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ABSTRACT Complex fractals achieved the highest popularity in the last ten years. Researchers used
the fixed point iterations to visualize the fractals and compared the image generation times to check the
efficiencies of iterations. This article explores the behavior of Jungck-M iteration in the generation of anti-
Mandelbrot sets. We define the orbit of Jungck-M iteration and prove its escape criteria. We establish the
algorithm for anti-Mandelbrot set and visualize some graphs via proposed iteration. We calculate the image
generation times for the generation of anti-Mandelbrot sets in proposed orbit and present the comparison
with Jungck-CR iteration.We also discuss the variations in images at different values of the input parameters.
Moreover, we present the graphs to show the escape time depends on input parameters.

INDEX TERMS Anti-Mandelbrot set, anti-holomorphic function, multi-corns.

I. INTRODUCTION
The fractals theory is extensively used in differed areas of
sciences and engineerings. The irregular fragments and self-
similar characteristics of fractals is the main key to interest
and attraction. The fractals with quadratic complex polyno-
mial investigated in 1918, by a well known mathematician
Gaston Julia [1]. He tried to iterate and sketch a complex
polynomial of the form f : z −→ z2 + c where z, c ∈ C but
he failed to draw it on paper. After the invention of computer,
Mandelbrot started to scrutinize the work of Julia and estab-
lished a sequence of iterates {zk} for complex polynomial
f : z −→ z2 + c where z, c ∈ C. He named the set of points
that lay in the orbit for complex quadratic polynomial as
Julia set. In 1979, Mandelbrot established another set of con-
nected Julia set called Mandelbrot set [2]. Lakhtakia et al. [3]
demonstrated Mandelbrot set for general complex polyno-
mial f : z −→ zp+cwhere p ≥ 2. Crowe et al. [4] studied in
ritualistic similarity with Mandelbrot set named as Mandel-
bar set and analyzed its connected locus. Milnor discussed
the dynamics of complex polynomial with single variable
in 1990 [5]. Milnor studied the connectedness locus for anti-
holomorphic complex polynomial z2 + c and he named its
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graph as tri-corn. Winters explained that the boundary of the
tri-corn were the smooth arc [6]. The characteristics of tri-
corn and multi-corns have been analyzed by Lau et al. [7].
Nakane et al. studied various properties of tri-corns and
multi-corns and demonstrated that the multi-corns were the
generalized tri-corns or the tri-corns of higher degree. Multi-
corns are used for commercial purposes in different industries
(i.e. in hosiery and grocery) to design on coffee cups, jugs,
bed sheets and shirts. The fractals found many applications in
image encryption [8] or compression [9], cryptography [10],
art and design [11] due to their unique and self-similar behav-
ior. There are many applications of fractals in electrical and
electronics engineering presented in [12]. These applications
played a key role in the industry of security control system,
radar system, capacitors, radio and antennae for wireless
system [13], [14]. Furthermore, architects and civil engineers
designed their ideas and project in the form of maps totally
based on the logics of fractal theory [15]. Some attractive
and inspiring fractals were studied in [16]–[18]. The fractals
have been studied in many different ways. The most popu-
lar and most studied generalization of fractals is the fractal
generation via different fixed point algorithms from the fixed
point theory. Some rational and transcendental complex func-
tions were studied in [19]. The fractals for higher powers
were analyzed in [20]–[22]. Good looking, interesting and
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FIGURE 1. Quadratic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.1
and generation time= 135s.

FIGURE 2. Quadratic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.1 and generation time= 140.7s.

FIGURE 3. Quadratic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.2
and generation time= 70.79s.

attracting fractals visualized via various fixed point iterations
can be found in the literature (i.e. see in [23]–[30]).Moreover,
the Jungck-type iterations were used in [31]–[37]. Various
iterations were also used to generate biomorphs in [38], [39]
and multi-corns in [40], [41].

In this article we introduce a new Jungck-type iterative
scheme in the generation of anti-Mandelbrot sets. Some beau-
tiful and attractive tri-corns, multi-corns and anti-Mandelbrot
sets visualize via Jungck-M iterative scheme which is three
step iteration. We prove a theorem to establish escape criteria
for Jungck-M iteration. We also discuss the graphs variation
with α. Moreover, we calculate the escape time to generate
image. The paper is organized as: The section II presents

FIGURE 4. Quadratic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.2 and generation time= 70.97s.

FIGURE 5. Quadratic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.3
and generation time= 82.36s.

FIGURE 6. Quadratic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.3 and generation time= 84.1s.

some preliminaries. In section III we prove the escape criteria
for Jungck-M iteration. In section IV we present some graphs
of anti-Mandelbrot sets in the form of tri-corns and multi-
corns via proposed iteration and Jungck-CR iteration. In the
last section V, we conclude the paper.

II. PRELIMINARIES
Definition 1 (Julia set [1]): Assume that Pc : C → C be

a complex map, where c ∈ C. Then the set of points

JPc = {z ∈ C : {
∣∣∣Pkc (z)∣∣∣}∞k=0 is bounded}, (1)

where Pc(z) is the k-th iterate of z is called the filled Julia set.
The set of boundary points of JPc is called simple Julia set.
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FIGURE 7. Quadratic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.4
and generation time= 70.14s.

FIGURE 8. Quadratic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.4 and generation time= 72.52s.

FIGURE 9. Quadratic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.5
and generation time= 50.82s.

Definition 2 (Mandelbrot set [42]): Assume that Pc :

C→ C be a complex map, where c ∈ C. Then the collection
of complex parameters c for which the corresponding Julia
set JPc is connected is called as Mandelbrot set M, i.e.,

M = {c ∈ C : JPc is connected}, (2)
equivalently Mandelbrot set can be defined as [43]:

M = {c ∈ C : {Pc(θ )}9∞ as k →∞}, (3)

where θ is any critical point of Pc, this is true for Pc(z) =
zp + mz+ c, because its critical point is z = 0 and P(0) = c,
after the first iteration we get z1 = c, so we can omit the first
iteration and take c as the z0.

FIGURE 10. Quadratic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.5 and generation time= 51s.

FIGURE 11. Quadratic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.6
and generation time= 49.14s.

FIGURE 12. Quadratic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.6 and generation time= 50.63s.

Definition 3 (Multi-corn [34]): Let Rc(z) = zp + c, where
c ∈ C. The multi-cornM′ for Rc is defined as the collection
of all c ∈ C for which the orbit of 0 under the action of Rc is
bounded, i.e.,

M′
= {c ∈ C : |Rkc (0)| 6→ ∞ as k →∞} (4)

Multi-corn for p = 2 is called the tri-corn.
The M-iteration is defined as follows:
Definition 4 (M-Iteration [44]): Let P : C → C be a

complex map. Then for any z0 ∈ C the M-iteration is
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FIGURE 13. Quadratic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.7
and generation time= 75.31s.

FIGURE 14. Quadratic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.7 and generation time= 86.25s.

FIGURE 15. Quadratic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.8
and generation time= 99.74s.

defined as: 
zk+1 = P(yk ),
yk = P(xk ),
xk = (1− αn)zk + αnP(zk ),

(5)

where αn(0, 1] and k = 0, 1, 2, . . ..
Definition 5 (Jungck-CR Iteration [35]): Let C be a

nonempty complex set and Q,R : C → C be two complex
mappings such that R is a complex polynomial of degree
greater than and equal to 2 and Q is injective. For any z0 ∈ C

FIGURE 16. Quadratic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.8 and generation time= 117.80s.

FIGURE 17. Quadratic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.9
and generation time= 90.36s.

FIGURE 18. Quadratic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.9 and generation time= 116.94s.

the Jungck-CR iteration is defined as:
Q(zk+1) = (1− ζ1)Q(yk )+ ζ1R(yk )
Q(yk ) = (1− ζ2)R(zk )+ ζ2R(uk ),
Q(uk ) = (1− ζ3)Q(zk )+ ζ3R(zk ),

(6)

where α, β, γ ∈ (0, 1] and k = 0, 1, 2, . . ..
Definition 6 (Jungck M-Iteration): Let C be a nonempty

complex set and Q,R : C → C be two complex mappings
such that R is a complex polynomial of degree greater than
and equal to 2 and Q is injective. For any z0 ∈ C the
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FIGURE 19. Quadratic Anti-Mandelbrot set in Jungck-M Orbit for α = 1
and generation time= 75.39s.

FIGURE 20. Quadratic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 1 and generation time= 84.16s.

FIGURE 21. Time variation graph for different values of α for Figures 1–20.

FIGURE 22. Cubic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.1 and
generation time= 70.12s.

Jungck-M iteration is defined as:
Q(zk+1) = R(yk ),
Q(yk ) = R(xk ),
Q(xk ) = (1− αn)Q(zk )+ αnR(zk ),

(7)

FIGURE 23. Cubic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.1 and generation time= 76.16s.

FIGURE 24. Cubic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.2 and
generation time= 54.20s.

FIGURE 25. Cubic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.2 and generation time= 70.55s.

where αn(0, 1] and k = 0, 1, 2, . . ..
To generate fractals, it is necessary to define the orbit of the
iteration. The orbits of our proposed iterations are defined and
generalized as follows:
Definition 7 (Orbit for Jungck-M Iteration): Assume that

P(zk ) = (zk p)+mz+ c be a complex polynomial with p ≥ 2.
Then the sequence of iterates {zk}k∈N from proposed iteration
is called the orbit of Jungck-M iteration.

III. FIXED POINT RESULTS
In this section we prove some fixed point results (i.e. escape
criterion or limitations) for complex function P(zk = zk p +
mz + c where p ≥ 2 and m, c ∈ C via proposed-iteration.
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FIGURE 26. Cubic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.3 and
generation time= 52.05s.

FIGURE 27. Cubic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.3 and generation time= 117.38s.

FIGURE 28. Cubic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.4 and
generation time= 53.95s.

Algorithm play a key role to generate fractals and escape
criteria is the basic part of algorithm. Since in Picard iterative
scheme have one map while in the Jungck-M iteration we
have two maps. Therefore, if we desire to replace Picard
iterative scheme with the Jungck-M iteration, then we need to
deal with twomaps in the iteration.We handle this situation as
follows. Assume that P : C→ C be a complex polynomial.
In the case of multi-corns we break P into two maps Q,R in
the following way: P = R − Q, where R(z) = zk p + c and
Q = mz (i.e. injective).
Theorem 1: Suppose that Pc(z) = zp+mz+c where p ≥ 2

and m, c ∈ C be a complex polynomial with |z| ≥ |c| >(
2(1+|m|)

α

) 1
p−1

. If the sequence of iterates {zk}k∈N for Jungck

FIGURE 29. Cubic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.4 and generation time= 73s.

FIGURE 30. Cubic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.5 and
generation time= 43.58s.

FIGURE 31. Cubic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.5 and generation time= 72.93s.

M-iteration is defined as follows:
Q(zk+1) = R(yk ),
Q(yk ) = R(xk ),
Q(xk ) = (1− α)Q(zk )+ αR(zk ),

(8)

where αn(0, 1] and k = 0, 1, 2, . . ., then |zk | −→ ∞ when
k −→∞.

Proof: Let R(z) = zp + c, Q(z) = mz, x0 = x, y0 = y
and z0 = z, then first step of Jungck M-iteration is:

|Q(xk )| = |(1− α)Q(zk )+ αR(zk )|

|mxk | =
∣∣(1− α)mzk + α(zk p)+ c)∣∣ .
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FIGURE 32. Cubic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.1 and
generation time= 43.42s.

FIGURE 33. Cubic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.6 and generation time= 72.88s.

FIGURE 34. Cubic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.7 and
generation time= 40.66s.

For k = 0, we have

|mx0| =
∣∣(1− α)mz0 + α(z0p)+ c)∣∣ .

≥ α
∣∣zp + c∣∣− |(1− α)mz|

≥ α
∣∣zp∣∣− α|c| − |mz| + α|mz|

≥ α|zp| − (1+ |m|)|z|.

Because|z| = |z|, α|mz| ≥ 0 and |z| ≥ α|c|. Now we have

|x| ≥ |z|
(
α|z|p−1

1+ |m|
− 1

)
|x| ≥ α|z|

FIGURE 35. Cubic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.7 and generation time= 65.69s.

FIGURE 36. Cubic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.8 and
generation time= 38.83s.

FIGURE 37. Cubic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.8 and generation time= 63.77s.

Because |z| >
(
2(1+|m|)

α

)p−1
, this implies α|z|p−1

1+|m| − 1 > 1
and |z| > α|z| For the second step of Jungck M-iteration,
we have

|Q(yk )| = |R(xk )| .

For k = 0, we have

|Q(y0)| = |R(x0)|

|my| =
∣∣xp + c∣∣

=
∣∣xp + c∣∣

≥ |xp| − |c|

≥ α|zp| − |c|
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= |z|
(
α|zp−1| − 1

)
,∵ |z| ≥ |c|

|y| ≥ |z|
(
α|z|p−1

1+ |m|
− 1

)
|y| ≥ α|z|, ∵ α ≤ 1.

Now for the last step of proposed iteration, we have

|Q(zk+1)| = |R(yk )| .

Again for k = 0, we have

|Q(z1)| = |R(y)|
|mz1| =

∣∣yp + c∣∣
=
∣∣yp + c∣∣

≥ |yp| − |c|
≥ α|zp| − |c|

= |z|
(
α|zp−1| − 1

)
,∵ |z| ≥ |c|

|z1| ≥ |z|
(
α|z|p−1

1+ |m|
− 1

)
.

Iterating upto k th term, we have

|z2| ≥ |z|
(
α|z|p−1

1+ |m|
− 1

)2

|z3| ≥ |z|
(
α|z|p−1

1+ |m|
− 1

)3

...

|zk | ≥ |z|
(
α|z|p−1

1+ |m|
− 1

)k
.

Since |z| >
(
2(1+|m|)

α

) 1
p−1

. Therefore α|z|p−1
1+|m| − 1 > 1. Hence

|zk | → ∞ as k →∞. �
Corollary 1: Assume that

|zn| > max

{
|c|,

(
2(1+ |m|)

α

) 1
p−1
}
,

for some n ≥ 0. Since α|z|p−1
1+|m| − 1 > 1, therefore |zn+k | >

|z|
(
α|z|p−1
1+|m| − 1

)n+k
. Hence |zk | → ∞ when k →∞.

IV. FRACTAL GENERATION
In this section we present some anti-Mandelbrot sets via
Jungck-M iteration and Jungck-CR iteration. We need an
escape criteria to visualize anti-Mandelbrot sets a criteria.
We can generate anti-Mandelbrot set by using different algo-
rithms [45]–[47] (e.g.Distance Estimator, Potential Function
Algorithm, Escape Criteria etc).

In this article we use escape criteria in Algorithm 1 to
fascinate the anti Julia sets in graphs. The graphs generated
on computer with specifications are as following:
• Processor: Intel(R) Core(TM) i5-3320 M CPU @
2.60GHz,

• System type: 32-bit Operating System and
• Software: Mathematica 7.0.

Algorithm 1 Generation of Anti-Mandelbrot Set
Input: R(z) = zp + c with degree p ≥ 2 and Q(z) = mz–

complex polynomials, A–covered area, K–the
maximum number of iterations, α, β, γ ∈ (0, 1]
–fixed parameters and c ∈ C–complex constants,
coloursmap[0..M − 1] coloursmap withM
colours.

Output: Anti-Mandelbrot set in area A.

1 for c ∈ A do
2 EC–escape condition
3 k = 0
4 z0–initial guess from critical points of P(z)
5 while k ≤ K do
6 Q(zk+1) = R(yk ),
7 Q(yk ) = R(xk ),
8 Q(xk ) = (1− α)Q(zk )+ αR(zk )
9 if |zk+1| > EC with

10 then
11 break

12 k = k + 1

13 i = b(M − 1) kK c
14 colour c with coloursmap[i]

FIGURE 38. Cubic Anti-Mandelbrot set in Jungck-M Orbit for α = 0.9 and
generation time= 43.17s.

Next, we present some examples of anti-Mandelbrot sets via
proposed iteration and Jungck-CR iteration for the complex
polynomial P(z) = zp + mz + c where c ∈ C a complex
parameter.

A. ANTI-MANDELBROT SETS
The Anti-Mandelbrot or multi-corn set is a generalization
of Mandelbrot set which has a variety in its visuals. In this
subsectionwe discuss some examples of anti-Mandelbrot sets
of the complex polynomial P(z) = zp + mz + c with degree
p ≥ 2 in the orbit of Jungck-M iteration. We also compare the
Jungck-M iteration with Jungck-CR iteration. In all images
we apply K = 8 (i.e. Maximum number of iterations) in
Algorithm 1.
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FIGURE 39. Cubic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 0.9 and generation time= 80.28s.

FIGURE 40. Cubic Anti-Mandelbrot set in Jungck-M Orbit for α = 1 and
generation time= 60.61s.

FIGURE 41. Cubic Anti-Mandelbrot set in Jungck-CR Orbit for
α = β = γ = 1 and generation time= 106.81s.

Example 1: In this example we present quadratic anti-
Mandelbrot sets for α = 0.1, 0.2, 0.3, . . . , 1 and m = 0.8
in Figures.1–20. The axis and areae for each quadratic anti-
Mandelbrot set are as follows:

• Figure 1: A = [−1.5, 1.2]× [−1.2, 1.2],
• Figure 2:A = [−3.5, 3.5]2,
• Figure 3: A = [−2.5, 2.5]2,
• Figure 4: A = [−3.5, 3.5]2,
• Figure 5:A = [−2, 2]2,
• Figure 6:A = [−3.5, 3.5]2,
• Figure 7: A = [−2.4, 1.8]× [−2.5, 2.5],
• Figure 8:A = [−6.5, 4.5]× [−6.5, 6.5],

FIGURE 42. Time variation graph for different values of α for
Figures 22–41.

FIGURE 43. Anti-Mandelbrot set in Jungck-M Orbit for p = 5, α = 0.2 and
generation time= 33.77s.

FIGURE 44. Anti-Mandelbrot set in Jungck-CR Orbit for
p = 5, α = β = γ = 0.2 and generation time= 55.72s.

FIGURE 45. Anti-Mandelbrot set in Jungck-M Orbit for p = 5, α = 0.4 and
generation time= 42.48s.

• Figure 9: A = [−2.4, 2.2]× [−2.2, 2.2],
• Figure 10: A = [−6.8, 4.5]× [−6.5, 6.5],
• Figure 11: A = [−2.4, 2.2]× [−2.5, 2.5],
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FIGURE 46. Anti-Mandelbrot set in Jungck-CR Orbit for
p = 5, α = β = γ = 0.4 and generation time= 55.33s.

FIGURE 47. Anti-Mandelbrot set in Jungck-M Orbit for p = 5, α = 0.6 and
generation time= 33.89s.

FIGURE 48. Anti-Mandelbrot set in Jungck-CR Orbit for
p = 5, α = β = γ = 0.6 and generation time= 51.33s.

• Figure 12:A = [−4.5, 4.5]2,
• Figure 13: A = [−1.8, 1]× [−1.5, 1.5],
• Figure 14: A = [−2.8, 2.5]× [−2.3, 2],
• Figure 15: A = [−1.8, 1]× [−1.5, 1.5],
• Figure 16: A = [−1.8, 1]× [−1.5, 1.5],
• Figure 17: A = [−1.8, 1]× [−1.5, 1.5],
• Figure 18:A = [−1.8, 1]× [−1.5, 1.5],
• Figure 19: A = [−1.8, 1]× [−1.5, 1.5],
• Figure 20:A = [−1.8, 1]× [−1.5, 1.5].

In each image the main body of quadratic anti-Mandelbrot
has three unique corns or branches. We observe that when
the values of α for Jungck-M iteration and α = β = γ

FIGURE 49. Anti-Mandelbrot set in Jungck-M Orbit for p = 5, α = 0.8 and
generation time= 31.84s.

FIGURE 50. Anti-Mandelbrot set in Jungck-CR Orbit for
p = 5, α = β = γ = 0.8 and generation time= 51.86s.

for Jungck-CR iteration move from 0.1 to 0.5, the heads of
branches or corns lose their thickness and when the values
of input parameters move from 0.6 to 1, then the heads of
branches or corns again gain their thickness. We observe that
for different input parameters areas occupied by the images
are different both iterations (i.e. for Jungck-M and Jungck-
CR iterations). We also analyze that all anti-Mandelbrot sets
visualize in Figs. 1–20 for p = 2 are tri-corns. Moreover,
we draw a graph in which we take image generation time
in seconds along x–axis and α = β = γ along y–axis to
present the comparison of proposed iteration with Jungck-
CR iteration (i.e. graph in Fig.21). The red curve is represent
the variations of times correspond to the input parameter
α for Jungck-M iteration and the blue curve is represent
the variations of times correspond to the input parameters
α = β = γ for Jungck-CR iteration. The graph in Fig.21
clearly shows that our proposed iteration is more efficient
than Jungck-CR iteration.
Example 2: The next example presents the cubic anti-

Mandelbrot sets for p = 3 in the orbits of proposed iteration
and Jungck-CR iteration. In Figures 22–41 the parameters
are α = β = γ = 0.1, 0.2, 0.3, . . . , 1 and m = 2

3 . All cubic
anti-Mandelbrot sets are multi-corns because the main body
of each set has four branches or corns. When α for proposed
iteration and α = β = γ for Jungck-CR iteration approaches
to 0.5, the size of each corn in figures 22–31 decreases
and when we increase the values of input parameters from
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FIGURE 51. Anti-Mandelbrot set in Jungck-M Orbit for p = 5, α = 1 and
generation time= 55.95s.

0.6 to 1 then the size of each corn increases in width. In the
figure 42 we represent the graph to show the efficiency of
proposed iteration, and correspondence between the image
generation time and the values of input parameters for both
iterations. We notice that our proposed iteration is faster
than the Jungck-CR iteration in the generation of cubic anti-
Mandelbrot sets.
• Figure 22: A = [−1, 1]2,
• Figure 23:A = [−1, 1]2,
• Figure 24: A = [−1, 1]2,
• Figure 25: A = [−1, 1]2,
• Figure 26:A = [−0.8, 0.8],2

• Figure 27:A = [−1, 1]2,
• Figure 28: A = [−0.6, 0.6]2,
• Figure 29:A = [−0.6, 0.6]2,
• Figure 30: A = [−0.5, 0.5]× [−0.6, 0.6],,
• Figure 31: A = [−0.7, 0.7]2,
• Figure 32: A = [−0.6, 0.6]2,
• Figure 33:A = [−0.6, 0.6]2,
• Figure 34: A = [−0.7, 0.7]2,
• Figure 35: A = [−0.6, 0.6]2,
• Figure 36: A = [−0.6, 0.6]2,
• Figure 37: A = [−0.8, 0.8]2,
• Figure 38: A = [−0.7, 0.7]2,
• Figure 39:A = [−0.7, 0.7]2,
• Figure 40: A = [−0.6, 0.6]2,
• Figure 41:A = [−0.5, 0.5]2,.
Example 3: In last example we present anti-Mandelbrot

sets for p = 5. In Figures 43–52 the parameters are
0.2, 0.4, 0.6, . . . , 1 and m = 2. All anti-Mandelbrot sets
for p = 5 are also multi-corns because the main body of
each set has six branches or corns. When input parameters
approaches to 0.5, the corns shrink into sharp edges(see
in figures 22–26). When we increase the values from 0.6 to 1
then the corns swell. The graph in the figure 53 also show
that our proposed iteration is efficient that the Jungck-CR
iteration.
• Figure 43: A = [−4, 4]2,
• Figure 44:A = [−4, 4]2,
• Figure 45: A = [−3, 3]2,
• Figure 46: A = [−4, 4]2,
• Figure 47:A = [−3.5, 3.5]2,

FIGURE 52. Anti-Mandelbrot set in Jungck-CR Orbit for
p = 5, α = β = γ = 1 and generation time= 84.5s.

FIGURE 53. Time variation graph for different values of α for
Figures 43–52.

• Figure 48:A = [−3.8, 3.8]× [−4, 4],
• Figure 49: A = [−3, 3]× [−3.5, 3.5],
• Figure 50:A = [−3.2, 3.2]× [−4, 4],
• Figure 51: A = [−2.5, 2.5]× [−3, 3],
• Figure 52: A = [−2.5, 2.5]× [−3, 3].

V. CONCLUSION
In this article we defined a new Jungck-M iteration in the
generation of anti-Mandelbrot sets. We proved escape criteria
for a complex polynomial P(z) = zp+mz+cwhere p ≥ 2 and
c ∈ C with Q(z) = mz and R(z) = zp + c by using Jungck-
M iteration. We adjusted the established escape conditions
in Algorithm 1 and visualized the anti-Mandelbrot sets in
Jungck-M and Jungck-CR orbits. To show the image gener-
ation time comparison of proposed iteration with Jungck-CR
iteration, we presented some examples of anti-Mandelbrot
sets for p = 2, 3 and 5 by using the proved results. We calcu-
lated the image generation time for each anti-Mandelbrot set
in Jungck-M and Jungck-CR orbit. The graphs for image time
generation indicated that our proposed iteration is faster in
image generation than Jungck-CR iteration. The established
graphs (i.e. graphs 21, 42 and 53) also presented the relation
between α, β, γ and image execution time. We observed
the drastic changes when we varied the input parameter α
for Jungck-M iteration and α, β, γ for Jungck-CR iteration.
Moreover, we observed that p+1 corns or branches appeared
on the main body of anti-Mandelbrot set for any value of
p ≥ 2.
We hope that the presented results will inspire those who

are working on anti-fractals. In future, we will try to prove
escape criteria for the generation of anti Mandelbrot sets with
a 3D vector or with a set of quaternion.
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