IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 15, 2020, accepted October 23, 2020, date of publication October 26, 2020, date of current version November 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3033886

Improving Write Performance Through
Reliable Asynchronous Operation in
Physically-Addressable SSD

DAEYONG LEE “!, JAEWOOK KWAK"“!, GYEONGYONG LEE !, MOONSEOK JANG',
JOONYONG JEONG ', KEXIN WANG!, (Student Member, IEEE),
JUNGWOOK CHOI“', (Member, IEEE), AND YONG HO SONG'2, (Member, IEEE)

! Department of Electronics and Computer Engineering, Hanyang University, Seoul 04763, South Korea
2Samsung Electronics Company Ltd., Hwaseong 18448, South Korea

Corresponding author: Yong Ho Song (yhsong @hanyang.ac.kr)

This work was supported by the Samsung Electronics’ University Research and Development Program (Research on Wear-Leveling
Algorithm for Open-Channel SSD 2.0.).

ABSTRACT Physically-addressable solid-state drives (PASSDs) are secondary storage devices that provide
a physical address-based interface for a host system to directly control NAND flash memory. PASSDs
overcome the shortcomings such as latency variability, resource under-utilization, and log-on-log that are
associated with legacy SSDs. However, in some operating environments, the write response time significantly
increases because the PASSD reports the completion of a host write command synchronously (i.e., write-
through) owing to reliability problems. It contrasts asynchronous processing (i.e., write-back), which reports
a completion immediately after data are received in a high-performance volatile memory subsequently used
as a write buffer to conceal the operation time of NAND flash memory. Herein, we propose a new scheme
that guarantees write reliability to enable a reliable asynchronous write operation in PASSD. It is designed
to use a large-granularity mapping table for minimizing the memory requirements and performing internal
operations at an idle time to avoid response delays. Results demonstrate that the proposed PASSD reduces
the average write response time by up to 88% and guarantees reliability without performance degradation.

INDEX TERMS Flash translation layer, NAND flash memory, open-channel SSD, physically-addressable

SSD, solid-state drive.

I. INTRODUCTION
NAND flash-based solid-state drives (SSDs) are secondary
storage devices used in various computing environments,
from mobile devices to server systems. It is rapidly replacing
the magnetic-based hard disk drives owing to its advantages,
such as high random access performance, low power require-
ment, small form factor, and cost-per-bit reduction that has
continued for decades [1], [2]. However, SSDs possess some
disadvantages, such as latency variability [3]-[7], subopti-
mal resource utilization [8], [9], log-on-log [10], [11], and
long-tail latency [12].

Flash translation layer (FTL) is a software layer embedded
in a SSD that abstracts NAND flash memory to a block
input/output (I/O) device and ensures reliability. It has been

The associate editor coordinating the review of this manuscript and

approving it for publication was Cristian Zambelli

195528

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

investigated for a long time, and several policies and archi-
tectures have been proposed to improve the performance and
lifespan of SSDs [13]-[18]. However, its high complexity and
unpredictability primarily contribute to the aforementioned
problems in legacy SSDs.

Recently, a new class of SSDs comprising a host-based
FTL (hFTL) and physically-addressable SSD (PASSD)
[19]-[22] has been proposed, i.e., open-channel SSDs
(OCSSDs) [23] and zoned namespace SSDs [24], which
operate with hFTLs having compatible interfaces, such as
the physical block device (pblk) and zoned namespace file
system [25], respectively. Unlike the traditional SSDs with
FTLs built-in to provide an abstracted block I/O interface,
PASSD exposes a physical interface of NAND flash memory,
and a FTL is located on a host system. It offers various
advantages, such as predictable response time at the host
system level, physically independent I/O path that can be used

VOLUME 8, 2020

https://orcid.org/0000-0003-3092-1057
https://orcid.org/0000-0003-1890-2910
https://orcid.org/0000-0002-8186-573X
https://orcid.org/0000-0002-5411-8368
https://orcid.org/0000-0002-3075-8694
https://orcid.org/0000-0001-8755-0504

D. Lee et al.: Improving Write Performance Through Reliable Asynchronous Operation

IEEE Access

as a scheduling option (e.g., isolation) [26], and stack opti-
mization with a file system. Therefore, the new class of SSD
is expected to compensate for the shortcomings associated
with legacy SSDs and provide better performances.

However, some researches have shown that the perfor-
mance of a storage system, comprising a PASSD and hFTL,
is below expectations or lower than that of legacy SSDs
[27]-[31]. Most researches have reported that performance
degradation was caused by the hFTL; however, the operat-
ing characteristics within the PASSD can also cause perfor-
mance degradation. As we observed, PASSD is unable to
utilize asynchronous write completion techniques that report
the completion of the write command before the program
operation of the NAND flash memory is completed; these
techniques are used to conceal the slow write performance of
NAND flash memory. For example, typical SSDs shorten the
write response time by reporting the command as completed
immediately after receiving data in a write buffer composed
of high-performance nonvolatile memory [32]—-[34].

In fact, a fundamental reason that PASSDs manage write
operations synchronously is that they cannot ensure the relia-
bility of write operations in case of a program failure [35].
As asynchronous write operations may report completion
before data are stored in the NAND flash memory, reliability
problems can occur when a command that has already been
completed fails during the NAND flash program operation.
In addition, in a latest NAND flash memory, a durability and
data integrity of a cell are significantly degraded due to the
scaling down of a semiconductor process and a reduction of a
bit sensing distance due to multi-level-cell technologies such
as TLC/QLC [36]—-[39]. Therefore, to write asynchronously,
PASSDs must be equipped with a function that can guarantee
the reliability of a write command even if a program failure
occurs.

Herein, we propose a fault-tolerant PASSD (FT-PASSD)
with a built-in write reliability policy to process write oper-
ations asynchronously. In particular, the proposed policy
minimizes memory requirements using a large-granularity
(block-level) mapping table [40] and small-sized data struc-
tures. Furthermore, it is designed to eliminate response delays
when writing a request, even with program failure.

Our proposed method was evaluated using a trace-driven
simulator modeling OCSSD and pblk. The experimen-
tal results demonstrate that FI-PASSD reduces the write
response time by up to 88% compared to OCSSD. In addition,
the memory required by the FT-PASSD was only 24 kB based
on a 192 GB NAND flash memory.

The remainder of this article is organized as follows.
Chapter 2 presents the background information on NAND
flash memory-based storage systems and address-mapping
tables. Chapter 3 introduces the motivation for this study and
the experimental observations and challenges faced. Chap-
ter 4 describes the FT-PASSD architecture and a scheme
to ensure the reliability of the write operation. Chap-
ter 5 describes the evaluation environments and results.
Finally, Chapter 6 provides concluding statements.

VOLUME 8, 2020

Channel | Channel 0
["[controller]

1 A T | 2 ge 0
| Wayn age 0 age

’ Page 1 Page 1

I I
‘Way 0 Way 1

Channel | Channel 1
["[controller]

Page n Page n
Block 0 Block 1

1 G
Wayn
chip | % Page 0 Page 0

Page 1 Page |

Pagen Page n

T T
‘Way 0 Way 1

Host interace
I
Flash (SSD) controller
I

Block n-1 Block n

Channel | Channel n
~|controller

T T 1
Way 0 Way 1 I Way n

Plane 0 Plane 1
| o
FIGURE 1. Layout of NAND flash memory-based SSD.
about 24-30 bit per page about 14-18 bit per block

LPN O LPN 0

Overwrite — [LPN 1 Overwrite LPN 1
LPN 3) sical | Page (LPN3 Phsical

(LPN| Block | offset LPN2 =LBN0) | “BN| Block LPN 2

- Lens :*» LPN3

Block 0 Ly

x LPN 4
0 2 | |—> LPN 3
=t

Block 1

om2[Block 0

LPN 4

Copy
Block 1

N

a|ns|w|n|-]|o
o
v
=
w
v
=

tu|s|w|n|=]o

LPN 0

Max. Max. LPN1
page block LPN2
LPN 3
Block 2

Page level
mapping table

Block level

Block 2
o¢ mapping table

FIGURE 2. Comparisons of page and block level mapping tables;
operation sequence of out-place update for overwrite.

Il. BACKGROUND

A. NAND FLASH MEMORY

Fig. 1 depicts the layout of a typical NAND flash
memory-based SSD. Most SSDs are composed of multiple
NAND flash memory chips, and these chips operate in paral-
lel by being tied to a channel and a way interface. Each flash
chip comprises a number of blocks (e.g., 424 MB), which is
the smallest erase unit, and each block comprises a number
of consecutive pages (e.g., 2-32 kB), which are the minimum
read/write units.

Because NAND flash memory has some inherent limita-
tions in operation, SSDs provide a highly abstracted interface
to the host system by embedding a high-performance con-
troller. In particular, NAND flash memory blocks are required
to be erased before writing; moreover, as only sequential
writing is allowed for pages within a block, the overwriting
and writing of arbitrary addresses are impossible. In addition,
NAND flash memory can cause instruction failure due to
various reliability problems [41]-[44].

B. MAPPING TABLE
Most SSDs utilize a mapping table to provide a logically
abstracted address interface and high performance by allow-
ing the overwrite to be processed as an out-place update.
Fig. 2 illustrates the processing of an out-place update
of logical page number (LPN) 3 in the environment of
a page-mapping table and a block-mapping table. In a
page-mapping environment, not only blocks but also page
addresses can be changed. However, as blocks can be phys-
ically written sequentially, the address that can be actually

195529

IEEE Access

D. Lee et al.: Improving Write Performance Through Reliable Asynchronous Operation

TABLE 1. Example of memory requirement of the page-mapping table.

Page Page Address Total mapping
Volume size count encoding table size
256GB 16 KB 16.8M 24 bit 48 MB
256GB 8KB 33.6M 25 bit 100 MB
1 TB 16KB 67.1M 30 bit 240 MB

TABLE 2. Example of memory requirement of the block-mapping table.

Block Block Address Total mapping
Volume size count encoding table size
256GB 24MB 109K 14 bit 18 kB
256GB 12MB 218K 15 bit 40 kB
1 TB 24MB 437K 16 bit 85 kB

written is a physical block number (PBN) 1 page offset 1 or
a PBN 2 page offset 0. On the contrary, in the block-mapping
environment, the page offset within the block cannot be
changed; thus, even if the address of the block is changed,
the page offset must be maintained. Therefore, to change the
address of logical block number (LBN) O containing LPN 3 to
PBN 2, all pages in the PBN 0 (LPN 0-3) must be copied.

Tables 1 and 2 present the memory requirements of
the page-mapping and block-mapping tables, respectively,
through examples of NAND flash memory specifications.
In general, since the mapping table is an array type data
structure, the size of the mapping table can be obtained by
multiplying the number of bits (address-encoding bits) for
address expression for each mapping unit and the number
of mapping entries. The address-encoding bits increase as
the number of mapping units increases. Thus, the smaller
the mapping unit and the larger the capacity, the more
memory is required. For this reason, the page-mapping table
requires very large memory compared to the block-mapping
table. In the example, the page-mapping table requires
2.5-3k times more memory than the block-mapping
table.

C. PHYSICALLY-ADDRESSABLE SSD

The OCSSD is the most representative PASSD, and it is well
known in academia and the industry [45]-[48]. We used the
architecture and interface of an OCSSD as an example of
PASSD to compare it with legacy SSDs.

Fig. 3 shows a comparison of legacy SSDs and OCSSD.
Both the legacy SSDs and OCSSD have built-in controllers.
However, unlike legacy SSDs, where the FTL (and vari-
ous reliability policies) is located in a built-in controller,
the FTL of the OCSSD is located in a host system. There-
fore, the complexity of the OCSSD built-in controller is
reduced significantly, thereby solving the problem of unpre-
dictable response delays. In addition, OCSSDs afford a
relatively low manufacturing cost because the required hard-
ware resources are significantly reduced by excluding the
FTL.

Additionally, each environment operates under the differ-
ent command sets and address types. Legacy SSDs operate

195530

Host System

Host System

Block IO layer Block IO layer
3
. A .
(Logical) address: (Physical) address:
LBA Group, PU, chunk, ...
Command: Command:
Read/Write Erase /Read /
Write (append only,
] erase-before-write)
Flash Controller
Firmware Flash Controller
Error Handler Error Handler
NAND flash NAND flash
Legacy SSD Open-Channel SSD

(a) Architecture and I/O interface

MSB LSB
I

| Logical block address (LBA) Logical address

(Legacy SSD)

.................................. Flash translation layer.

| Physical address

[Group-PU [Chunk] (OCSSD)

Logical block

| Raw address

| Channel-way | Block Page | (NAND flash)

(b) Address encoding

FIGURE 3. Comparisons of legacy SSD and PASSD.

under read and write commands (allowing overwrite and
random-access write) that comprise block I/O commands in
logical block address units within the logical address space.
On the contrary, PASSDs operate under the physical address
and command set of the NAND flash memory. Therefore,
the host system of a PASSD issues a write command only in
sequential page units within a block and erases a block before
overwriting.

Ill. MOTIVATION
A. PERFORMANCE DEGRADATION IN PASSD
Fig. 4 shows a comparison between the write operations
of a legacy SSD and PASSD. A write request is processed
by exchanging submission and completion messages accord-
ing to a protocol defined between the host system and the
SSD [49]. As shown, the legacy SSD uses an asynchronous
processing method and completes a request as soon as data
are received in a volatile memory (write buffer); subse-
quently, the actual NAND write operation (buffer eviction)
is scheduled in a built-in FTL. In this technique, a request is
completed within the response time of the high-performance
memory, which is faster than that of the NAND flash mem-
ory. However, data may be lost when a failure occurs in
the program operation of the NAND flash memory. Hence,
most built-in FTLs of the legacy SSD includes a policy that
can guarantee the reliability (write success) of a failed write
request.

Meanwhile, in the PASSD environment, the physical
address of the NAND flash memory in which data is to be
stored is determined by the hFTL. Since the address satisfies

VOLUME 8, 2020

D. Lee et al.: Improving Write Performance Through Reliable Asynchronous Operation

IEEE Access

l&Push-Completion (Ttrans.)ﬁ

{© Write request

[Applications]

Block I/0 layer
Host :

system :

@ Push
command

® Completion
(only success)

@ Data
transfer —— N
command (buffer) +Tl':ms.
New page Re-mapping
allocation new page

Buffer memory

NVMe controller

: Legacy
Flrmwa're SSD
Flash translation layer

Flash controller Firsgam g | [
'NAND; NAND) |~
| NAND Flash memory | () | +Tprog. ¢)

Write operation sequence

(a) Legacy SSD; asynchronous write completion is possible as the built-in
FTL always guarantees the success of the NAND flash program operation.

I%Pnsh-Complelinn (Tmms.+Tpmg.)%

[Applications]
o
Block /O layer Host @ New page

Flash translation layer | | system allocation (0e¥jnage)
IVL: Gl > @ Push @ Completion |
NVMe queue é command (fail or success)

g |

| E .

@ 88| -

= Data

NVMe controller command ||y frer) command

+Ttrans. +Tprog.

Firmware

2

SD

Flash controller ® Program

(NAND)

il

NAND Flash memory

Write operation sequence

(b) PASSD; as the host FTL controls both success/failure of write command,
only synchronous completion report is possible

FIGURE 4. Comparisons of architecture and write operation sequence.

all operational requirements of NAND flash memory such
as erasure before writing and access to sequentially write
pages in a block, there is no need to convert the address
within the PASSD; However, due to the possibility that the
determined physical address is a bad page (block), PASSD
must report write completion synchronously. In other words,
PASSD must report all write commands as success or failure
after the operation of the NAND flash memory is finished.
Owing to the differences in write operations, the PASSD
may have a longer write response time than the legacy
SSD.

Fig. 5 shows the average write response time for the syn-
chronous/asynchronous write operation. The simple experi-
mental results are interpreted as the response time converging
to the performance of NAND flash memory because the
buffer is full when the time interval between commands is
very short (1 us). In contrast, the workload with sufficient
time intervals (1 s) shows that asynchronous write responses
are reduced compared with synchronous write responses.
These results confirm that the synchronous write operation
of a PASSD can significantly affect the response performance
depending on the workload characteristics. One way to solve
this problem is to enable asynchronous write completion by
embedding a reliability policy in the PASSD.

VOLUME 8, 2020

40k 10k
—#— synchronous
|\ —@— asynchronous 8k .

—&— synchronous
—@— asynchronous|

@
S
=

Average latency (us)
8
2

Average latency (us)

NN
N

2k =8

/

-

32kB 64 kB 128 kB 256 kB 512 kB 1024 kB

32kB 64 kB 128 kB 256 kB 512 kB 1024 kB

(a) Sequential write workload (with- (b) Partial write workload (with idle
out idle time) time)

FIGURE 5. Average latency in synchronous/asynchronous write
completion and write buffer size (32-1024 Kb per way).

B. CONVENTIONAL WAY TO SECURING WRITE
RELIABILITY

A typical approach to ensure the reliability of a failed write
request is to assign a new address and retry the program
operation [50], [51]. The address assignment is handled in the
same manner as the overwrite described in the background
section (Fig. 2). However, as the FTL layer, including the
mapping table, has been removed from the PASSD, allocating
anew address is impossible. If a mapping table is additionally
embedded in the PASSD, having duplicate mapping tables
of the same level is very inefficient because the host FTL
already has a page-level (or sector-level) mapping table, and
it is contrary to the original purpose of PASSD (e.g., log-on-
log reduction). On the one hand, replacing the block-mapping
table can reduce memory requirements; on the other hand,
as the block-mapping table cannot change the address of a
single page, additional data movement is required to maintain
the page offset within the block.

Fig. 6 (a) shows an example of handling a write failure
in a block-level mapping environment. The initial condition
describes that the commands (D0-D4) in the submission
queue have sequential page addresses because they are gener-
ated by hFTL, and a program failure occurred at page offset
3 of PBN 0. As the block-mapping table must maintain the
page offset, the data stored in the block where the write
failure occurred are moved, and consequently, the retrying of
the write operation is delayed. Therefore, irregular and long
delays occur because the number of stored pages varies based
on the situation.

C. KEY IDEA: SHIFTED PAGE OFFSET TABLE
Fig. 7 illustrates our key concept to solve the aforementioned
problems. A block-level mapping table is used in the envi-
ronment; however, to reduce the response time, the failed
write command is retried on the first page of a newly allo-
cated block, as shown in step 3. The exceptionally changed
address information is temporarily recorded in volatile mem-
ory. However, the changed address must be searched for
each address translation, and if the number of exceptional
addresses increases, the search load increases.

Hence, we introduce a new metric shift that records the
initial offset of a page in a block. Using shift, the write
response delay can be minimized because data movement

195531

IEEE Access

D. Lee et al.: Improving Write Performance Through Reliable Asynchronous Operation

NVMe submission queue (LBN, page offset)
D3 D2 D1

. D4 DO
'm'+(B1, roy | @0, p3) | @0, p2) | B0, P1) | (BO, PO) [CUEB>
y e b T
@ re-mapping prog-fal ' b1 | g
: Bad page &
(=]
LBN | PBN TR ‘g;n
D4 2
0 0 4
Z
1 [1» 100 §
2 2 Block 1 =
)
3 \ N Block 99 -
] e 0|1
\‘ D1 i ®
delayed) prog.
Block level (yed) pé} D2
mapping table >Bl ?(3100
(firmware in PASSD) oc

(over provisioning block)

(a) Example of operation sequence

l—Unpredictable & long-tail latency—‘
|_ 1. Prog. R
fail) || il
(fail) s

3. page copy 1| 4 Re-
(can't delay) prog. ;
>
min. max.

1 page pagePerBlock-1 page

(b) Unpredictable and long-tail latency problem

FIGURE 6. Write reliability policy (re-program after failure) using the
block-mapping table.

can be delayed as shown in step 6. Note that, the shift
can only change the initial offset of a page, so the order
of pages in a block must be maintained. In general, since
the hFTL issues all write commands with a sequential page
address, the order of pages in a block cannot be compli-
cated. However, if the data copying after a program failure
proceeds arbitrarily, there is a possibility of complicating
the page order. Therefore, copying is allowed only when
the number of pages stored in several blocks after a pro-
gram failure is enough to fill one block, as in step 4, 6.
In addition, data copying can be delayed sufficiently, so there
is no need to proceed while the host command is waiting.
The host command is always processed first, and data is
copied during idle time, as in step 5. More detailed imple-
mentation methods and operations are described in the next
section.

IV. FAULT-TOLERANT PASSD FOR ASYNCHRONOUS
WRITE OPERATION

In this section, we introduce a novel PASSD architecture,
termed as FT-PASSD, that enables an asynchronous write
operation by embedding a reliability policy.

Fig. 8 illustrates the overall architecture and write oper-
ation of the FT-PASSD. Unlike the conventional PASSD,
its firmware has a built-in program failure manager. There-
fore, the host FTL operates in the same manner as in a
normal PASSD, but the device reports all write commands
as successful immediately after receiving data in the write

195532

NVMe submission queue (LBN, page offset)
D3 D2 D1 DO

. D4
'm'+(51, roy | B0, p3) | B0, P2) | B0, P1) | (BO, POy [V
I T T 7
i prog. fail. N DO
(@ re-mapping i D1 M
' ®> Bad page
Sthited |}
LBN | PBN | page |} Ve Block 0 <
offset .",. ‘.‘\ ‘®‘> D2 g
0 0 0 A\ ©
Y
1 |1p100|0p2 2
\ \ Y
\ | N
2 2 0 Block 1 o~
3 0 ., Prog.re-try pjock 99 =
4 4 0 RN)
. N z
“@-» b3 5
Block level DO ©
mapping and shift table LDl

Block 100

(firmware in PASSD) (over provisioning block)

(a) Example of operation sequence
Predictable Background
latency _‘ | (in idle time)
1. Prog.|| 3.Re- |
l_ (fail) prog.

(b) Predictable latency

-0
6. page copy 1
(delayed) _)I ;

FIGURE 7. Write reliability policy using block mapping and shifted page
offset table (our main idea).

}ePush-Completion (Ttrans.,)9‘

(Write request

Applications

Block I/O layer
Flash translation layer Host
system
NVMe driver
NVMe queue

SQ cQ
NVMe controller

@ New page
allocation

® Push
command

® Completion
(only success)

® Data
OF "’CZ transfer No.
comman (buffer) | +Ttrans.

FT-
i Program Re-mappin,
Firmware PASSD
proposal)
Flash controller Program _T Program | _
(NAND) [+Tprog. (NAND)
NAND Flash memory

‘Write operation sequence

Buffer memory

FIGURE 8. Architectural overview of FT-PASSD; our proposal enables
reliable asynchronous write operation by allowing the firmware to handle
program failures.

buffer. If a program failure occurs in the device, the reliability
is guaranteed by internally reallocating the address via the
embedded program failure manager.

A. DATA STRUCTURES OF PROGRAM FAILURE MANAGER
Fig. 9 shows the data structures of the proposed program
failure manager including a block-level mapping table, shift
table, and an open block list. The description of the data
structures are as follows:

The block-mapping and shift tables are array-type data
structures that record the PBN and shift for each LBN, respec-
tively. Initially, most physical blocks are statically mapped
1:1 to each logical block, and the mapping table is changed

VOLUME 8, 2020

D. Lee et al.: Improving Write Performance Through Reliable Asynchronous Operation

IEEE Access

Block mapping F-———#{ DO
table with Shift } b1
| D2
LBN | PBN | Shift |
| D3
0 0 0 F--—- J Block 0
(normal)
1 1 2 f-———= 1‘ =
2 2 | fail = 7‘ | D7 shifted
3 3 0 | (R
} D5
| Block 1
e _J (shifted)
Y i L G
Open block list } D9 @
2 Bad page
BlockNo. [2 [== =7 ~—
WP 2 Block 2
(bad)
(Head) Block No. | 100} — o 5T
WP 1
(Tail)

Block 100
(in progress)

FIGURE 9. Data structures in the program failure manager;
block-mapping table with shift and open block list.

only when a program failure occurs. Therefore, a small
number of over-provisioned physical blocks must be ensured.
The shift was introduced as the main concept of this proposal;
when an initial page offset in a block is changed owing to
program failures, the changed offset is recorded. Therefore,
shift is used to convert a logical page offset (LPO) to a
physical page offset (PPO).

In addition, since the address-encoding bits of the shift
are smaller than that required for a block, the total memory
requirement of the shift table is less than that of the block
mapping table. This is because the number of pages per
block of a typical NAND flash memory is smaller than the
total number of blocks. Moreover, the total number of blocks
increases as the capacity increases, but the number of pages in
a block is fixed according to the specifications of the NAND
flash memory.

The open block list is a list-type data structure. It is
used to temporarily record pages to be stored in one logical
block that is divided into multiple physical blocks owing to
program failure; consequently, it is implemented as a list
type because program failures may occur continuously. The
information recorded in each element is the assigned PBN
(blockNo) and the count of written pages (write pointer;
WP).

An example of a snapshot is shown in Fig. 9, a program
failure occurred in the third page of LBN 2 (mapped PBN 2)
and an open block list is created. At the head element of
the created list, the PBN 2 and the WP 2 are recorded to
provide information on the block were the program failure.
Subsequently, the write request that failed is retried to an
over-provisioning block (PBN 100). If the re-program oper-
ation is successful, a new element is added to the tail of
the list to record the changed mapping information that the
data of the third page of LBN 2 stored in the first page of
PBN 100.

VOLUME 8, 2020

Algorithm 1 Program Failure Handling

Input: LBN (logical block no.), LPO (logical page offset)
1: /*This function is called when a program failure occurs*/

: /*“logical” means host access address */

: /*“physical” means raw NAND flash address */
. if is first program failure in LBN then

/* Create an empty openblocklist for LBN */
openBlockList < CreateOpenBlockList(LBN)
failedPBN < blockMapTable[LBN]

/* Add first element; add(blockNo, WP) */
openBlockList.add (failedPBN , LPO)

/* To record the occurrence of program failure */
shiftTable[LBN] < NULL(—1)

: end if

: /* Allocate a new physical block */

: newPBN < GetReservedBlockNo()

: openBlockList.add(newPBN , 0)

R A A A S o

e e e

B. ALGORITHM DESCRIPTION

1) ADDRESS TRANSLATION FOR READ/WRITE REQUESTS
Algorithm 1 shows the process of creating an open block
list and allocating a new block when a program fails. In the
case of the first failure occurring in the LBN, an open block
list is created. Subsequently, the first element containing the
PBN and WP wherein the failure occurred is added to the
created list. In addition, the shift corresponding to the LBN
is set to a specific index (e.g., NULL, page per block +
1) to confirm that a program failure has occurred. Finally,
an element that records a newly allocated PBN and WP is
added to the tail of the created (or existing) list. The new
PBN is an over-provisioned block number that has not been
released to the hFTL, and the initial value of WP is zero.

Algorithm 2 describes the process of translating a logical
address of a read/write command to a physical address. First,
it is necessary to check whether the shift allocated to the LBN
has a NULL value. When the shift is between 0 and the max-
imum number of pages in a block (pagePerBlock), a physical
address for both read and write can be obtained through a
block-mapping table and a shift table. The detailed address
translation process is described in lines 4—6 of Algorithm 2.

If shift is NULL, it indicates that a program failure has
occurred in the block mapped to the corresponding LBN,
and the program failure manager then temporarily allocates
a number of PBNs to the LBN by using the open block list.
To obtain the physical address, the WP is compared with the
LPO sequentially from the head of the list using an iterator.
If the LPO is less than the WP, the LPO becomes the PPO and
the block number of the iterator becomes PBN. Otherwise,
WP is subtracted from LPO.

In fact, both read and write addresses can be translated
in the above manner. However, because the host issues a
write command to sequential page addresses in an LBN,
the write address can be known without searching the open
block list. In other words, the block number and WP obtained

195533

IEEE Access

D. Lee et al.: Improving Write Performance Through Reliable Asynchronous Operation

Algorithm 2 Address Translation for Read/Write Request

Algorithm 3 Background (in Idle time) Data Migration

Input: LBN (logical block no.), LPO (logical page offset)
Output: PBN (physical block no.), PPO (physical page off-
set)
1: /*This function is called for read/write command includ-
ing retry after program failure*/
2: shift < shiftTable[LBN |
3: if shift # NULL then
4. PBN < blockMapTable[LBN]
5. shift < shiftTable[LBN]
6: PPO < (LPO + shift)%pagePerBlock
7: else
8 openBlockList <— GetOpenBlockList(LBN)
9: if is read then

10: /* search read address in openBlockList */
11: iter < openBlockList.begin()

12: while LPO > iter . WP do

13: LPO < (LPO — iter .WP)

14: iter + +

15: end while

16: PBN < iter.blockNo

17: PPO <« LPO

18: else

19: /* allocate write address in openBlockList */
20: PBN <« openBlockList .tail().blockNo

21: PPO < openBlockList .tail().WP + +

22: end if

23: end if

24: return PBN, PPO

from the tail of the list become the physical addresses to
program. After executing the write command, the WP must
be increased by 1.

2) DATA MIGRATION
Algorithm 3 describes the process of searching for an address
for copying data. As data movement can be delayed suffi-
ciently, it proceeds only at idle time, and all write commands
to be written to one LBN must be completed. The copy starts
from the source block at the head of the open block list to the
target block at the tail of the list (the last allocated normal
block), and when the copy of the source block is completed,
the next element of the list is accessed using an iterator.
When all copies are completed, the PBN in the mapping
table corresponding to the LBN is changed to the target block
number and the shift is updated. Thereafter, the allocated
memory can be recovered by deleting the open block list.

In the next section, we describe the process of retrying
write failures, moving data to a new block, and translating
the read address through examples.

C. OPERATION SCENARIOS

1) FAILED PROGRAM RETRY AND ADDRESS UPDATE

Fig. 10 illustrates an example of an operation sequence when
a program failure has occurred. Initially, the host system

195534

Input: LBN (logical block no.)

1: /* This function is called only during idle time, and the

sum of all WPs in the open block list allocated to LBN

must equal the maximum number of pages in a block. */
: /* TBN (target block no.), TPO (target page offset) */
/¥ SBN (source block no.), SPO (source page offset) */
. openBlockList < GetOpenBlockList(LBN)
TBN < openBlockList .tail().blockNo
TPO <« openBlockList .tail().WP
iter < openBlockList.begin()
: while iter # openBlockList .tail() do
for i = 0 to iter WP do

SBN < iter.blockNo

SPO <« i

Copy from SBN, SPO to TBN, TPO
13: TPO + +
14: end for
15: iter ++
16: end while
17: blockMapTable[LBN]| <— TBN
18: shiftTable[LBN] < openBlockList .tail().WP
19: Delete openBlockList

R e A A o

— = =
M e

issued write commands (D0, D1, and D2) to LBN 0 (mapped
PBN 0), and the write failure occurred in the third page (D2).
In steps 2 and 3, the failed write command D2 is stored in
the first page of the newly allocated physical block, i.e., PBN
100, and the open block list temporarily records the two
PBNs and the write pointer of each block. The host system
is unaware of write failures because all data have been suc-
cessfully stored. Subsequently, when the next write command
D3 isissued, D3 is the address for the LBN 0, where the write
failure occurred; therefore, it must be stored in the second
page in PBN 100 based on the information in the tail of the
open block list. As shown in steps 4 and 5, D3 is stored in
PBN 100, and the write pointer is increased by 1 in the tail of
the open block list. This process (steps 4 and 5) is continued
until the total number of pages stored in the open block list
is sufficient to fill a single block or until a close command
(to stop using an open block) is issued. In the illustrated
environment, the block comprises four pages; therefore, this
operation is terminated.

In the previous process, the maximum amount of data
required to fill a single block was divided between PBN 0
and 100. Although all the data have been stored, DO and
D1 must move to PBN 100. This is because PBN 0, which
has failed, has low reliability; additionally, the overhead of
verifying the open block list for each address translation is
high. Steps 6 and 7 show the data movement and mapping
update. As data migration can be delayed, it was delayed to
idle time and data were sequentially copied from the lowest
page offset. Subsequently, the address mapped to LBN 0
was changed to PBN 100, and the shift was changed to 2

VOLUME 8, 2020

D. Lee et al.: Improving Write Performance Through Reliable Asynchronous Operation

IEEE Access

1. Program fail D2 2. Re-program D2 3. Create open block list 4. Program D3

0 DO DO D2 (Head) . DO D2

1 D1 D1 Clean Page (;a‘llz NoTi00 D1 D3

2 | Bad Page $ Bad Page | | Clean Page ¢ $ Bad Page | | Clean Page

3 | Clean Page Clean Page | | Clean Page Clean Page | | Clean Page
Block 0 Block0 Block 100 Block0 Block 100

5. Update open block list 6. Copy DO, D1 7. Map update
DO D2 LBN| PBN | shift PBN | shift
RN o[ofo oo
10 [gl 00 | 2
Bad Page |\ DO $ T > o
Clean Page D1

.. Block0 Block 100

FIGURE 10. Proposed algorithm sequence: an example of program failure
occurring in PBN 0.

4. Program fail D3 5. Re-program D3 6. Add a new element to tail of open block list

DO D2 DO D2 D3 (Head)

DL Bad Page DL Bad Page | | Clean Page
Bad Page | | Clean Page E> Bad Page | | Clean Page | | Clean Page E>

Blo (Tail)

I
Clean Page | | Clean Page Clean Page | | Clean Page | | Clean Page 1
Block 0 Block 100 Block 0 Block 100 Block 101 -
7. Copy D0, D1 8. Copy D2 9. Map update
DO D2 D3 DO D2 D3 LBN| PBN [shift PBN | Shift

o[oo o |0

DI | [BadPage [# DO D1 Bad Page DO
11 [il e 101 | 1
BadPage | | Clean Page{#= DI Bad Page | | Clean Page D1 N >

Clean Page | | Clean Page | [Clean Page Clean Page | [Clean Page | [Y D2

Block 0 Block 100 Block 101 Block 0 Block 100 Block 101

FIGURE 11. Proposed algorithm sequence: an example of program failure
occurring in PBN 0 and PBN 100.

(the number of shifted page offsets). Finally, the open block
list was deleted to recover the allocated memory, and address
translation was enabled using the shift table without a search
operation.

Fig. 11 presents an example of a situation where
multi-program failures occur. It shows the situation where
a program failure occurred once again in step 4 of Fig. 10.
In this case, as the open block list already exists, the existing
list is loaded and a new block is added to the tail. The
main difference from the previous case is that there are
multiple source blocks from which data are copied because
the program has failed several times. Therefore, data move-
ment proceeds sequentially from the head of the list, and all
other processes proceed in the same manner as previously
mentioned.

2) READ ADDRESS TRANSLATION

Fig. 12 shows examples of the address translation for the read
commands (D2, D6, D10) in the proposed write failure retry
technique. As the method depends on the presence or absence
of an open block list, each process of address translation is
explained separately.

Fig. 12 (a) shows address translation in a situation where
there is no open block list. The PBN can be obtained by
translating the LBN using the block mapping table, and the
PPO must be converted using the shift and LPO. In the read
command D2, the PPO is the same as the LPO because the
shift is not changed (the initial value 0). On the other hand,
in the read command D6, as the shift of the LBN 1 is 2,
the page offset is shifted by two pages due to a previous write
failure. In this case, the shift is added to the LPO, and the

VOLUME 8, 2020

Read D2 paial LBN | PBN | shift PPO = (LPO + shift) % pagePerBlock (4)
(LBNO, po
LPO 2
S S I PPO(2)=(2+0)%4
D2
D3
D4
D5 1 2 PPO(0)=(2+2)% 4
[—> bpef | | - "—"=7T° - " —° |
. D7 .
1 D8 D6 | D8 D10
Read D6 pgy 2) PFmg, D7 D9 Clean page
ail
(LBNL, 1o ol . 3
LPO 2) b1 D4 Bad page Clean page
D5 Clean page Clean page
Block 0 Block 1 Block 2 Block 100
(normal) (shifted) (bad) (in progress)

(a) Not-in-progress program fail after retry algorithm

Daw LBN | PBN | Shift| IFLPO>=wp | 1 IF 2>=2 ? (TRUE)
DO LPO = LPO - WP LPO (0) =LPO (2) - WP (2)
o |, |, | ELSE :
D2 PPO = LPO v
D3 BlockNo. | 2 | (Tail) PBN 100,
D4 > WP B Block No. | 100 [PPO (0) = LPO (0)
D5
1 1 2 WP 1
Read D10 ps (Head)
(LBN2, p7
LPO2) g DO D6 D8 D10
Prog.
Do, |, | D1 D7 D9 Clean page
D10 (null) D2 D4 Bad page Clean page
D11
D3 D5 Clean page Clean page
Block 0 Block 1 Block 2 Block 100
(normal) (shifted) (bad) (in progress)

(b) In-progress program fail after retry algorithm

FIGURE 12. Proposed algorithm sequence: examples of read address
translation.

TABLE 3. Evaluation parameters.

Category Configuration Value
Parallel unit size 24 GB
hFTL (pblk) | Chunk size 24 MB
Logical block size 16 kB
Density (per chip) 24 GB
Chip array 8 (2ch-4way)
Channel data bus speed 500 MB/s
Page size 16 kB
NAND Flash | g0t size 24 MB
Read latency 100 us
Program latency 1.5ms
Erase latency 15 ms
Write buffer size (per way) 256-2048 kB
Buffer mngt. Flush (eviction) po%icy g First-in, First-out

sum divided by the page per block. Thereafter, the remainder
of the division becomes the PPO.

Fig. 12 (b) depicts the address translation in the presence
of an open block list. Data movement has not been completed
as a write failure occurred, and shift is set to a specific index
to verify the status (e.g., NULL, page per block + 1). In this
case, address translation is required to search the open block
list. The LPO of D10 is 2, indicating that the third page should
be read. However, since the third page is not stored in PBN 2,
the next element of the list is accessed. Before accessing the
next element, the number of pages stored in PBN 2 (write
pointer) is subtracted from the LPO to ensure that there is
skipped pages. Consequently, one page is stored in PBN 100,
and because the LPO is 0, the first page of PBN 100 is the
address to be read.

195535

IEEE Access

D. Lee et al.: Improving Write Performance Through Reliable Asynchronous Operation

TABLE 4. Configurations of PASSD and program failure management.

Evaluation env. OCSSD - FT-PASSD (w/o shift) FT-PASSD (with shift)
Write buffer policy Write-through Write-back Write-back Write-back
(write completion) (synchronous) (asynchronous) (asynchronous) (asynchronous)

Program failure manager In host FTL In host FTL In device FTL In device FTL

(additional metadata)

(block map table; 13 kB)

(block & shift map; 24 kB)

Process of program retry
after failure

1) write (program) failure
report to host FTL, 2) host
reissue write request

Nothing (because already
reported completion)

1) bad block re-mapping
(with copy, in foreground),
2) failed program retry

1) failed program retry, 2)
bad block re-mapping
(with copy, in idle time)

Description

OCSSD 2.0 spec.

Unreliable write operation
(excluding experiment)

Without proposed policy

Our proposal

V. METHODOLOGY AND EVALUATION

A. EXPERIMENTAL ENVIRONMENTS

To evaluate the proposed method, we used an in-house
trace-based simulator modeling OCSSD and commercial
TLC NAND flash memory, as shown in Table 3. The
specifications of the PASSD and hFTL are based on
OCSSD 2.0, whereas those of the NAND flash memory
model are based on a document [52] provided by the
manufacturer.

Table 4 presents the characteristics of the proposal and
comparison environment. It briefly describes the buffer man-
agement and policies related to program failure that have
a major influence on the experimental results. In the table,
FT-PASSD refers to an environment wherein asynchronous
write completion is enabled by embedding a program failure
manager, and this is distinguished from OCSSD that uses
the synchronous write completion. In addition, the proposed
built-in program failure manager using the shifted page offset
is denoted as with shift, and the program failure manager
that operates only with simple block mapping is denoted as
without (w/o0) shift.

The memory requirement was calculated based on the
experimental environment (8192 blocks, 1536 pages in a
block). Block mapping for address encoding requires 13 bits
per block, and the shift table requires 11 bits per block,
i.e., the block-mapping table and the shift table require 13 kB
and 11 kB of memory, respectively. In addition, assuming
that page mapping is built into the environment, the number
of pages is 12 M; thus, approximately 40 MB of memory is
required.

The performance was measured is the time required by
the PASSD to deliver a completion message to a command
issued by the FTL located on the host system; it is noteworthy
that the time recorded in the trace was not used for the
performance measurement.

B. EVALUATION RESULTS

1) MICRO-BENCHMARK

We conducted performance analysis using micro-benchmarks
to precisely analyze the performance of the assumed envi-
ronments. All micro-benchmarks comprise only write com-
mands, and each command includes an interval of 1 s. Further,
each benchmark is divided into sequential and partial writes
depending on the size of a single request.

195536

3k 3k
I \Vrite buffer 512 kB per way I \Vrite request 8 MB per sec
[\Vrite buffer 1024 kB per way| . [\Vrite request 16 MB per sec|
Il \Vrite buffer 2048 kB per way| / I \Vrite request 32 MB per sec|
2k 4| —®— Block copy time| / 2k {|—=— Block copy time| ./_ I

il
0 / 0 J ?

=
]

Maximum latency (ms)
=

Maximum latency (ms)

'

0 100 200 300 400 500 0 100 200 300 400 500
Failed page offset (copied page count) Failed page offset (copied page count)

(a) Effect of write buffer size (512— (b) Effect of write request size (8-32
2048 kB per way), 8 MB per com- MB per command, write buffer 1024
mand kB)

FIGURE 13. Maximum latency for failed program retry using the
block-mapping table; FT-PASSD (w/o shift).

Fig. 13 shows the long latency problem in FT-PASSD
(w/o shift) caused by multiple page copies when changing
the page address of a failed program operation with only
the block-mapping table. The page copying due to program
failure occurs as many times as the number of pages stored
in the block. Therefore, the page copy time displayed as a
solid line is proportional to the failed page offset. However,
in asynchronous write completion, even when the NAND
flash memory is busy, the write command can be processed
without delay using the write buffer; thus, the page copy time
is not fully reflected in the maximum latency.

Fig. 13 (a) shows the effect of the write buffer size, and the
larger the buffer, the smaller is the maximum response time;
(b) shows the effect of the write command size, and the larger
the command size, the larger is the maximum response time.
That is, even for a program failure manager that operates only
with block mapping, the response time can vary significantly
depending on the characteristics of the workload and the size
of the buffer. However, it is difficult to determine a suffi-
cient buffer size to completely eliminate the response delay
because program failure can occur continuously. Moreover,
since the buffer is a volatile memory, increasing the buffer
size increase the risk of data loss caused by sudden power
failure.

Fig. 14 shows the effects of the experimental environment
and workload patterns on average and maximum latency.
Sequential writes are set such that the buffer is always full,
and partial writes are set to flush the buffer during the time
interval between requests. In addition, in all environments,
program failures occur with an arbitrary low probability, that

VOLUME 8, 2020

D. Lee et al.: Improving Write Performance Through Reliable Asynchronous Operation

IEEE Access

Il oCssD
Il FT-PASSD (w/o shift)
I FT-PASSD (with shift)]|

1=}

Average latency (ms)
o

Average latency (ms)

o4
256 kB 512kB 1024 kB 2048 kB

o4
256 kB 512kB 1024 kB 2048 kB

(a) Partial write (b) Sequential write

TABLE 5. Trace list.

Avg. size (kB) N KB size distributions (%)

Trace | Read Write | <4 <8 <16 <32 >32
hm_0 8.1 9.3 77.1 7.8 5.5 1.6 8.0
prn_0 229 11.3 796 2.8 5.8 1.5 10.3

prn_1 22.5 11.7 71.4 7.7 11.4 2.6 6.8

proj 2 | 41.6 488 | 229 32 27 43 669
prxy 0 | 84 70 |85 47 1.6 07 65
srel_1 | 358 147 | 663 75 52 51 159
usr_1 | 527 153 | 683 78 40 27 172
usr 2 | 508 139 | 673 104 43 39 141

Maximum latency (ms)
N
Maximum latency (ms)

14
256 kB 512kB 1024 kB 2048 kB

256 kB 512kB 1024 kB 2048 kB

(c) Partial write (d) Sequential write

FIGURE 14. Experimental results of changing buffer size (256-2048 kB
per way) and uniform workload (sequential write size 16 MB per request,
partial write size 1 MB per request, time interval 1 s per request).

is, they occur very few times; thus, the average latency is
hardly affected.

Fig. 14 (a) shows the average response time in the case
of partial write workload. For OCSSD, the average response
time is constant, whereas for FT-PASSD, the response time
decreases as the size of the buffer increases. OCSSD provides
a constant response time regardless of the buffer size because
all write commands are completed after the NAND flash
operation is completed. On the contrary, as the FT-PASSD
reports completion immediately after receiving the write
data in the buffer, the larger the buffer, the shorter is the
response time. Particularly, a partial workload with a small
write request size has sufficient time to empty the buffer,
thereby further reducing the response time of asynchronous
write completion. Fig. 14 (b) shows the average response
time in the case of sequential workload. Both OCSSD and
FT-PASSD provide similar response times. Unlike partial
workloads, because sequential workloads do not have suf-
ficient time to clear buffers, the latency reduction by asyn-
chronous write completion rarely appears.

Fig. 14 (c) and (d) show the maximum latency for each
workload. In particular, (d) shows that the maximum response
time of FT-PASSD (w/o shift) is significantly higher than
that of other environments. This increase in latency occurs
because the device cannot process write commands during the
data copy time in the program failure manager process with
only the block-mapping table. However, the response time did
not increase in (b) because the buffer was able to sufficiently
accommodate the host write commands during the data copy
process. In other words, the process of copying blocks does
not always lead to an increase in response time, but there is
a critical risk of a large response delay (freezing) of up to
several seconds.

In summary, OCSSD has the disadvantage of low perfor-
mance for a partial write workload, and FT-PASSD (w/o shift)

VOLUME 8, 2020

involves the risk of a freezing for a sequential write workload.
The proposed FT-PASSD (with shift) has the advantage of
providing high response performance for all workload types
and does not suffer from response delay due to program
failure.

2) BLOCK I/O TRACE

The workloads used in this experiment were block I/O traces
of the Microsoft Research Center [53], which is widely used
for secondary storage performance evaluation; detailed infor-
mation is summarized in Table 5.

Fig. 15 shows the experimental results using the block I/O
traces. As the probability of program failure of the actual
NAND flash memory is extremely low, we performed the
experiment under the assumption that only one program fail-
ure occurred at an arbitrary point in time while processing
the entire trace. Fig. 15 (a) shows the average response time
of each workload and environment. As the secondary storage
I/O access in a real computing system involves considerable
partial writes and idle time, the response time of FT-PASSD
is significantly reduced (45.6% on average) compared to
that of OCSSD for all workloads. In particular, workloads
with a high proportion of partial write commands showed
a significant effect of improving latency (88% of srcl_1,
78% of prn_1), whereas workloads with a high proportion of
sequential writes showed relatively little improvement (49%
of proj_2).

Fig. 15 (b) shows the maximum latency cased by a program
failure. As mentioned above, program failure was set to occur
once in all environments; however, the only environment
wherein a long response delay occurred is FT-PASSD (w/o
shift) in some workloads. The reason that a long response
delay did not occur in OCSSD is that the failed program is
not retried. In contrast, the reason of FT-PASSD (with shift)
is that the copying of additional data due to program failure
was delayed by using the shifted page offset table.

Fig. 16 presents some information collected at the time of
program failure to explain the cause of long latency occurring
in the previous experimental results. (a) shows the number
of pages copied by FI-PASSD after a program failure and
the time it took to retry the failed program. In FT-PASSD
(w/o shift), considerable time was wasted until the program
was retried because the page was copied before retrying
the program. Even in prn_0 where the fewest page copies
occurred, it took approximately 250 ms or more to finally

195537

IEEE Access

D. Lee et al.: Improving Write Performance Through Reliable Asynchronous Operation

‘» 10 : : :
E Il ocssD Il FT-PASSD (wio shift) [Jlll FT-PASSD (with shift)| |
>
26
2
< 4
S 21
o
o0
j: 256 | 512 | 1024 | 256 | 512 | 1024 | 256 | 512 | 1024 | 256 | 512 | 1024 | 256 | 512 | 1024 | 256 | 512 | 1024 | 256 | 512 | 1024 | 256 | 512 | 1024
hm_0 prn_0 prn_1 proj_2 prxy_0 src1_1 usr_1 usr_2
(@)
7 10k ‘ :
E Il oCssO FT-PASSD (w/o shiftJlll FT-PASSD (with shift)
> 1k
c
k)
Ko}
g 104
g
£ 14
é 256 | 512 | 1024 | 256 | 512 | 1024 | 256 | 512 | 1024 | 256 | 512 | 1024 | 256 | 512 | 1024 | 256 | 512 | 1024 | 256 | 512 | 1024 | 256 | 512 | 1024
= hm_0 prn_0 prn_1 proj_2 prxy_0 src1_1 usr_1 usr_2
(b)

FIGURE 15. Experimental results of changing buffer size (256-1024 kB per way) and block 1/0 workload.

2

Il FT-PASSD (w/o shift) [Jlll FT-PASSD (with shift)] ‘ [—=— Copied page count|
T T T T

1299 1416 | 1281 | \
. + 786 . 792 975

S
o
=1
=

10k

Re-program time (ms)

hm_0 prn_0 prn_1 proj_2 prxy_ 0 src1_1 usr_1 usr_2

(a) Re-program time after program failure

1.0 Il 256 <B | |
8 I 512 kB
g8 I 1024 kB[
§ 0.6
£
3044
L
g 0.24

0.0

hm_0 prn_0 prn_1 proj_2 prxy_ 0 srci1_1 usr_1 usr_2

(b) Buffer utilization at the time of program failure

FIGURE 16. Analysis of long latency due to program failure.

complete the program. On the contrary, as FT-PASSD (with
shift) immediately retries the program, all operations were
completed within 10 ms regardless of the number of pages
to be copied.

Figure 16 (b) shows the buffer utilization when a program
failure occurs. In workloads with a particularly long response
delay (hm_0, prn_1, proj_2), buffer utilization is high at the
time of program failure. This explains why the long response
delay occurred in only some workloads even though many
page copies occurred in most workloads. In addition, since
the utilization of the buffer varies from time to time in real
workloads, the result of the experiment can be completely
different depending on the time when a program failure
occurs. In conclusion, the proposed write reliability policy
solves the problem of unpredictable and long response delays
that are caused by program failure during asynchronous write
operations in FT-PASSD.

195538

VI. CONCLUSION

In this study, it was experimentally verified that the
synchronous write operation of the existing PASSD caused
performance degradation; hence, a PASSD with a built-in
reliability policy was proposed to enable an asynchronous
write operation. Our proposed policy can ensure write reli-
ability without a response delay, thereby solving the data loss
problem that may be caused by asynchronous write opera-
tions. In addition, because the additional hardware resources
required are only a small amount of volatile memory, the pro-
posed program failure manager appears to be applicable to
most existing PASSDs. The experimental results indicated
an average reduction of 45.6% in write response time in
certain workloads. Moreover, the proposed write reliability
policy effectively eliminates the long response delay caused
by program failure.

ACKNOWLEDGEMENT
The authors would like to thank anonymous reviewers for
their valuable feedback and comments.

REFERENCES

[1] H.Kim, S.-J. Ahn, Y. G. Shin, K. Lee, and E. Jung, “Evolution of NAND
flash memory: From 2D to 3D as a storage market leader,” in Proc. IEEE
Int. Memory Workshop (IMW), May 2017, pp. 1-4.

P. Cappelletti, “Non volatile memory evolution and revolution,” in IEDM
Tech. Dig., Dec. 2015, pp. 10.1.1-10.1.4.

J. Kim, P. Park, J. Ahn, J. Kim, J. Kim, and J. Kim, “SSDcheck: Timely
and accurate prediction of irregular behaviors in black-box SSDs,” in Proc.
51st Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2018,
pp. 455-468.

M. Hao, G. Soundararajan, D. Kenchammana-Hosekote, A. A. Chien, and
H. S. Gunawi, “The tail at store: A revelation from millions of hours of disk
and SSD deployments,” in Proc. 14th USENIX Conf. File Storage Technol.
(FAST), 2016, pp. 263-276.

Y. T. Jin, S. Ahn, and S. Lee, ““Performance analysis of NVMe SSD-based
all-flash array systems,” in Proc. IEEE Int. Symp. Perform. Anal. Syst.
Softw. (ISPASS), Apr. 2018, pp. 12-21.

S. Koh, C. Lee, M. Kwon, and M. Jung, “Exploring system
challenges of ultra-low latency solid state drives,” in Proc. 10th
USENIX Workshop Hot Topics Storage File Syst. (HotStorage),
Jul. 2018. Accessed: Oct. 27, 2020. [Online]. Available: https://www.
usenix.org/conference/hotstorage 1 8/presentation/koh

[2

—

[3]

[4]

[5

—

[6]

VOLUME 8, 2020

D. Lee et al.: Improving Write Performance Through Reliable Asynchronous Operation

IEEE Access

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

S. Yan, H. Li, M. Hao, M. H. Tong, S. Sundararaman, A. A. Chien,
and H. S. Gunawi, “Tiny-tail flash: Near-perfect elimination of garbage
collection tail latencies in NAND SSDs,” ACM Trans. Storage, vol. 13,
no. 3, pp. 1-26, 2017.

N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse, and
R. Panigrahy, “Design tradeoffs for SSD performance,” in Proc. USENIX
Annu. Tech. Conf., vol. 8, 2008, pp. 57-70.

M. Jung and M. T. Kandemir, ““Sprinkler: Maximizing resource utilization
in many-chip solid state disks,” in Proc. IEEE 20th Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2014, pp. 524-535.

J. Yang, N. Plasson, G. Gillis, N. Talagala, and S. Sundararaman,
“Don’t stack your log on my log,” in Proc. 2nd Workshop Inter-
act. NVM/Flash Operating Syst. Workloads (INFLOW), Oct. 2014.
Accessed: Oct. 27, 2020. [Online]. Available: https://www.usenix.
org/conference/inflow 14/workshop-program/presentation/yang

Y. Lu, J. Shu, and W. Zheng, “‘Extending the lifetime of flash-based storage
through reducing write amplification from file systems,” in Proc. 11th
USENIX Conf. File Storage Technol. (FAST), 2013, pp. 257-270.

W. Kang and S. Yoo, “Dynamic management of key states for reinforce-
ment learning-assisted garbage collection to reduce long tail latency in
SSD,” in Proc. 55th Annu. Design Autom. Conf., Jun. 2018, pp. 1-6.
T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and H.-J. Song,
“A survey of flash translation layer,” J. Syst. Archit., vol. 55, nos. 5-6,
pp. 332-343, May 2009.

Q. Luo, R. C. C. Cheung, and Y. Sun, “Dynamic virtual page-based flash
translation layer with novel hot data identification and adaptive parallelism
management,” IEEE Access, vol. 6, pp. 56200-56213, 2018.

J. Li, X. Xu, B. Huang, J. Liao, and X. Peng, “Frequent pattern-based
mapping at flash translation layer of solid-state drives,” IEEE Access,
vol. 7, pp. 95233-95239, 2019.

C.-H. Wu, D.-Y. Wu, H.-M. Chou, and C.-A. Cheng, “Rethink the design of
flash translation layers in a component-based view,” IEEE Access, vol. 5,
pp. 12895-12912, 2017.

Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. S. Unsal, and
K. Mai, “Flash correct-and-refresh: Retention-aware error management
for increased flash memory lifetime,” in Proc. IEEE 30th Int. Conf. Com-
put. Design (ICCD), Sep. 2012, pp. 94-101.

Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Crista, O. S. Unsal, and
K. Mai, “Error analysis and retention-aware error management for nand
flash memory,” Intel Technol. J., vol. 17, no. 1, pp. 140-164, May 2013.
M. Bjgrling, J. Gonzélez, and P. Bonnet, “LightNVM: The Linux open-
channel SSD subsystem,” in Proc. 15th USENIX Conf. File Storage Tech-
nol. (FAST), 2017, pp. 359-374.

A. Batwara, “Leveraging host based flash translation layer for
application acceleration,” in Proc. Flash Memory Summit, Aug. 2012.
Accessed: Oct. 27, 2020. [Online]. Available: http://www.flashmemory
summit.com/English/Collaterals/Proceedings/2012/20120821_TB11_
Batwara.pdf

J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang, “SDF:
Software-defined flash for web-scale Internet storage systems,” ACM
SIGPLAN Notices, vol. 49, no. 4, pp. 471-484, 2014.

M. Bjgrling, “Zone append: A new way of writing to zoned stor-
age,” in Proc. Linux Storage Filesyst. Conf. (Vault), Feb. 2020.
Accessed: Oct. 27, 2020. [Online]. Available: https://www.usenix.org/
sites/default/files/conference/protected-files/vault20_slides_bjorling.pdf
M. Bjgrling, “Open-channel solid state drives,” Vault, vol. 12, p.22,
Mar. 2015.

M. Bjgrling, “From open-channel SSDs to zoned namespaces,” in
Proc. Linux Storage Filesyst. Conf. (Vault), Feb. 2019. Accessed:
Oct. 27, 2020. [Online]. Available: https://www.usenix.org/sites/default/
files/conference/protected-files/nsdi19_slides_bjorling.pdf

D. Le Moal and T. Yao, “Zonefs: Mapping the POSIX file system inter-
face to zoned block device accesses,” in Proc. Linux Storage Filesyst.
Conf. (Vault), Feb. 2020. Accessed: Oct. 27, 2020. [Online]. Available:
https://www.usenix.org/system/files/vault20_slides_moal.pdf

M. Lee, D. H. Kang, M. Lee, and Y. I. Eom, “Improving read performance
by isolating multiple queues in NVMe SSDs,” in Proc. 11th Int. Conf.
Ubiquitous Inf. Manage. Commun., 2017, pp. 1-6.

H. Qin, D. Feng, W. Tong, J. Liu, and Y. Zhao, “QBLK: Towards fully
exploiting the parallelism of open-channel SSDs,” in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE), Mar. 2019, pp. 1064-1069.

J. Jhin, H. Kim, and D. Shin, “Optimizing host-level flash translation layer
with considering storage stack of host systems,” in Proc. 12th Int. Conf.
Ubiquitous Inf. Manage. Commun., 2018, pp. 1-4.

M. Bjgrling, J. Axboe, D. Nellans, and P. Bonnet, “Linux block IO:
Introducing multi-queue SSD access on multi-core systems,” in Proc. 6th
Int. Syst. Storage Conf., 2013, pp. 1-10.

VOLUME 8, 2020

(30]

(31]

(32]

(33]

(34]

(35]

(36]
(37]

(38]

(391

[40]

(41]

[42]

(43]

(44]

(45]

[46]

(47]

(48]

[49]

[50]

[51]

(52]

(53]

S. Kim, Y. Kang, and D. Shin, “Fsync-aware multi-buffer FTL for improv-
ing the fsync latency with open-channel SSDs,” in Proc. IEEE Non-
Volatile Memory Syst. Appl. Symp. (NVMSA), Aug. 2019, pp. 1-2.

Z. Shen, F. Chen, Y. Jia, and Z. Shao, “DIDACache: An integration of
device and application for flash-based key-value caching,” ACM Trans.
Storage, vol. 14, no. 3, pp. 1-32, Nov. 2018.

G. S. Choi and B.-W. On, “Study of the performance impact of a cache
buffer in solid-state disks,” Microprocess. Microsyst., vol. 35, no. 3,
pp. 359-369, May 2011.

Y. Yao, X. Kong, J. Zhou, X. Xu, W. Feng, and Z. Liu, “An advanced
adaptive least recently used buffer management algorithm for SSD,” IEEE
Access, vol. 7, pp. 33494-33505, 2019.

J. Niu, J. Xu, and L. Xie, “Hybrid storage systems: A survey of architec-
tures and algorithms,” IEEE Access, vol. 6, pp. 13385-13406, 2018.

B. Schroeder, A. Merchant, and R. Lagisetty, “Reliability of NAND-
based SSDs: What field studies tell us,” Proc. IEEE, vol. 105, no. 9,
pp. 1751-1769, Sep. 2017.

A. Goda and K. Parat, ““Scaling directions for 2D and 3D NAND cells,” in
IEDM Tech. Dig., Dec. 2012, pp. 1-2.

P. Cappelletti, “Non volatile memory evolution and revolution,” in I[EDM
Tech. Dig., Dec. 2015, pp. 1-10.

Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error characteriza-
tion, mitigation, and recovery in flash-memory-based solid-state drives,”
Proc. IEEE, vol. 105, no. 9, pp. 1666—1704, Sep. 2017.

R. Ma, F. Wu, M. Zhang, Z. Lu, J. Wan, and C. Xie, “RBER-aware
lifetime prediction scheme for 3D-TLC NAND flash memory,” IEEE
Access, vol. 7, pp. 44696-44708, 2019.

S. J. Kwon, “Address translation layer for byte-addressable non-volatile
memory-based solid state drives,” IEEE Access, vol. 7, pp. 73207-73214,
2019.

N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares,
F. Trivedi, E. Goodness, and L. R. Nevill, “Bit error rate in NAND flash
memories,” in Proc. IEEE Int. Rel. Phys. Symp., Apr. 2008, pp. 9-19.

G. Dong, N. Xie, and T. Zhang, “On the use of soft-decision error-
correction codes in NAND flash memory,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 58, no. 2, pp. 429-439, Feb. 2011.

Y. Cai, Y. X. Luo, S. Ghose, E. F. Haratsch, K. Mai, and O. Mutlu, “Read
disturb errors in MLC NAND flash memory,” IPSI BgD Trans. Internet
Res., vol. 14, no. 2, pp. 82-93, Jul. 2018.

Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error patterns in MLC
NAND flash memory: Measurement, characterization, and analysis,” in
Proc. Design, Autom. Test Eur. Conf. Exhib., Mar. 2012, pp. 521-526.

P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang, and J. Cong, “An
efficient design and implementation of LSM-tree based key-value store on
open-channel SSD,” in Proc. 9th Eur. Conf. Comput. Syst., 2014, pp. 1-14.
J. Zhang, Y. Lu, J. Shu, and X. Qin, “FlashKV: Accelerating KV perfor-
mance with open-channel SSDS,”” ACM Trans. Embedded Comput. Syst.,
vol. 16, no. 5, pp. 1-19, 2017.

Y. Lu, J. Zhang, Z. Yang, L. Pan, and J. Shu, “OCStore: Accelerating
distributed object storage with open-channel SSDs,” in Proc. IEEE 39th
Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2019, pp. 271-281.

Y. Lu, J. Shu, and J. Zhang, “Mitigating synchronous I/O overhead in
file systems on open-channel SSDs,” ACM Trans. Storage, vol. 15, no. 3,
pp. 1-25, Aug. 2019.

K. Kim, E. Lee, and T. Kim, “HMB-SSD: Framework for efficient exploit-
ing of the host memory buffer in the NVMe SSD,” IEEE Access, vol. 7,
pp. 150403-150411, 2019.

C. N. Y. Avila, J. Hsu, A. K.-T. Mak, J. Chen, and G. S. Shah, ‘“Pro-
gram failure handling in nonvolatile memory,” U.S. Patent 8132045,
Mar. 6, 2012.

S. Natarajan and W. Tran, “Internal copy to handle nand program fail,”
U.S. Patent 10 658 056, May 19, 2020.

3D NAND Flash Memory Specification, Micron Technol., Boise, ID, USA,
2016.

(2008). SNIA Trace Repository, MS Server Block I/O Trace. Accessed:
Dec. 9, 2019. [Online]. Available: http://iotta.snia.org/tracetypes/

DAEYONG LEE received the B.S. degree from
the School of Electronic Engineering, Soongsil
University, Seoul, South Korea, in 2014, and the
M.S. degree from the Department of Electronics
and Computer Engineering, Hanyang University,
Seoul, in 2017, where he is currently pursuing the
Ph.D. degree with the Department of Electronics
and Computer Engineering.

His research interests include embedded sys-
tems and NAND flash memories.

195539

IEEE Access

D. Lee et al.: Improving Write Performance Through Reliable Asynchronous Operation

195540

JAEWOOK KWAK received the B.S. and M.S.
degrees in electronics and computer engineering
from Hanyang University, Seoul, South Korea,
in 2012 and 2014, respectively, where he is cur-
rently pursuing the Ph.D. degree in electronics and
computer engineering.

His research interests include high-performance
computing, computer architecture, and low-power
systems.

GYEONGYONG LEE received the B.S. degree
from the Department of Electronic Engineering,
Hanyang University, South Korea, in 2014, where
he is currently pursuing the Ph.D. degree with the
Department of Electronics and Computer Engi-
neering.

His research interests include embedded com-
puting and NAND flash memories.

MOONSEOK JANG received the B.S. degree in
electronic engineering from Hanyang University,
Seoul, South Korea, in 2014, where he is currently
pursuing the Ph.D. degree with the Department of
Electronics and Computer Engineering.

His research interests include computer archi-
tecture, embedded systems, and flash memory
storage.

JOONYONG JEONG received the B.S. degree
from the Department of Information System,
Hanyang University, Seoul, South Korea, in 2015,
where he is currently pursuing the Ph.D. degree
with the Department of Electronics and Computer
Engineering.

His research interests include NAND flash-
based storage systems, databases, and key-value
stores.

KEXIN WANG (Student Member, IEEE) received
the B.S. degree from the School of Optoelec-
tronic Engineering, Changchun University of Sci-
ence and Technology, in 2017. She is currently
pursuing the Ph.D. degree with the Department of
Electronic and Computer Engineering, Hanyang
University, Seoul, South Korea.

Her research interest includes high-performance
solid state drive architecture.

JUNGWOOK CHOI (Member, IEEE) received the

y B.S. and M.S. degrees in electrical and computer

engineering from Seoul National University, South

k Korea, in 2008 and 2010, respectively, and the

Ph.D. degree in electrical and computer engineer-

' ing from the University of Illinois at Urbana—

y Champaign, USA, in 2015. He worked at the

d IBM T. J. Watson Research Center as a Research

' Staff Member, from 2015 to 2019. He is currently

an Assistant Professor with Hanyang University,

South Korea. His main research interest includes efficient implementa-

tion of deep learning algorithms. He has received several research awards,

such as the DAC 2018 Best Paper Award and has actively contributed

to academic activities, such as being a Technical Program Committee of

DATE 2018-2020 (Co-Chair) and DAC 2018-2020 and a Technical Com-
mittee (DiSPS) of the IEEE Signal Processing Society.

YONG HO SONG (Member, IEEE) received the
B.S. and M.S. degrees in computer engineer-
ing from Seoul National University, Seoul, South
Korea, in 1989 and 1991, respectively, and the
Ph.D. degree in computer engineering from the
University of Southern California, Los Angeles,
CA, USA, in 2002.

He is currently a Professor with the Department
of Electronic Engineering, Hanyang University,
Seoul, and a Senior Vice President of Samsung
Electronics Company Ltd. His current research interests include system
architecture and software systems of mobile embedded systems, includ-
ing SoC, NoC, multimedia on multicore parallel architecture, and NAND
flash-based storage systems.

Prof. Song has served as a Program Committee Member in several presti-
gious conferences, including the IEEE International Parallel and Distributed
Processing Symposium, the IEEE International Conference on Parallel and
Distributed Systems, and the IEEE International Conference on Computing,
Communication, and Networks.

VOLUME 8, 2020

