [24]. Compared with the classic LSM
quantitative imaging method, the proposed method breaks
this limitation and successfully reconstructs the target. The
proposed method has wider applicability, possibly because
we assume that the target is uniform in the virtual experiment
circles, which provides strong prior information and has a
positive effect on the reconstruction of the target.
Example 2: The second example deals with two square

scatterers. As shown in Fig. 6(a), the side length of the square
column is 0.5λb, and the relative permittivity of these two
objects is εr = 2.0. The meshing is the same as the previous
example. According to the target contour obtained by trun-
cating the indicator function shown in Fig. 6(b), the virtual
experiment circle radius is Ri = 0.3λb. Fig. 6(c) is the recon-
struction result by the proposed approach, and the reconstruc-
tion error is err = 10.4%. Fig. 6(d) and Fig. 6(e) are the
images in LSM quantitative imaging. It can be seen from the
reconstruction results that both the proposed method and the
LSM quantitative imaging method have successfully recon-
structed the target position and media parameters. In this

FIGURE 6. Two square objects. (a) Original pattern. (b) Normalized
logarithmic LSM indicator map. (c) Reconstruction pattern by the
proposed method. (d) The selected pivot points in LSM quantitative
imaging method. (e) Reconstruction pattern by LSM quantitative imaging
method.

example, the reconstruction error of the LSM quantitative
method is err = 14.5%.
Example 3: Fig. 7(a) shows the third example: a ring and

two circular objects. The inner and outer radii of the ring
are 0.3λb and 0.5λb, respectively, and the radii of the two
small circles are 0.15λb. The relative permittivity of the ring
is εr = 1.5, and εr = 2.0 of the cylinders’. For this
example, the imaging domain is meshed into a 60× 60 grid.
The reason for this is to study the influence of the number
of unknowns on the calculation time, which is analyzed in
detail in the next section. Consistent with the analysis in the
previous section, the radius of the virtual experiment circle is
Ri = 0.2λb. It can be seen fromFig. 7(c) and 7(e) that both the
proposed method and the LSM method successfully restore
the target. The reconstruction errors of the proposed method
and the LSM quantitative imaging method are err = 27.7%
and err = 23.8%, respectively. It is worth noting that the
distance between the targets given in this example is smaller
than the wavelength, but the proposed method successfully
reconstructs the targets, which shows the proposed method
has a certain resolution ability.

FIGURE 7. A ring and two circular objects. (a) Original pattern.
(b) Normalized logarithmic LSM indicator map. (c) Reconstruction pattern
by the proposed method. (d) The selected pivot points in LSM
quantitative imaging method. (e) Reconstruction pattern by LSM
quantitative imaging method.
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Example 4: In the fourth example, we have three circu-
lar objects with different radii as shown in Fig. 8(a). Their
radii are 0.15λb, 0.2λb and 0.25λb, and the corresponding
relative permittivity is εr = 3.5, 3.0 and 2.5 respectively.
Fig. 8(b) is the LSM indicator map and Fig. 8(c) is the
reconstruction result by the proposed method. Since the con-
tour sizes obtained by the truncation of the three objects
are different, we choose a compromised virtual experimental
circle radius, and we take Ri = 0.25λb. Meanwhile, we also
use CSI method to reconstruct this example. Fig. 8(d) is
the reconstruction result of CSI method after 200 iterations.
The contrast reconstruction error of the proposed method
and CSI method are err = 21.98% and err = 14.65%,
respectively. The reconstruction result of the CSI method has
higher accuracy, but also has a heavier computational burden.

FIGURE 8. Three circular objects with different sizes. (a) Original pattern.
(b) Normalized logarithmic LSM indicator map. (c) Reconstruction pattern
by the proposed method. (d) Reconstruction pattern of 200 iterations
with CSI method.

The proposed method assumes that the target is uni-
form within virtual experimental circles, so it is difficult to
reconstruct complex targets, because for objects with com-
plex shapes, this assumption is difficult to hold. It can be
seen from the results of the above several examples that
the reconstructed relative permittivity is more accurate in
the position close to the center of the target. At the edge of the
target, the reconstruction error of the contrast is larger. This
is because the proposed method assumes that the medium
inside the virtual experiment circle is uniform. Therefore, for
the sampling points near the edge of the target contour, the
reconstructed relative permittivity value contains a part of the
contribution of the non-target area, as shown in Fig. 3, so the
result is not accurate.

C. COMPUTATIONAL TIME
The proposed method has no iterative process and do not
contain the process of solving linear system of equations.

It only needs to solve a series of univariate equations by the
look-up table method. The computational complexity of the
LSM qualitative imaging method is related to the size of the
antenna array. Classical LSM quantitative imaging method
requires solving a system of linear equations with N vari-
ables, where N is the number of the meshed subunits. In each
iteration step of CSI method, the computational complexity
of conjugate gradient method is O(N logN ).
Table 1 shows the calculation time of several examples in

the previous section (Xeon(R) CPU, 2.40GHz). Among them,
the number of iterative steps of the CSI method in Example
4 is 200 steps. Note that the calculation time here does not
include the time to generate measurement data using the for-
ward algorithm. The calculation time of the LSM quantitative
imaging method includes two parts: the time of LSM quali-
tative imaging and the time of solving linear equations. The
calculation time of the proposed method includes the time of
LSM qualitative imaging and the time of solving a series of
unary equations. Compared with the LSM quantitative imag-
ing method, the proposed method has higher computational
efficiency. It can be seen from the table that the calculation
time of the proposed method is an order of magnitude faster
than that of the CSI method. Even if the calculation accuracy
is not as good as the CSI method, considering the substan-
tial increase in calculation efficiency, we think our work is
meaningful.

TABLE 1. The computational times.

V. CONCLUSION
We propose a fast method for reconstructing dielectric
objects, which does not even need to solve linear equation
system. First, we use the LSM qualitative imaging method
to obtain the contour of the target. Then we innovatively
apply the preprocessing information of LSM to the bound-
ary conditions of the T-matrix method. By transforming the
parameter inversion problem into solving a series of univari-
ate equations, the calculation efficiency is greatly improved.
In terms of calculation time, the advantage of this method is
huge. Through simulation experiments, we verified that the
efficiency of the proposed algorithm is higher than that of
the LSM quantitative imaging method, and the application
range is also larger. The disadvantage of this method is that
we only study the case of lossless media. In the next step,
we will study the possibility of using the proposed method to
solve reconstruction problem of lossy media and even metal
objects.
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APPENDIX
Below we give the derivation of (19). First, we write (17)
and (18) below.

2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)E inczi (ri, ϕt )+
[
−
j
4
H (2)
0 (k0ri)

]

=
2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)E trzi (ri, ϕt ), ri = Ri, 0 ≤ ϕi ≤ 2π

(A1)

2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)H inc
ϕi (ri, ϕt )+

1
jη0k0

∂

∂ri

[
−
j
4
H (2)
0 (k0ri)

]

=
2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)H tr
ϕi(ri, ϕt ), ri = Ri, 0 ≤ ϕi ≤ 2π

(A2)

Substituting (2) and (4) into the above two formulas, and
using (5) to calculate the magnetic field component, the fol-
lowing two formulas are obtained.

2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)
∞∑

m=−∞

ejk0r0,icos(ϕ0,i−ϕt )jme−jmϕt

× Jm(k0Ri)ejmϕi

+

[
−
j
4
H (2)
0 (k0Ri)

]
=

2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)

×

∞∑
m=−∞

btimJm(kiRi)e
jmϕi (A3)

2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)
∞∑

m=−∞

1
jη0

ejk0r0,icos(ϕ0,i−ϕt )jme−jmϕt

× J ′m(k0Ri)e
jmϕi

+
1
jη0

[
−
j
4
H (2)
0
′(k0Ri)

]
=

2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)

×

∞∑
m=−∞

1
jηi
btimJ

′
m(kiRi)e

jmϕi (A4)

Integrating ϕi from 0 to 2π on both sides of (A3) and
(A4) simultaneously, which can remove all alternating com-
ponents, and then we can get

2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)ejk0r0,icos(ϕ0,i−ϕt )J0(k0Ri)−
j
4
H (2)
0 (k0Ri)

=
2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)bti0J0(kiRi) (A5)

2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)ejk0r0,icos(ϕ0,i−ϕt )J ′0(k0Ri)−
j
4
H (2)
0
′(k0Ri)

=
2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)
η0

ηi
bti0J

′

0(kiRi) (A6)

Multiply (A5) by η0
ηi

J ′0(kiRi)
J0(kiRi)

, and then subtract (A6). After
transformation, the following formula can be obtained

2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)ejk0r0,icos(ϕ0,i−ϕt )

= −
j
4

ηiJ0(kiRi)H
(2)
0
′(k0Ri)− η0J ′0(kiRi)H

(2)
0 (k0Ri)

η0J ′0(kiRi)J0(k0Ri)− ηiJ0(kiRi)J
′

0(k0Ri)
(A7)

According to the equation relationship of the Bessel func-
tion, the right side of (A7) can be transformed into a function
about the first and second types of Bessel functions:

2π
Ninc

Ninc∑
t=1

ξ (ϕt , rs)ejk0r0,icos(ϕ0,i−ϕt )

=
j
4
+

1
4
ηriJ0(kiRi)Y1(k0Ri)− J1(kiRi)Y0(k0Ri)
ηriJ0(kiRi)J1(k0Ri)− J0(k0Ri)J1(kiRi)

(A8)

where ηri = ηi/η0 is the relative wave impedance inside
the virtual experiment circle. J and Y represent the first
and second type Bessel functions, respectively.
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