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ABSTRACT Gait is a significant factor that affects human health, and monitoring a person’s gait with
sensing devices during daily life can detect abnormal gait events that affect numerous physical health
problems. In particular, flat feet can cause changes in alignment conditions of the foot, ankle, leg, pelvis
and spine. The primary problem with previous studies of wearable devices for measuring gait have focused
on quantitatively monitoring the degree of gait rather than the limited gait ability. The existing method of
feeding back the degree of gait or activity does not consider the severity of the subject and is insufficient
for qualitative evaluation or training of gait. The significance of this study is development of convenient
detecting and long-term tracking tools that can be used by both patients and clinicians for prescreening flat
feet and monitoring the progress of flat feet treatment. For wearable devices for flatfoot detection to be most
effective, detection systems and algorithms must be accurate, robust, reliable and computationally-efficient.
In this paper, we developed an integrated smart wearable gait-monitoring device comprised of three sensors:
front force, rear force, and an ankle flex sensor. We propose a new flat feet detection methodology based
on a dynamic sensing window and a deep neural network with scaled principal component analysis (PCA).
We tested 24 subjects, including both those with healthy gait and flat-feet-affected gait. Our study shows that
the proposed sensing devices could be worn comfortably. The proposed deep neural network (DNN) model
outperformed the other five classifier algorithms considered, and the area under the curve (AUC) value of
the method was 87.1%. This wearable device can thus be easily and simply used both by patients and doctors
to monitor the progress of flat feet and prescreen for possible gait problems in daily life.

INDEX TERMS DNN, wearable sensor, gait monitoring, multi-sensor, flatfoot, flexible sensor, force sensor,

sock shoes.

I. INTRODUCTION

The individual walking characteristic called gait is considered
an essential sign of human health and a useful biometric
marker [1]-[3]. Among the factors affecting human gait,
walking speed is a reasonable and sensitive measure for
monitoring and assessing functional weakness and general
health and, thus, gait speed is considered the sixth vital
sign [1], [2]. Both functional and physiological changes in
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gait are indicative and predictive of various health-related
factors, including the response to rehabilitation, mobility dis-
ability, falls, and cognitive decline [2]. Negative progression
of gait is connected to clinical changes in life quality and
health conditions [4]. Therefore, continuous and natural mon-
itoring of gait during daily life, rather than during a hospital or
clinical examination, can provide diverse information related
to an individual’s health.

Flatfoot, also called pes planus or fallen arches, is a pos-
tural deformity in which the arches of the foot are collapsed
and the entire sole of the foot lays against the ground, either

VOLUME 8, 2020


https://orcid.org/0000-0001-5013-446X
https://orcid.org/0000-0003-1414-5430
https://orcid.org/0000-0002-1929-8447

J.-Y. Kim et al.: Flat-Feet Prediction Based on a Designed Wearable Sensing Shoe and a PCA-Based Deep Neural Network Model

IEEE Access

completely or nearly completely. The structure of flatfoot is
related to the biomechanics of the lower leg and affects its
functionality. The arch provides flexibility and springiness
between the forefoot and the hindfoot, allowing weight forces
on the foot to be distributed in a way that minimizes negative
effects on the bones of the leg and thigh [5]. Flatfoot can
cause conditions related to the alignment of the foot, ankle,
leg, pelvis and spine. Since these foot conditions are unstable,
related joints experience excessive and unusual movements,
and may become easily tired or damaged. In the long term,
flatfoot can also cause numerous health problems, such as
joint inflammation, hallux valgus, heel pain syndrome, inter-
digital neuroma, diverse foot deformities and pain. In addi-
tion, to correct foot instability, the tibialis anterior becomes
too strongly involved, which may lead to shin splints, causing
pain at the front of the shin. Such flat feet require a functional
foot brace based on medical diagnosis to avoid progression of
complex foot abnormality [6], [7].

A visual assessment based on an optical motion capture
system or force plate is the gold standard for examining gait
events. Such monitoring systems are expensive, large, and
only able to measure human gait within a limited space. They
are limited to clinical usage or research and are not suffi-
ciently convenient and comfortable enough for use in normal
living environments. The use of alternative sensors for cap-
turing gait events, such as foot switch or force sensitive resis-
tors [8]—[11], air pressure sensors [12], [13], Wi-Fi signals as
a gait sensor [4], accelerometer sensors [14]-[18] and iner-
tial measurement unit sensors [9], [19]-[35] has been stud-
ied. However, these methodologies have several limitations
caused by their sensing characteristics. Although force sen-
sors and inertial measurement unit (IMU) sensors including
the accelerometer, gyroscope and magnetometer are widely
considered practical alternatives, they are unable to mea-
sure the detailed ankle movements related to flatfoot events.
A miniaturized IMU sensor makes single-point measurement
possible for estimation of gait problems. However, flatfoot
events are somewhat difficult to detect using such sensors.
Therefore, we include a flexible sensor on the human ankle
to measure the detailed angles of foot movement directly.

In this paper, we present an integrated wearable gait mon-
itoring system that can detect an individual’s flatfoot events
using a combination of flexible and force sensors with data
processing via deep neural network classification, employing
gait data from 24 subjects. The proposed methodology auto-
matically extracts data segments based on front and rear force
sensors, so that the user is not required to keep walking on a
designated path but, instead, can freely walk in an open space.
It will automatically filter non-gait data, extract gait-related
features and detect flatfoot events. The proposed data analysis
of gait signals consists of three data processing modules,
including 1) segmentation of one gait cycle, 2) flatfoot-related
feature extraction, and 3) classification module for detec-
tion of flatfoot events. The segmentation of one gait cycle
must capture the exact timing and intervals of heel strikes.
In general, the interval from heel strike to heel strike is
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considered one gait cycle, so we used the front and rear
force sensors as inputs and recorded the sequential activa-
tion of sensors. Flatfoot-related features can be extracted
by the flexible sensor, reflecting the ankle movements that
occur throughout the gait cycle. The classification module for
detecting flatfoot events uses scaled PCA and a deep neural
network.
The present study makes the following contributions:

1) Design of a new type of wearable sock shoe that is
comfortable and provides flexibility and adaptability
for individuals with unique or unusual foot shapes.

2) Development of a sensing device to measure gait cycles
and ankle movements based on the integration of force
and flexible sensors.

3) Development of a feature-extraction algorithm for
generating 12 features based on combination of three
different sensor signals and building classification
algorithms for detecting flat feet events based on the
extracted features.

4) A prototype of the proposed integrated system was
implemented and tested for experiments in typical
indoor spaces.

The results demonstrated the accuracy and comfort of the
wearable device for continuous use. The paper is organized as
follows. Related work is described in Section 2. The proposed
flat feet detection system is introduced in Section 3, followed
by results and discussion in Section 4. Our conclusions are
provided in Section 5.

Il. RELATED WORK

A. FLATFOOT DIAGNOSIS

Flatfoot is defined as a dynamic deformity, which involves
flattening of the medial arch. This deformity may originate
from both posterior tibial tendon insufficiency and failure
of the capsular and ligamentous structures of the foot [36].
The gold standard for evaluating adult flatfoot is the weight-
bearing radiograph. Radiographic evaluation requires views
from all possible directions, i.e., the anteroposterior, lat-
eral, and hindfoot views. The images were evaluated by
assessing the degree of arch collapse by measuring the first
tarsometatarsal lateral angle and forefoot abduction at the
talonavicular joint [37]. Based on the radiological images,
four stages of flatfoot have been proposed to classify the
severity of flatfoot (Table 1) [38], [39]. Magnetic resonance
imaging (MRI) [40] is considered a useful tool for diagnosis
of flatfoot and planning of surgical procedures. Some stud-
ies have indicated that ultrasound may be more useful for
assessing the posterior tibial tendon than MRI, which is more
time consuming and expensive [41]. Clinical assessment and
examination, however, is the most widely used to identify the
deformity because it is relatively reliable and diagnostic con-
venient. The Hiibscher maneuver (Jack’s test) is a functional
test to evaluate the flexibility of flatfoot. The test is performed
with the patient weight bearing on the foot flat, while the
clinician dorsiflexes the hallux and watches for decreasing of
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TABLE 1. Stages of flatfoot.

Stage  Description

I No deformity (preexisting relative flatfoot often present)
Ila Moderate flexible deformity (minimal abduction through
talonavicular joint, <30% talonavicular uncoverage)
Severe flexible deformity with either abduction deformity
IIb through talonavicular joint (i.e., >30%-40% talonavicular
uncoverage) or subtalar impingement
Fixed deformity (involving the triple-joint complex)
111 Hindfoot valgus and flexible ankle valgus without significant
IVa ankle arthritis
Hindfoot valgus with rigid ankle valgus or flexible deformity
IVb with significant ankle arthritis

the arch. Jack’s test can differentiate between dynamic (flex-
ible) flatfoot and static (rigid) flatfoot [42]. Navicular drop
test is widely used in clinical settings and considered as
a reproducible, valid and simple test to evaluate foot arch
compare to the other tests using footprint parameters. This
test is statistically significant in providing correlation to the
actual arch angle [43].

Flatfoot deformity is related to changes in mobility and
postural stability. Flatfoot causes failure of foot locking and
reduced propulsive force during the gait cycle, which can
increase the risk of falls [44], [45]. It has been reported that
the flatfoot-affected population shows a significant decrease
in gait cadence, speed, stride length, and step width. In addi-
tion, hindfoot abduction in the terminal stance and pre-swing
phase is lost [46]. This deformity not only generates abnormal
foot pressure during walking, but is also linked to injury
possibility and the development of frequent pain [47].

B. DESIGN OF THE WEARABLE DEVICE

Designing wearable sensing system shoes requires a mix of
creativity and practical design to develop a stylish and func-
tional item. Understanding the potential needs of users when
designing wearable technologies is essential. According to
Ferraro and Ugur (2011), “Wearability means ability to wear
and concern the physical shape of wearables and their active
relationship with the human form.” (pg. 3) [48]. Wearable
items act as a second skin outside of the body, providing
protection based on their shape and form. Therefore, when
designing wearable technologies, it is essential to understand
the interactions between the human body and the wearable
object, and to use flexible shapes that do not interrupt human
motion. Therefore, shoes must fit appropriately and comfort-
ably to facilitate adoption of the shoes by consumers and
maximize the benefits to an individual’s mobility.

The Institute of Complex Engineered Systems (ICES)
suggests that designers should consider five wearability
parameters when designing wearable products: a) attachment,
b) size, ¢) human movement, d) unobtrusiveness, and e)
body motion. According to the ICES, the top of the foot
is an unobtrusive area [48]. The study of non-obtrusive
shapes and their adaptation to the contours of the foot is
critical when designing shoes. In addition, when developing
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a wearable object, comfort, adaptableness to varying forms
of the foot, and the relationship between the wearable and
the foot are vital aspects that must be considered [48].
Thus, important factors in the design of wearable shoes are
functionality, wearability, comfort and fashion. Moreover, the
design should be attractive to wearers from all age groups and
communities.

1Il. DESIGN OF THE PROPOSED WEARABLE SHOE

The starting point of this project was the necessity for wear-
able technology to be available to consumers. During the
initial phase, we employed an interdisciplinary team of a
fashion designer, engineers, a customer, and a medical pro-
fessional, who were tasked with identifying design issues.
Each customer has a different heel shape and foot width.
In addition, feet swell at the end of the day, and this effect
is stronger in individuals with flat feet than in those without
flat feet. However, shoes that are currently on the market
do not address the needs of consumers. The optimal shoes
for flat feet depend on the person’s gait cycle, range of
motion, and individual foot characteristics. The design pro-
posed here focuses on resolving the issues of fit and comfort
for consumers. To deal with functional abilities, the designer
considered the movements, posture, and physical state of the
consumer to develop ergonomic and enveloping shapes for
the foot. Not only is the technical aspect of shoe design
important but the aesthetics of shoe design are also crucial,
as consumers will be hesitant to buy a product if its design
is unsatisfactory. A design that embraces aesthetic concerns
and considers customer needs will also meet the demands of
human anatomy and support activity by the user.

The footwear industry has adopted various textiles and
materials to improve the areas of fit, comfort, and functional-
ity. One recent design trend in the athletic footwear market is
that of knitted shoe uppers. Our design originated from a knit
sock. A sock is an item of clothing worn on the foot and ankle.
It provides protection from temperature changes and injury
while absorbing sweat to keep feet dry and free from fungal
growth. In ancient times, socks were made from leather or
matted hair, while today, machine knitting is the predominant
method used to satisfy the ready-to-wear industry. A knit
sock will adapt to any foot shape to fit perfectly. Therefore,
we applied the concept of a knit sock to our wearable shoe
and designed a knit sock-style shoe with a flat wedge heel that
can be pulled on or slipped on. Knit shoes allow placement
of a flexible sensing device at the ankle. For this reason,
the designer selected four-way stretch knit, which is suffi-
ciently flexible to adapt to the anatomy of the feet. The sock
shoes provide flexibility and adaptability for individuals with
unique or unusual foot shapes. Fig. 1 shows the wearable gait
monitoring shoe (WGMS) designed here with the positions
of three sensors and the embedded system.

IV. THE PROPOSED SENSING ENVIRONMENT
Fig. 2 shows an overall system diagram and data flow of
the proposed system. The WGMS consists of an embedded
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FIGURE 1. Physical layout of the wearable sensing shoe.
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FIGURE 2. Overall system diagram and data flow of the gait monitoring
system developed for detection of flatfoot.

system device, two force sensors and a flexible sensor. This
wearable shoe measures gait-related signals and transmits the
raw signals to a smart phone through Bluetooth communica-
tion. The sampling rates of the signals are 100 Hz, so the rate
of data from the sensing device to the smart phone is 600 bytes
per second (2 bytes x 100 Hz x 3 sensing signals). The
smart phone performs initial window segmentation to extract
the 12 initial feature data, sent to a computer through Wi-Fi
or LTE communication. Since the initial feature data trans-
mission occurs at every gait cycle, the amount of data that
needs to be transferred over LTE or WiFi for a typical use case
varies with the individual person. Murray, et al., 1964 stated,
“The average duration of one gait cycle for men ranges from
0.98 to 1.07 seconds”. We can thus determine the transferred
amount of 12 floating-point data ranges between 28.57 bytes
/ seconds (28 byte / 0.98s) and 26.17 (28 byte / 1.07s). In the
computer, diverse-data processing modules, including feature
extraction, scaled PCA, and classification based on the deep
neural network (DNN) are executed to detect flat feet events.
After processing, the results are sent back to the smart phone
to provide feedback to the user.

A. SENSING DEVICE

The sensing system is illustrated in Fig. 3. Direct current
(DC) is applied to the force and flexible sensors to measure
the movements that occur during gait. To achieve an opti-
mal range of sensor resistance measurements, analog condi-
tioning circuitry utilizes a simple voltage divider with two
types of sensors, including a flexible sensor 4.5" in length
(flex sensor by Spectra symbol) and two force-sensitive
resistors (FSR 402 by Interlink Electronics). A microcon-
troller (K20P64M72SF1 by Freescale Semiconductor, Inc.)
acts as the control center, and can be programmed onboard
through a universal serial bus (USB) connection. The ana-
log signals are sampled at 100 Hz via an analog-to-digital
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FIGURE 3. Block diagram of the wearable gait monitoring shoe system;
the device is capable of wirelessly transmitting data to a remote site
(data forwarding).

converter (ADC) with 10-bit resolution on the microcon-
troller. Electric power is drawn from a single lithium ion
battery with a nominal voltage of 3.7 V and a capacity
of 500 mAh. The battery can be recharged directly from
a USB port by an onboard single-cell lithium ion battery
charger (MCP73831 by Microchip). A step-up/step-down
charge pump (LTC3240 by Linear Technology) voltage reg-
ulator produces a fixed, regulated output of 3.3 V to power
the digital devices and peripheral components. The embed-
ded system operates as a data-forwarding device using a
2.4-GHz Bluetooth transceiver module (ZG-B23090W). The
ZG-B23090W system uses a regular Bluetooth module based
on the CSR BC417 chip with MX 29LVS800CBXBI-70G flash
memory. Real-time measurements are transmitted to a smart
phone with a Bluetooth transceiver. We set the baud rate of
the Bluetooth to 115200 bits per second (bps).

B. EXPERIMENTS

Twenty-five  participants  (nine  females:  weight
55.8 £ 5.5 kg, height 160.8 &+ 2.5 c¢m; 16 males: weight
72.3 + 6 kg, height 175.2 & 5.5 cm) were involved in experi-
ments for collection of gait data. Among them, 19 participants
had flatfoot and six participants had normal foot conditions.
These diagnoses were conducted by an expert clinician using
the navicular drop test [49], which compares the length from
the navicular to the ground between weight-bearing and non-
weight-bearing portions of the gait cycle. Each user wore the
WGMS on the right foot during the experiment. Participants
were asked to walk for five gait cycles, turn around and
walk back to the starting point for each data collection. They
were asked to walk under five different conditions: tandem
walking, walking with step widths matching their pelvic
width, walking with a 1.5-cm wedge insole under the front
foot, walking with a 1.5-cm wedge insole at the heel, and
normal waking.

C. SENSOR SIGNALS
The proposed WGMS generates three signals related to the
movements of the toe, heel and ankle, which are essential
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(a) Heel-Strike (b) Toe-Touch

(c) Heel-Off

(d) Swing (e) Heel-Strike

FIGURE 4. Gait cycle with the proposed WGMS and five sequential gait steps.

factors in gait movements. In general, the gait process con-
sists of two phases: the stance phase and swing phase. The
stance phase is the period when the foot is in contact with
the ground. This phase can be determined as the period from
heel-strike (HS) to toe-off (TO). The swing phase is the
period when the foot is moving above the ground. This can be
described as the period from TO to HS. Generally, the stance
phase occupies about 60% and swing phase about 40% of the
gait process [50], [51]. Fig. 4 shows one gait cycle of a foot
equipped with the proposed WGMS. Fig. 5 shows signals
from the three sensors over three consecutive gait cycles.
It shows that the front and rear force sensors detect the strike
or lifting of the toe and heel, and the logical combination
of these two events can be used to identify four gait events,
namely HS, toe-touch (TT), heel-off (HO) and swing. The
flexible sensor provides information about ankle movements,
which is segmented by the force sensors.

V. PROPOSED DATA ANALYTICS

A. FEATURE EXTRACTION

In gait event analysis, it is essential to determine the size
of the one-unit window that represents a single gait cycle.
People have different gait cycle interval times, so the one-
unit window size varies from person to person. Some gaits
differ based on gait speed and direction. The proposed system
defines the one-window length from the typical gait cycle as
from one HS to the next HS. To measure this time interval pre-
cisely, the rear force sensor is used to identify the exact timing
of HS based on rising edge signals of the rear force sensor,
which is followed by TT, HO and swing. Fig. 5 (c) shows
the filtered signal of the rear force sensor including HS and
HO. Fig. 5 (b) shows the filtered signal of the front force
sensor including TT and TO. Fig. 5 (d) shows the signal from
the flexible sensor, representing dynamic ankle movements.
We extracted twelve features from the combined amplitudes
and intervals of the gait event factors, as shown in Table 2.
The eight intervals considered are from the 1* HS to the 2"
HS, TT, HO, TO, 1% and 2™ flex peaks, and 1%' and 2" flex
valleys. We also extracted four amplitudes, representing the
first and second peaks and valleys from the flex sensor. These
12 features were the inputs for the preprocessing module
described in the next section.
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TABLE 2. Intervals and amplitudes extracted from sensor data.

Feature Name Symbol Definition

F1 Heel Strike Interval HS; 2Mgs — 1%HS

F2 Toe Touch Interval from HS TT; 2MTT— 19HS

F3 Heel Off Interval from HS HO; 2MHO — 19HS

F4 Toe Off Interval from HS T0; 270 — 19HS

F5 Flex Sensor 1% Peak Interval from HS FP;; IP; — 19HS

F6 Flex Sensor 1* Valley Interval from HSFV;; 13, — 1HS

F7 Flex Sensor 2" Peak Interval from HS FP,; 2Mp,— 19HS
Flex Sensor 2™ Valley Interval from

F8 FV5,; 20y, — 19HS
HS

F9 Flex Sensor 1* Peak Amplitude P, 1*P,

F10 Flex Sensor 1% Valley Amplitude Via 1*7,

F11 Flex Sensor 2"¢ Peak Amplitude P ndp,

F12  Flex Sensor 2" Valley Amplitude Va 2my,

To extract combined features, we used principal compo-
nent analysis (PCA) as a preprocessing step prior to clas-
sification. PCA is a simple non-parametric method used to
extract useful information from complex data [52]. In general,
PCA efficiently determines new features that reduce dimen-
sionality and identifies hidden or simplified structures for
inclusion in classification algorithms [53]. The data we used
in this study consist of the intervals and amplitudes of gait
events, and we transformed 23 input features into 12 prin-
cipal component variables as a preprocessing step using a
maximume-attribute filter. Fig. 6 shows the first and second
principal components of two different PCAs: (a) a PCA with-
out a scaler and (b) a PCA with a quantile transformer scaler.

B. CLASSIFICATION

Many studies have used deep-learning methods to solve vari-
ous problems [54]-[61] and many computer-aided diagnosis
systems have been developed with deep learning methods for
detecting diverse diseases [62]-[71]. We used a DNN with
scaled PCA to extract features from the time-series data and
identify factors associated with flat feet. Fig. 7 shows the
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FIGURE 5. Time-series data from the proposed gait monitoring device:
(a) all data, (b) filtered front force sensor data, (c) filtered rear force
sensor data, and (d) flexible sensor data.

proposed DNN architecture: (1) 12 input feature variables
were extracted from 24 subjects, and the prepared dataset
was divided into training (66%) and testing sets (34%); in the
training process, 30% of the training sample was used for val-
idation; (2) PCA and a scaler were applied to convert diverse
variables into feature variables as a preprocessing step, and
models of the PCA and scaler were generated for testing; (3)
we trained the DNN model using the scaled PCA variables;
and (4) compared the predicted results with ground truth data
provided by clinicians. The testing data were separated from
the training data for testing. The overall process is illustrated
in Fig. 7.

Statistical assessment of the performance of a binary
classification test requires two general performance metrics,
sensitivity (Sn) and specificity (Sp), especially for an imbal-
anced dataset. If the dataset is balanced, accuracy (Acc)
alone can reflect the performance of the model. However,
our gait dataset is evidently imbalanced; more data points
were present for individuals with flat feet (n = 495) than
those with non-flat feet (n = 166). Therefore, we used
three additional metrics: Sn, Sp and positive predictive value
(PPV). Sn reflects the probability of detecting flatfoot events,
Sp indicates the probability of detecting non-flat feet, and
PPV is the probability that flatfoot status was correctly clas-
sified. We used four status parameters, including true positive
(TP), true negative (TN), false positive (FP) and false nega-
tive (FN), to generate a confusion matrix. 7P is the number
of data points correctly identified as flat feet and the TN
represents those correctly detected as non-flat feet. FP and
FN are the data incorrectly detected as flat feet and non-flat
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FIGURE 6. Preprocessed features from 12 features using PCA.

feet, respectively. Sn, Sp, PPV, and Acc can be calculated as
follows:

Sn = TP/(TP + FN) (1)
Sp = TN /(TN + FP) 2)
PPV = TP/(TP + FP) A3)

Acc = (TP+TN)/(TP+ FN + FP+TN)  (4)

C. DNN ARCHITECTURE

We used a deep learning model including four hidden layers
with a simple feed-forward neural network trained using
a standard backpropagation algorithm. We adjusted various
hyperparameters, including the number of hidden layers,
number of neurons in each layer, optimization method, regu-
larization technique and activation function. Among training
attempts, the best DNN architecture included four hidden
layers with 60 neurons in each layer. An output layer with
two neurons generates two regression outputs. We applied
regularization terms to the optimization loss function. The
proposed DNN includes rectified linear unit (ReLU) activa-
tion [72] from all hidden layers, and a dropout probability
of 0.1 for each layer [73]. Adam optimization [74] with a
learning rate of 0.001 and L2 regularization were used during
training. The proposed optimization is robust in terms of
hyperparameter selection and showed accurate performance
in empirical terms. We applied batch normalization [75] after
the first layer to improve performance and stability. The
architecture of the proposed DNN is shown in Fig. 8.

VI. RESULTS AND DISCUSSION

We conducted comparative analysis using six classification
algorithms: random forest (RF) [76], AdaBoost (ADB) [77],
multi-layer perceptron (MLP) [78], Gaussian naive Bayes
(GNB) [79], support vector machine (SVM) [80] and our
proposed DNN with a min/max scaler. Table 3 shows a
summary of the results from the six classification algo-
rithms, including the proposed DNN model. We list thresh-
olds (TH), confusion matrix, and five performance metrics.
In Table 3, the area under the curve (AUC) values of the best
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FIGURE 8. The architecture of the proposed DNN.

two classifiers are highlighted in boldface. Considering all
model parameters, the optimal threshold of flatfoot proba-
bility is 0.92, with an Acc of 81.52%, an Sn of 83.92%,
an Sp of 74.42%, and a PPV of 90.68%. The thresholds of
each classifier were empirically determined to obtain bal-
anced results between sensitivity and specificity. Compared
to common performance metrics (Sn, Sp, PPV, and Acc) used
for binary classifiers, AUC is a single metric that reflects
overall algorithm performance [81]. Fig. 9, a comparison
of receiver operating characteristic (ROC) curves of the six
classifiers, shows that our model reflects an AUC of 87.1%.
The ROC curves indicate that the predictive performance
of our DNN/scaled PCA model (bold red line) was best,
followed by the MLP classifier (blue line). The better the
performance, the closer the ROC curves to the left-upper
point [82]. Table 3 and Fig. 9 support the conclusion that the
DNN/PCA model with a quantile transformed scaler shows
better performance than the other five algorithms. All models
were implemented using a Keras [83] and TensorFlow [84]
backend. Binary cross entropy served as the loss function
for evaluating flat feet detection. As the dataset classes were
not balanced, we applied class weighting; this step rendered
minority classes more significant.

We determined the correlation coefficients between the
measured variables and flat feet. However, the results did
not clearly indicate the relationships between principal
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FIGURE 9. Reflecting predictive performance, the area under the receiver
operating characteristic curve value was highest (87.1%) for the
DNN/scaled PCA classifier.

TABLE 3. Assessment of selected variables (based on correlation
coefficients over 0.35) among 12 variables considered.

TH TP FPFNTN Sn Sp PPV Acc  AUC
RF 075 172 27 83 59 6745 68.60 8643 6774 7478
ADB 0.508 183 20 72 66 71.76 7674 90.15 73.02 77.13
GNB 0.75 172 28 83 58 67.45 67.44  86.00 67.45  75.00
MLP 0.786 206 24 49 62 80.78 72.09 89.57 7859  78.59
SVC 0.75 191 25 64 61 74.9 7093 88.43 7390 74.78
DNN 092 214 22 41 64 8392 7442 90.68 81.52 87.1

components and flatfoot occurrence. Table 4 lists the corre-
lation coefficients (r-values) of four variables selected based
on r-values over 0.35 among the 12 variables investigated;
the strongest correlation (40.48; Flexible Sensor 2nd peak
Amplitude (f11)) is highlighted in bold and two other strong
results (over +/—0.42) are shown in red italics.

We considered tuning hyperparameters, such as the depth
of the DNN and the number of nodes, to improve the overall
accuracy of flat feet detection. Although optimized hyperpa-
rameters are valuable, to the best of our knowledge, there is
no general rule for their optimization. We trained 2-8 layers
with 10-100 nodes using a trial-and-error method. We used
two techniques to minimize the effects of overfitting: dropout
and batch normalization. The batch normalization method
can avoid loss of feed-forward data, and is appropriate for
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TABLE 4. Correlation coefficients of the variables (over 0.35)
among 12 variables.

Variable Corr. Coeff. Variable Corr. Coeff.
F9 0.420778 F10 0.355771
Fl1 0.488473 F12 0.468964

TABLE 5. Comparison of performance between PCA/DNN and
Spectrogram/CNN.

Sn Sp PPV Acc
Deep learning w/ spectrogram 83.19  76.62 83.93  80.53
DNN w/ PCA 83.92 74.42 90.68 81.52

weighting on initialization, while the dropout method uses
weighting to minimize the effects of certain nodes in hidden
layers.

MLP is a learning algorithm that iteratively learns a set
of weights for predicting the class label of tuples. A neural
network consists of an input layer, hidden layers, and an
output layer. The input layer includes the attributes measured
for each training tuple. We set the number of nodes in a
hidden layer to be the sum of the number of attributes and
classes divided by 2. The initial weights were randomly
generated with the seed value 0. The gradient is determined
by backpropagation, a neural network-learning algorithm, the
learning rate is set to 0.3, and the momentum is set to 0.2.
The output biases are updated based on epoch updating and
the number of epochs to train through training time were set
to 1000. These parameters were found through pilot studies
to ensure good performance.

The proposed methodology was compared with the deep
learning with the input images of the spectrogram using a
short-time Fourier transform. Fig. 10 shows the spectrogram
images of two different signals: (a) a normal and (b) one
gait cycle of a flat foot. Table 5 shows a comparative result
of the proposed DNN with PCA and deep learning with the
spectrogram. In Table 5, for similar sensitivities, our proposed
method is better than deep learning with spectrogram images
in terms of PPV by 6.75%. To implement deep learning
with the spectrogram, we convert all gait signals to spectro-
gram images using MATLAB 2017 and apply the converted
images to the web-based image classification tool (Teachable
Machine [85]) based on the CNN-based MobileNet [84] with
the learning parameters set to 100 epochs, batch-size 64, and
learning rate 0.001. Although this methodology eliminates
the process of feature extraction, it must transmit its raw data
to a computer, so its performance is also slight lower than our
proposed method.

The proposed flat foot prediction methodology uses a
flexible sensor for measuring ankle movements and force-
sensitive resistors for detecting gait cycles. Current studies
of wearable devices related to gait analysis use different
types of sensors, e.g., force sensitive resistors, air pressure
sensors, Wi-Fi signals, accelerometers, IMUs, and their com-
binations. Sum, et al., (2020) proposed an acceleration-based
gait recognition method for older adults and evaluated their
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FIGURE 10. Images of the spectrogram using short-time Fourier
transform from signals of one gait cycle.

method using a public dataset from 64 older adults [86].
However, the acceleration-based method is somewhat limited
to measuring the details of ankle movements. Qiu, et al.,
(2019) proposed a multi-sensor data-fusion method using a
wearable IMU sensor for assessing the gait quality of stroke
patients [87]. Although IMU-based sensors are relatively easy
to be installed and miniaturized, they are still limited to
measuring the details of ankle movements.

Wearable gait-monitoring systems based on force-sensitive
resistors and air pressure sensors are similar types of meth-
ods that measure the weight and force from gait move-
ment and estimate gait-related features. These methods
have advantages in measuring gait cycles and related fea-
tures because the gait cycle is determined by the force or
weight-related features based on whether or not the foot
touches the ground. However, ankle movements related to
the gait cycles cannot be measured by these types of sensors.
Although many sensors embedded in the insole have poten-
tial for improving detection accuracy of flat foot detection,
too many sensors increase system complexity and energy
consumption.
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There have been few studies related to prediction of flat-
foot based on wearable devices. Wang, et al., (2020) [88]
analyzed the effects of the foot pressure sensing insoles for
detecting flat feet. Although they provide statistical anal-
ysis of features of flat foot and show the possibility of
flat foot prediction, detection accuracy of differentiation
between the normal group and flat foot group is not pro-
vided. Mariani, et al., (2013) [89] used the IMU and pres-
sure insole-based wearable sensors. Although they analyze
clinically-meaningful parameters and provide a quantitative
estimation of inner-stance phases, prediction of performance,
e.g., accuracy of detection between normal vs. abnormal
(flat foot), is still not provided. Compared with the studies
mentioned above, the proposed flat foot prediction system
can provide not only general features of gait but also detailed
information about ankle movement, important features for
predicting diverse applications of gait-related events.

In the present study, to design an optimal wearable gait
monitoring system to be placed within shoes, we designed a
pull-on-style, four-way stretch knit sock. The knit-sock shoes
are sustainable, as the seamless construction allows digital
knitting of the entire upper without material waste [90]. Sec-
ond, knit socks provide greater comfort than the traditional
leather shoes, as they feel similar to lightweight socks. Knit-
ting allows the exact level of flexibility and support to be
calculated for every part of the shoe.

VII. CONCLUSION

In this paper, an automatic flat foot detection system based on
a WGMS combined with a scaled PCA and DNN is proposed.
The WGMS was designed as a pull-on-style wearable and
comfortable shoe made from four-way stretch-knit. In the
WGMS, an embedded system including two force sensors
and one flexible sensor is used to measure the gait and ankle
movements, transmitting the signals to a computer for deep
learning. Feature extraction and classification based on the
scaled PCA and DNN methods were used to detect functional
flatfoot. Our methodology allows early detection of individu-
als at risk of flatfoot who may require additional medical tests
and timely treatment to avoid disease exacerbation. The pro-
posed DNN model outperformed five other machine learning
models. The results of performance metrics, including Sn,
Sp, Pp, Acc and AUC, were 83.92%, 74.42%, 90.68, 81.52%
and 87.1%, respectively. Our method can be used to detect
functional flatfoot using a wearable device.

We designed the sock-style shoes to provide flexible shoe
shapes suitable for carrying the devices and comfortable
for users with flat feet. In this study, sex differences and
foot shapes were not a primary consideration when design-
ing prototype shoes for flat feet. Therefore, future research
should consider sex differences when designing shoes, such
as heel width and other essential factors. In addition, the sole
design, material, and tread surface area have not been tested
to identify how these factors can affect gait and improve grip.
Understanding and exploring the user experience is critical to
evaluating and improving the product. Therefore, subjecting
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a prototype to user testing would be beneficial, providing
insights from users with flat feet. In addition, in-depth quali-
tative research, and one-on-one interviews are necessary to
identify the factors that affect the individuals wearing the
shoes. Finally, as foot anatomy varies among individuals,
custom design of shoes using 3D scanning may be another
option for creating the best user experience by providing
personalized shoes.
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