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ABSTRACT This article addresses the distributed prescribed-time leader-following consensus problem for
a class of high-order multi-agent systems (MASs) with perturbed nonlinear agents dynamics and where
the topology of the network contains a directed spanning tree, with the leader as the root. Prescribed-time
consensus means that an agreement state of the MAS is achieved in a preset time, introduced as a parameter
of the control law, and this constant settling time is achieved independently of the agents’ initial state.
The proposed control method exhibits three main advantages: first, to our best knowledge, it is the first
time that prescribed-time convergence in a consensus problem is achieved for agents with high-order
nonlinear dynamics, using a robust leader-following protocol, which allows an effective rejection of matched
disturbances in the agents’ model. Second, the proposed controller provides control signals of lower
magnitude than existing approaches. Third, the proposed consensus protocol does not have parameters to be
adjusted depending on the connectivity of the considered communication graph.

INDEX TERMS Multi-agent systems, distributed protocol, high-order systems, prescribed-time consensus,
time base generators (TBGs).

I. INTRODUCTION
Cooperative control of Multi-Agent Systems (MASs) is a
broad topic involving many different related research prob-
lems, such as consensus, formation control, flocking, cover-
age control, among others; attracting considerable attention
over the last decades due to their broad applications in dif-
ferent research areas ( [1], [2]). A fundamental problem in
cooperative control of MASs is to design distributed con-
sensus protocols to make the autonomous agents to agree on
some variable of interest. In this problem, each agent applies
a controller that only uses information obtained from local
interactions between neighboring agents.

A great deal of work has been recently published address-
ing the distributed consensus problem with real-time con-
straints, proposing distributed consensus algorithms with
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finite-time and fixed-time convergence, see e.g. [3], [4].
As interesting examples of finite-time control of uncer-
tain nonlinear systems, we can mention [5] for stabilization
using nonsingular fast terminal sliding mode control, and
[6] for synchronization of chaotic systems in the presence
of external disturbances and time delays. In both finite and
fixed-time convergence, the settling time is a finite value, but
in the fixed-time convergence the settling time is uniformly
bounded, meaning that the system converges to its equilib-
rium before an estimated bound that is independent of the
initial state. Nevertheless, in the existing approaches of finite
and fixed-time consensus, the convergence bound estimates
may be too conservative, leading to over-engineering the
system to satisfy real-time constraints ( [7]), resulting in large
control efforts as a drawback.

In this work, we address the problem of designing a dis-
tributed control protocol to achieve consensus tracking of a
leader in prescribed time for high-order MASs with nonlinear
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dynamics affected by disturbances. Unlike finite-time and
fixed-time consensus, prescribed-time consensus means that
an agreement state of the MAS is accurately achieved at a
pre-specified time, introduced as a parameter of the protocol,
and this constant settling time is achieved independently of
the agents’ initial state, with no slack between the real and
the desired settling time. Prescribed-time allows to efficiently
schedule and execute tasks in a mission to be performed by
a MAS, i.e., the agents in the MAS can reach the same state
at exactly a preset-time provided by the schedule, then they
can start the following task at a preset time, e.g. the efficient
execution of a schedule for a team of robots performing
tasks with temporospatial constraints ([8]), where efficient
means that there is no time-outs of the robots between tasks,
avoiding thus unnecessary large control efforts. These aspects
are the main motivation to address the considered problem.

We consider a leader-following configuration where the
topology among the followers and the leader contains a
directed spanning tree, with the leader as the root. On the
one hand, the importance of this consensus tracking prob-
lem is that the hard time constraint guaranteed by the
prescribed-time convergence makes straightforward for a
user to set the MAS convergence time and increases the
potential of the engineering applications of consensus. On the
other hand, the applicability of the leader-following scheme
is larger than the leaderless case, since the goal is clearly
defined by the leader, in contrast to the leaderless case where
the consensus state results from the local interactions. The
problem that we address is very novel and challenging, with
some efforts to solve it in the last years. Proof of it is that most
of the existing results achieve just fixed-time convergence
([9]–[15]) and only few works address prescribed-time con-
vergence ([16]–[19]), since the high-order dynamics makes
the problem more difficult. An important advantage of our
approach, with respect to the referred fixed-time consensus
protocols, is that we can preset the convergence time as a
parameter of the control law. Regarding the few existing
results on prescribed-time consensus of high-order systems,
our approach has the main advantages of being robust against
disturbances and generating lower control efforts.

We introduce a novel methodology to solve the
prescribed-time consensus problem for a MAS of high-order
dynamics. Our methodology consists in the tracking of suit-
able reference signals by using feedback controllers. The
references are characterized by time base generators (TBGs),
which are continuous time-dependent polynomial functions
that converge to zero in a specified time ( [20], [21]). Once
these time-varying functions are designed, one of the main
difficulties to solve the defined problem is to guarantee robust
tracking of the reference signals defined for high-order sys-
tems to achieve accurate convergence of the consensus error
in a preset time regardless of the interaction between agents
and disturbances. We propose two consensus protocols in
which only a leader agent gives the reference to the high-order
MAS assuming that the topology of the network contains
a directed spanning tree, with the leader as the root. The

first one is a linear control protocol where feedback of the
tracking error of the high-order TBG trajectories between
neighbor agents is used. The second one is a robust consensus
protocol, based on a sliding mode controller to provide
closed-loop stability and robustness against disturbances. The
proposed protocols can be applied to nonlinear high-order
MAS that can be transformed to the normal form (e.g. the
Brunovsky’s canonical form) by state feedback linearization
([22]), in which agents dynamics are represented as a chain
of integrators. Convergence at the prescribed-time and global
closed-loop stability are demonstrated theoretically and illus-
trated through simulations.

In summary, the main contributions of the paper are:

1) A consensus approach for MASs with high-order
agents is proposed, which ensures accurate conver-
gence in a preset exact time independently of the initial
conditions.

2) A robust consensus protocol is proposed based on a
robust tracking controller, which guarantees conver-
gence in a preset time regardless of the presence of
unknown matched disturbances.

3) Comparisons between our proposal and existing
prescribed-time protocols are provided through simu-
lations, showing that the proposed approach generates
lower control efforts.

An additional advantage of our approach is that the pro-
posed control protocols do not use information about the net-
work’s connectivity, as used by other consensus approaches,
which represents a robustness property that allows our pro-
tocols to work properly for either small or large number of
agents without readjusting controller parameters.

A. RELATED WORK
To date, few contributions addressing the prescribed-time
consensus problem have been reported in the literature,
mainly focusing on MASs with first-order and second-order
agents, as all the references described in this paragraph.
A class of distributed linear protocols were developed for lin-
ear MASs over both undirected and directed communication
networks ([23]–[26]). By using time-varying control gains,
the agents in the network are forced to reach consensus at
any preset time from any initial condition. Following another
approach, the prescribed-time consensus problem has been
transformed into a motion planning problem in which the
developed consensus protocols are based on a time-varying
sampling sequence convergent to an off-line desired settling
time ([27]–[30]). With a pre-specified settling time, these
protocols solve the consensus problem of linear MASs over
undirected and directed topologies, and directed switching
topologies. In [31], consensus tracking is investigated for sec-
ond order MASs; the settling time bound is related to tunable
parameters but it is not constant for all initial conditions.

Time-varying gains derived from TBGs have been used
to solve different consensus problems with prescribed
convergence for agents with first order
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dynamics ([32]–[34]). In particular, the rendezvous problem
([32]) and the leader-following consensus problem ([33],
[34]) have been addressed. The consensus algorithms
with time-varying gains present important drawbacks, for
instance, the time-varying gain becomes singular as the pre-
scribed time is reached ([23], [32], [33]) or the time-varying
gain is piecewise constant ([27]) with Zeno behavior ([35]).
Commonly, a parameter is added to the controller to avoid
the singularity of the time-varying gain. Unfortunately, with
such modification, consensus cannot be reached in a constant
time, but all agents arrive at a value around the consensus
state in fixed-time. Following with MASs of first-order
dynamics, TBGs have also been used in [36], [37] to impose
a reference profile of a consensus error and consequently
achieve prescribed-time convergence. In those works, it was
introduced a prescribed-time distributed consensus protocol
that requires to give the consensus value to each agent as
a parameter of the controller. Under the same idea, in [38],
TBGs have been used to solve the bipartite consensus track-
ing in a preset time for second order agents.

Concerning consensus of high-order MASs, asymptotic
convergence has been studied, e.g. in [39]. There exist recent
results for consensus of high-order MAS based on finite-time
control ([40], [41]) and fixed-time control ([9]–[15]). All of
them are autonomous protocols not able to achieve a constant
convergence time and only an overestimation of it is possi-
ble. In a different kind of approach, a distributed adaptive
learning control is proposed in [42] for the coordination
of high-order systems, but the convergence time cannot be
preset. To our best knowledge, only few works address con-
sensus in prescribed-time for high-order MASs ([16]–[19]).
A specified-time consensus protocol in a leaderless scheme
has been developed in [16] for MASs with general linear
dynamics over directed graphs containing a directed spanning
tree and based on a motion planning strategy. A multi-leader
approach has been presented in [17], where the followers
are driven to the convex hull spanned by the leaders at a
specified settling time if the undirected fixed topology is
connected. A distributed time-varying control approach in
a leader-following consensus scheme based on a finite-time
observer has been investigated in [18], demonstrating consen-
sus in a pre-specified finite-time under fixed directed topolo-
gies having a spanning tree. That work was extended for a
class of linear unperturbed MASs by using event-triggered
control in [19].

To the authors’ opinion, only the works [16] and [18]
represent the closest approaches to the problem addressed in
this article. Nevertheless, in contrast to them, our approach
presents several improvements: accurate convergence of the
consensus error to zero in a preset time is guaranteed for
the case where agents are affected by disturbances; neither
Zeno behavior is produced nor singularities occur in the con-
trol signal, avoiding thus the main drawbacks of consensus
approaches based on time-varying gains. In addition, it is
shown that our consensus protocol can produce continuous
control signals of lower magnitude than those approaches

when a continuous auxiliary control is used. This is more
suitable for certain applications, e.g. in formation control of
MASs, where the consensus signal provides velocity refer-
ences to be tracked by the agents ( [43]). Finally, those exist-
ing approaches require to readjust some controller parameters
depending on the algebraic connectivity of the network ( [3]),
which is not the case of our approach.

The rest of this article is organized as follows. Section II
recalls basic concepts. Section III introduces the model of
the MAS and defines the prescribed-time consensus prob-
lem. In Section IV, a linear-feedback controller and a robust
controller are proposed for the prescribed-time consensus
problem in a leader-following scheme. Section V reports
simulations of the proposed approach and comparisons with
other protocols in the literature. Finally, Section VI presents
some conclusions.

II. THEORETICAL PRELIMINARIES
Let us first introduce some notation. In represents the identity
matrix of dimension n × n, 0n×n denotes the zero matrix of
dimension n× n. Let 1n and 0n be the n-dimensional column
vectors with all entries equal to one and zero, respectively.
A⊗ B denotes the Kronecker product of matrices A and B.

A. TIME BASE GENERATORS
Time base generators (TBGs) are parametric functions of
time, particularly designed to drive a system in such a way
that its state describes a convenient transient profile. TBGs
have been previously used in [20] to achieve prescribed-time
convergence of a single first-order or high-order system.
Definition 1: ( [20]) A TBG of order r and settling time tf

is defined as a continuous and differentiable time-dependent
function h(t), described as

h(t) =

{
τ (t) · c if t ∈ [0, tf ]
0 otherwise,

(1)

where τ (t) = [tr , tr−1, . . . , t, 1] is the time basis vector
and c is a vector of coefficients of proper dimensions.
Definition 2: ( [20]) Consider a control system of order

n. For the design of a prescribed-time controller, a collec-
tion of n TBGs of order r ≥ 2n + 1 is designed, ful-
filling the following conditions at initial time and settling
time tf

∀k ∈ {1, . . . , n}, ∀j ∈ {0, . . . , n},

h(j)k (t)|t=0 =

{
1 if j = k − 1
0 otherwise

h(j)k (t)|t≥tf = 0, (2)

where hk (t) = τ (t) ·ck denotes the k-th TBG in the collection
for t ∈ [0, tf ], and h

(j)
k (t) denotes its j-th time derivative.
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The TBGs and their derivatives are grouped in a
time-varying matrix as

H(t) =


h1(t) h2(t) . . . hn(t)
ḣ1(t) ḣ2(t) . . . ḣn(t)
...

...
...

h(n−1)1 (t) h(n−1)2 (t) . . . h(n−1)n (t)

 , (3)

then H(0) = In, and H(t ≥ tf ) = 0n×n according to the
constraints (2).

Prescribed-time controllers for a single high-order sys-
tem have been introduced in [20], using time-varying con-
trollers based on the TBGs. Therein, the TBGs were used
as time-varying gains as well as reference trajectories to be
tracked. See [20] for the details to calculate the coefficients
ck fulfilling the required constraints. For the work herein,
we were inspired by the results of [20]; the extension to a
consensus protocol for a MAS is not trivial due to the inter-
action of the agents states in the communication topology.

B. ALGEBRAIC GRAPH THEORY
In a MAS, the communication between agents is represented
by a graph. Let us recall some basic definitions on graph
theory that can be found in [44] and [45].
Definition 3 [44]: A communication graph is a tuple G =

(V, E,A) that consists of a set of vertices representing agents
V = {v1, . . . , vN }, a set of edges representing communica-
tion channels E ⊆ V × V , and a weighted adjacency matrix
A = [aij] ∈ RN×N with non-negative entries aij, in particular,
aij > 0 if (vi, vj) ∈ E and aij = 0 if (vi, vj) /∈ E . The set of
neighbors of agent i is denoted by Ni = {j ∈ V : (vj, vi) ∈ E}.
Definition 4 [44]: A graph G is called directed if the

edges are ordered pairs, i.e., (vi, vj) and (vj, vi) denote dif-
ferent edges. A graph G is called undirected if the edges are
unordered pairs, i.e., (vi, vj) and (vj, vi) denote the same edge.
In the MAS framework, (vi, vj) denotes that agent vj can

obtain information from agent vi.
Definition 5 [44]:A directed path from vertex vi to vj is a

sequence of distinct vertices vi, vi1 ,. . . , vir , vj ∈ V and edges
(vi, vi1 ), (vi1 , vi2 ), . . . , (vir , vj) ∈ E .
A graph G is said to be connected if there exists an

undirected path between any two distinct vertices vi and vj
in V .

A directed graph G is said to have a directed spanning tree
if G has at least one vertex vi, named root, such that for any
other vertex vj ∈ V \ {vi} there is a directed path from vi
to vj. It is assumed that no self-loops exist in the considered
graphs.
Definition 6 [44]: Let G be a graph with N vertices. The

Laplacianmatrix ofG is defined as theN×N matrixL = [lij],
where

lij =


−aij, if i 6= j,

N∑
k=1,k 6=i

aik , if i = j.
(4)

III. MAS DEFINITION AND PROBLEM STATEMENT
Our setup consists of a multi-agent system (MAS) formed by
a collection of N agents named followers whose dynamics
are described by nonlinear systems with relative degree n,
an agent named leader, and a communication graph G with
N + 1 vertices, each one associated to a different agent.
It is assumed that the model of each follower agent is in the
normal form ( [22]), e.g. for the i-th agent

ẋi1 = xi2,
...

ẋi(n−1) = xin,

ẋin = fi(xi, ϕi)+ gi(xi, ϕi)ui(t)+ ρi(t),

ϕ̇i1 = qi1(xi, ϕi),
...

ϕ̇ir = qir (xi, ϕi),

yi = xi1, (5)

where xi = [xi1, . . . , xin]T ∈ Rn is the agent’s state, ui(t) ∈
R is the agent’s control input, fi(xi, ϕi) and gi(xi, ϕi) are
smooth nonlinear functions, ρi(t) ∈ R represents bounded
lumped uncertainties that include disturbances and nonlinear
uncertainties (i.e. ρi(t) = ρ′i (t) + 1fi(xi, ϕi), where ρ

′
i (t)

are time-varying bounded disturbances and 1fi(xi, ϕi) are
bounded unknown nonlinearities), ϕi = [ϕi1, . . . , ϕir ]T ∈ Rr

is the agent’s zero dynamics, and yi ∈ R is the agent’s
output. It is assumed that the relative degree is well defined
(gi(xi, ϕi) 6= 0), and the zero dynamics is stable.

Furthermore, the leader is an agent whose dynamics are
given as an integrator chain, i.e.

ẋlk = xl(k+1), k = 1, . . . , n− 1

ẋln = ul(t), (6)

where xl(t) ∈ Rn is the leader’s state and ul(t) ∈ R is the
leader’s control input.

The input-output dynamics (5) of each i-th follower agent
can be conveniently represented as an n-integrators chain as

ẋik = xi(k+1), k = 1, . . . , n− 1

ẋin = vi(t)+ ρi(t), (7)

by applying the control input

ui = (−fi(xi, ϕi)+ vi(t))/gi(xi, ϕi), (8)

where vi(t) ∈ R is an auxiliary control input. Then the i-th
agent’s dynamic (7) can be expressed in a vectorial form as

ẋi = Axi + B(vi(t)+ ρi(t)), i ∈ {1, . . . ,N } (9)

with adequate constant matrices A ∈ Rn×n and B ∈ Rn,
where (A,B) is controllable. Similarly, the leader’s dynamics
(6) can be written as

ẋl = Axl + Bul(t), (10)
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The class of agents that can be represented in the form
of (7) is broad. In particular, any SISO linear time-invariant
system ẋi = Āxi + B̄(ui(t) + ρi(t)) can also be transformed
into an n-order integrator system (7) provided it is control-
lable, observable and has no transmission zeros, by trans-
forming the system into the so-called observability canonical
form ( [46]) and applying an input that cancels the open-loop
dynamics of the n-th state equation.

Now, let us introduce the concept of consensus error in the
leader-following scheme.

Consider a MAS, where each follower is already in its
integrator chain form (7), i.e., the control law (8) is applied
to each follower agent. The consensus error for each i-th
follower is given by

efi (t) = [ei1, . . . , ein]T

=

∑
j∈Ni\{l}

aij
(
xj(t)− xi(t)

)
− bi (xi(t)− xl(t)) , (11)

where aij are the entries of the graph adjacency matrix,Ni\{l}
denotes the set of neighbors of agent i-th excepting the leader,
and bi = ail represents the adjacency to the leader (bi = ail >
0 if agent i is a neighbor of the leader, bi = ail = 0 otherwise).
Problem Statement: Consider a MAS and assume that the

control law (8) is applied to each agent. The prescribed-time
consensus problem consists in designing a protocol in the
form vi = ηi(e

f
i , t) for each follower agent, such that the state

of all the agents reach a consensus state, given by the leader’s
state xl(t), in a prescribed time tf from any initial state xi(0),
i.e., ∀i ∈ {1, . . . ,N }, xi(t)→ xl(t) as t → tf .
Remark 1: Notice that we consider that the leader’s state

xl(t), defining the consensus state, can be constant or time-
varying. In the last case, xl(t) can be generated through a
no null initial condition of the leader’s state xl(0) in the
high-order variables or by introducing a control input to the
leader ul(t).
Assumption 1: The topology of the communication graph

G is a directed graph that has a spanning tree in which
the leader acts as the root. The leader vertex will be
denoted as l.

IV. PRESCRIBED-TIME CONSENSUS PROTOCOLS
In this section, two protocols for the prescribed-time consen-
sus problem are introduced. First, a linear feedback-based
consensus protocol is presented. Later, a consensus proto-
col based on a sliding mode controller is proposed, provid-
ing robustness against disturbances while maintaining the
prescribed-time convergence property.

Before introducing the protocols, let us first demonstrate
that Assumption 1 implies that the consensus is reached when
the consensus errors are null for all the agents.
Lemma 1: Consider a high-order MAS modeled as in

Section III, fulfilling Assumption 1, and the control law (8)
for each follower agent. If for each i-th follower efi (t) = 0,
then xi(t) = xl(t), i.e., consensus is reached.

Proof: Let us define M = diag(b1, . . . , bN ) (a diag-
onal matrix with entries b1, . . . , bN ) and m = M ·
1N = [b1, . . . , bN ]T . Moreover, let us denote x(t) =
[xT1 (t), . . . , x

T
N (t)]

T and ef (t) = [efT1 (t), . . . , efTN (t)]T .
By using the Laplacian matrix L and (11), ef (t) can be
expressed as

ef (t) = − (L⊗ In) x(t)− (M⊗ In) (x(t)− (1N ⊗ xl(t)))

= − (L⊗ In+M⊗ In) x(t)+(M · 1N ⊗ xl(t))

= − (L⊗ In+M⊗ In) x(t)+(m⊗ xl(t))

= − (L⊗ In+M⊗ In) x(t)+(m⊗ In) (1⊗ xl(t)) .

(12)

Lemma 1 from [39] for high-order systems ensures
(L⊗ In +M⊗ In)−1 (m⊗ In) = 1N ⊗ In, which holds by
Assumption 1. By using this result and the hypothesis efi (t) =
0n, the equation (12) can be solved for x(t) as

x(t) = (L⊗ In +M⊗ In)−1 (m⊗ In) (1⊗ xl(t))

= (1N ⊗ In) (1⊗ xl(t))

= 1N ⊗ xl(t). (13)

Therefore, consensus of the high-order MAS in the
leader-following scheme is achieved when, for each i-th fol-
lower, efi (t) = 0n.
Now, in order to solve the prescribed-time consensus prob-

lem, our approach is to design a protocol vi, for each i-th
agent, that enforces the consensus error’s transient behavior
ef ∗i (t) = H(t)efi (0), named the TBG reference trajectory
for the i-th follower agent, where H(t) is defined as in (3)
and efi (0) denotes the initial consensus error. In this context,
the tracking error for the i-th agent is defined as

ξi(t) = [ξi1, . . . , ξin]T = efi (t)−H(t)efi (0). (14)

Thus, the consensus protocols to be defined for each agent,
vi, will enforce ξi(t) = 0n ∀t ≥ 0. In fact, since H(t) = 0n×n
∀t ≥ tf , then ξi(t) = 0n ∀t ≥ 0 implies efi (t) = H(t)efi (0) =
0n ∀t ≥ tf , i.e., if the tracking error is null then the consensus
error is null at tf , consequently, if this occurs for all the agents
then the consensus is reached at tf .
Remark 2: It is possible to perfectly track the TBG refer-

ence trajectory from the initial time (i.e., ξi(t) = 0n ∀t ≥ 0)
due to its coherence with the initial consensus error and the
error dynamics. In detail, notice that H(t)efi (0) = efi (0) at
t = 0, since H(0) = In by Definition 2 and (3). Moreover,
the definition of H(t) implies that ėfij(t) = efi(j+1)(t) ∀t > 0,
∀j ∈ {1, . . . , (n− 1)}, i.e., the reference trajectory represents
an n-integrator chain, similar to the dynamics of the followers
and the leader.

A. PRESCRIBED-TIME CONSENSUS WITH A LINEAR
PROTOCOL
The following theorem proposes a feedback-based protocol
able to drive a high-order MAS to consensus in prescribed
time, providing closed-loop stability of the tracking error.
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Theorem 1: Consider a high-order MAS modeled as in
Section III with ρi = 0, fulfilling Assumption 1, and the
control law (8) for each follower agent. Consider TBG func-
tions for a system of order n as in (2), gathered in the
matrixH(t) as in (3), and define the time-varying gain vector
Kt (t) = [h(n)1 (t), . . . , h(n)n (t)]. For each agent i, define βi =(
bi +

∑
j∈Ni\{l} aij

)
and consider its tracking error (14) and

the vector ξi2:in = [ξi2, . . . , ξin]T .
Considering the linear controller defined for each follower

agent i as

vi = β
−1
i

biul + ∑
j∈Ni\{l}

aijvj −Kt (t)e
f
i (0)+Kfrξi2:in


(15)

there exist gains Kfr ∈ Rn−1 such that the agents’ tracking
errors ξi(t) are globally asymptotically stable. Furthermore,
prescribed-time convergence of the followers’ state xi(t) to
the leader’s state xl(t) is achieved at time tf , independently of
their initial states.

Proof: Part I: First, let us prove closed-loop stability of
the tracking error of each agent ξi.
By taking the time derivative of the consensus error of the

i-th follower (11), using the dynamics of the followers (9)
and the leader (10), and assuming ρi = 0, the dynamics of
the consensus error of the i-th follower is expressed as

ėfi (t) = Aefi (t)+ B
(
− βivi +

∑
j∈Ni

aijvj + biul
)
. (16)

The time derivative of the tracking error (14) requires to
compute Ḣ(t). By employing the matrices A and B in (9),
we obtain

BKt (t) =


0
0
...

0
1

 [h(n)1 (t), h(n)2 (t), . . . , h(n)n (t)]

=


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0
h(n)1 (t) h(n)2 (t) . . . h(n)n (t)

 ,
and

AH(t) =


0 1 0 . . . 0
0 0 1 . . . 0
...
...
...
. . .

...

0 0 0 . . . 1
0 0 0 . . . 0



×


h1(t) h2(t) . . . hn(t)
ḣ1(t) ḣ2(t) . . . ḣn(t)
...

...
...

h(n−1)1 (t) h(n−1)2 (t) . . . h(n−1)n (t)



=


ḣ1(t) ḣ2(t) . . . ḣn(t)
...

...
. . .

...

h(n−1)1 (t) h(n−1)2 (t) . . . h(n−1)n (t)
0 0 . . . 0

 .
Taking the time derivative of (3), it results

Ḣ(t) =


ḣ1(t) ḣ2(t) . . . ḣn(t)
ḧ1(t) ḧ2(t) . . . ḧn(t)
...

...
...

h(n)1 (t) h(n)2 (t) . . . h(n)n (t)

 .
Then, we readily derive that

Ḣ(t) = AH(t)+ BKt (t). (17)

Then, using (16) and (17), the time derivative of the track-
ing error (14) can be expressed as

ξ̇i(t)

= ėfi (t)− Ḣ(t)efi (0)

= Aξi(t)+ B
(
− βivi +

∑
j∈Ni\{l}

aijvj + biul −Kt (t)e
f
i (0)

)
Given the canonical form of A and B, the tracking error

dynamics are represented as

ξ̇ik (t) = ξi(k+1), k = 1, . . . , n− 1,

ξ̇in(t) = −βivi +
∑

j∈Ni\{l}

aijvj + biul −Kt (t)e
f
i (0). (18)

Substituting the control protocol (15) into the above
expression yields

ξ̇ik = ξi(k+1), for k = 1, . . . , n− 1,
ξ̇in = −Kfrξi2:in,

(19)

which can be enforced to exhibit global asymptotic stability
through an appropriate choice of the gain vector Kfr , since
this dynamics can be seen as a controllable chain of n − 1
integrators with a feedback input −Kfrξi2:in. Then, for each
i-th agent, ξi(t) is globally asymptotically stable.
Part II: Now let us prove prescribed-time consensus.
Recall that at initial time t = 0, H(0) = In and thus,

the vector of tracking error for each agent initiates null,
i.e., ξi(0) = 0n according to (14). This implies that ξi(t) =
0n ∀t ≥ 0 by the stability of (19), since the agents of
the MAS are not perturbed and the tracking error system
starts at its equilibrium point. Thus, it follows that efi (t) =
H(t)efi (0) ∀t ≥ 0 in accordance to the definition of the
tracking error (14). Finally, given that H(tf ) = 0n×n, then
efi (tf ) = 0n. Since this occurs for all the agents, Lemma 1
implies that consensus is reached at tf .
Remark 3: Although the result in Theorem 1 achieves

the same control objective than the existing approaches
[16]–[19], which are valid for unperturbed systems, our result
has the advantage that smooth auxiliary control signals are
generated. Due to the properties of the reference trajectories
given by the TBGs, the auxiliary control signals start in zero,
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evolve in a smooth way, and vanish at the prescribed time of
convergence, avoiding the large usual initial value of other
control laws.

B. ROBUST PRESCRIBED-TIME CONSENSUS
The previous result can be extended to effectively deal with
disturbances while achieving prescribed-time convergence,
which is not achieved by the existing results in the literature.
As explained before, the prescribed-time consensus problem
can be solved by designing a protocol vi for each follower
agent such that ξi(t) = 0n ∀t > 0. Since the tracking
error exhibits high-order dynamics, in order to apply the
sliding mode control technique, a sliding surface (an alge-
braic variety in the state space containing the origin) is firstly
designed in such away that ξi(t) is asymptotically stablewhen
confined to the sliding surface, later, a sliding mode control
term is designed in order to maintain the tracking error on
the surface. The sliding surface designed for the i-th follower
agent is characterized by a variable si(ξi(t)), in such a way
that si(ξi(t)) = 0 when the tracking error is evolving on the
surface. In particular, we define

si(t) =
[
Kfr , 1

]
ξi(t) = Kfrξi1:i(n−1) + ξin, (20)

where Kfr ∈ Rn−1 is a gain vector and ξi1:i(n−1) =[
ξi1, . . . , ξi(n−1)

]T .
Theorem 2: Consider a high-order perturbed MAS

modeled as in Section III, fulfilling Assumption 1, and
the control law (8) for each follower agent. Consider TBG
functions for a system of order n as in (2), gathered in
the matrix H(t) as in (3), and define the time-varying gain
vector Kt (t) = [h(n)1 (t), . . . , h(n)n (t)]. For each agent i, define

βi =
(
bi +

∑
j∈Ni\{l} aij

)
and consider its tracking error (14),

the vector ξi2:in = [ξi2, . . . , ξin]T and the sliding surface
(20). Considering the nonlinear controller defined for each
follower agent i as

vi = β
−1
i (µi + νi) ,

µi = biul +
∑

j∈Ni\{l}

aijvj −Kt (t)e
f
i (0)+Kfrξi2:in,

νi = k1 sign(si), (21)

there exist gainsKfr ∈ Rn−1 and k1 > 0 such that the agents’
tracking errors ξi(t) are globally asymptotically stable. Fur-
thermore, prescribed-time convergence of the followers’ state
xi(t) to the leader’s state xl(t) is achieved at time tf , indepen-
dently of their initial states.

Proof: Part I: First, let us prove closed-loop stability of
the tracking error of each agent ξi.
By taking the time derivative of the consensus error

of the i-th follower (11) and using the perturbed dynam-
ics of the followers (9) and the leader (10), the dynam-
ics of the consensus error of the i-th follower is

expressed as

ėfi (t) = Aefi (t)+ B
(
− βivi +

∑
j∈Ni

aijvj − βiρi

+

∑
j∈Ni\{l}

aijρj + biul
)
. (22)

By employing the expression Ḣ(t) = AH(t) + BKt (t),
derived in the proof of Theorem 1, and introducing (22),
the time derivative of the tracking error (14) can be expressed
as

ξ̇i(t) = ėfi (t)− Ḣ(t)efi (0),

= Aξi(t)+ B
(
− βivi +

∑
j∈Ni\{l}

aijvj − βiρi

+

∑
j∈Ni\{l}

aijρj + biul −Kt (t)e
f
i (0)

)
.

Given the canonical form of A and B, the tracking error
dynamics are represented as

ξ̇ik (t) = ξi(k+1), k = 1, . . . , n− 1,

ξ̇in(t) = −βivi +
∑

j∈Ni\{l}

aijvj − βiρi

+

∑
j∈Ni\{l}

aijρj + biul −Kt (t)e
f
i (0). (23)

By using this expression, the dynamics of the variable si(t)
(20) is computed as

ṡi(t) = Kfrξi2:in − βivi +
∑

j∈Ni\{l}

aijvj − βiρi

+

∑
j∈Ni\{l}

aijρj + biul −Kte
f
i (0).

Substituting the control protocol (21) into the above
expression yields

ṡi = −k1 sign(si)− βiρi +
∑

j∈Ni\{l}

aijρj.

Let us propose the following Lyapunov candidate function:

Vi =
1
2
s2i .

The time derivative of V̇i along the trajectory of the sliding
surface is:

V̇i = −k1|si| +

 ∑
j∈Ni\{l}

aijρj − βiρi

 si.

Then, we have that

V̇i ≤ −

k1 + βi|ρi| − ∑
j∈Ni\{l}

aij|ρj|

 |si| ≤ 0, (24)

is fulfilled whenever

k1 ≥ βi|ρi| −
∑

j∈Ni\{l}

aij|ρj|. (25)
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If the condition (25) on k1 holds, the dynamics of the
tracking error for each agent is constrained to the sliding
surface, i.e., si = ṡi = 0, regardless of the presence of
disturbances. In such case, from (20) it follows that

ξin = −Kfrξi1:i(n−1).

Then, considering this expression and the first n− 1 equa-
tions of the tracking error dynamics (23), the behavior of the
tracking error on the sliding surface results in

ξ̇ik = ξi(k+1), for k = 1, . . . , n− 2,

ξ̇i(n−1) = ξin = −Kfrξi1:i(n−1), (26)

which can be enforced to exhibit global asymptotic stability
through an appropriate choice of the gain vector Kfr . Then,
for each i-th agent, ξi(t) is globally asymptotically stable.
Part II: Based on the result of Part I, now let us prove

prescribed-time consensus.
At initial time t = 0, H(0) = In and thus the tracking

error vector for each agent is initially null, i.e., ξi(0) = 0n
according to (14). This implies that si(0) = 0 according to
(20). Due to the stability of the sliding surface dynamics (24),
the system’s trajectory never leaves the surface once it reaches
si = 0 ( [47]), which implies that si(t) = 0 ∀t > 0, regardless
of the disturbances ρi(t) 6= 0. Then, the tracking error vector
keeps null all the time since it is constrained to the manifold
si = 0, i.e., ξi(t) = 0n ∀t ≥ 0 by the stability of (26). Thus,
it follows that efi (t) = H(t)efi (0) ∀t ≥ 0 in accordance to (14).
Finally, given that H(tf ) = 0n×n, then e

f
i (tf ) = 0n. Since this

occurs for all the agents, Lemma 1 implies that consensus is
reached at tf .

C. FURTHER EXTENSION FOR CONTINUOUS ROBUST
CONTROL
The proposed robust controller of Theorem 2 provides the
theoretical properties to guarantee prescribed-time conver-
gence of the MAS using discontinuous control signals. For
some applications, the use of discontinuous control sig-
nals could be unsuitable. Nevertheless, a continuous control
law may be formulated to achieve the same goal by using
high-order sliding mode control (e.g., [48], [49]). The key
to guarantee prescribed-time consensus in our approach is
to enforce the tracking error to be null, despite the distur-
bances, before the preset settling time tf . This can be achieved
by using a robust fixed-time control for high-order systems
instead of the term νi in (21), for instance, by using the
discontinuous controller of [50] or the continuous scheme of
[51]. Let us illustrate the application of the controller of [51]
in our prescribed-time consensus approach.

Consider the controller vi and the term µi of Theorem 2,
but νi is now defined according to the following expressions
from [51]:

The sliding surface is now defined by the parameters
cj, bj, αj and βj for j = 1, . . . , n as

si = ξ̇in+cn|ξin |
αn sign(ξin )+cn−1|ξin−1 |

αn−1 sign(ξin−1)

+. . .+c1|ξi1 |
α1 sign(ξi1 )+bn|ξin |

βn sign(ξin )

+bn−1|ξin−1 |
βn−1 sign(ξin−1)+. . .+b1|ξi1 |

β1 sign(ξi1 ).

(27)

The auxiliary control law is given by

νi = uieq + uin , (28)

with

uieq = cn|ξin |
αn sign(ξin )+cn−1|ξin−1 |

αn−1 sign(ξin−1 )

+. . .+c1|ξi1 |
α1 sign(ξi1 )+bn|ξin |

βn sign(ξin )

+bn−1|ξin−1 |
βn−1 sign(ξin−1)+. . .+b1|ξi1 |

β1 sign(ξi1 ),

(29)

and

u̇in = K sign(si), (30)

this controller ensures fixed-time convergence to si = 0
provided K > βi|ρ̇i| −

∑
j∈Ni\{l} aij|ρ̇j| and some conditions

on the parameters cj, bj, αj, βj ∀j = 1, . . . , n (see [51]).
Furthermore, this implies convergence of the tracking error
of each agent to the origin ξi = 0n in fixed-time with a
known convergence bound Tmax . If Tmax < tf , prescribed
time-consensus will be achieved with continuous control
signals.
Remark 4: As reviewed in the introduction, to the best of

our knowledge, only the works [16]–[19] have investigated
prescribed-time consensus for high-order MASs. The pro-
posed consensus protocol (21) has the advantage, over those
protocols, of providing robustness against large matched
perturbations and by using the auxiliary control law (28),
the whole control effort is continuous. Moreover, the proto-
cols proposed in this work do not require information about
the network’s connectivity, as required by the referred proto-
cols of the literature.
Remark 5: It is worth noting that some aspects have to be

considered during the application of the proposed consensus
protocols. First, all the clocks of the agents in the network
must be synchronized to achieve prescribed-time conver-
gence. Second, physical constraints of the systems must be
taken into account to set tf , considering that a small tf will
result in large control efforts. Thus, the maximum allowable
input of each agent must be taken into consideration to set tf ,
however, this is not in the scope of this work. Further analysis
is required to obtain a relation between the maximum control
effort max(|v|) as a function of the prescribed settling time tf
and the initial consensus error, however, we already know that
this relation is linear for unperturbed cases when the settling
time tf is fixed. Third, it is assumed that the state of each
agent is available and transmitted to its neighbors without
time-delay or packet dropouts.
Remark 6: The evaluation of the proposed control laws

requires the knowledge of the control actions of neighboring
agents. This can be achieved, from the theoretical point of
view, by considering only the spanning tree in the communi-
cation graph, thus an agent only requires information from its

VOLUME 8, 2020 195177



J. A. Colunga et al.: Robust Leader-Following Consensus of High-Order MASs in Prescribed Time

child agents, avoiding thus communication loops. However,
in practical implementations, this feature requires a very fast
agents communication. Recent works have proposed to solve
it using an observer as a first step of the control strategy,
e.g. [12], [13]. A less costly and practical solution is the use
of a communication buffer to allow each agent to use the
inputs from the last time instant, as done in [10], [38]. We
will show in simulations that the last option makes possible
the application of our approach for both directed graphs and
connected undirected graphs (where communication loops
exist), however, further analysis must be done to formally
solve the communication loop problem.

V. SIMULATIONS
In this section, simulations are performed to illustrate the
effectiveness and advantages of the proposed TBG-based
consensus protocols. The simulations were implemented in
MATLABusing the Euler forwardmethod to approximate the
time derivatives with a time step of 0.1ms. No special func-
tions of this software were used. We present results using the
nonlinear controller (21), which enhances the performance
of the linear controller (15) due to its robustness properties.
In the following simulations, a MAS of 8 third-order agents
is considered, where the agents’ dynamics are described by
(5) with f (xi) = xi1xi2 sin(xi3) + 0.1xi1xi3 and g(xi) = −2
for agents {1, 3, 5, 7}, and f (xi) = 0 and g(xi) = 1 for
agents {2, 4, 6, 8}. None of the agents exhibit zero dynamics
(i.e., the variables ϕi in (5) do not exist). The convergence
time is preset to tf = 5 seconds. The implementation of the
proposed TBG-tracking protocols requires the computation
of the TBGs references and the time-dependent gain, i.e., to
design the functions h1(t), . . . , hn(t) fulfilling (2), and to
evaluate H(t) and Kt (t) during the system evolution. The
following TBG functions are used, h1(t) = 20(t/tf )7 −
70(t/tf )6 + 84(t/tf )5 − 35(t/tf )4 + 1, h2(t) = 10t7/t6f −
36t6/t5f +45t5/t4f −20t4/t3f + t , h3(t) = 2t7/t5f −7.5t6/t4f +
10t5/t3f − 5t4/t2f + t

2/2, which fulfill with (2).
The communication topologies shown in fig. 1 will be

used ( [23]). The first one G1 is a connected undirected graph,
the second one G2 is a directed graph having a spanning
tree. Both topologies consist of 1 leader and 8 followers.
As described in Remark 6, both kinds of graphs allow us
to solve the consensus tracking problem in prescribed time;
however, the undirected graph considers more communica-
tion requirements due to its bidirectional connections. On the
one hand, as proved in our theorems, it is sufficient and
necessary that the graph has a directed spanning tree, with
the advantage of avoiding the communication loop problem,
as detailed in the referred remark above. On the other hand,
an undirected graph has the advantage that its extra connec-
tions, with respect to a directed graph with the same vertices,
may make the MAS more robust against communication
failures. The last requires further analysis as a consensus
problem with switching topologies.

FIGURE 1. Communication graphs taken from [23]. Left: undirected graph
G1. Right: directed graph G2.

The initial states of the eight agents are randomly selected
in the range (−2, 2) and are shown in Table 1. To avoid
communication loops, control laws are evaluated by using the
information of neighbor agents available from the previous
time instant.

TABLE 1. Initial states of the 8 agents with third-order dynamics.

A. PROPOSED PRESCRIBED-TIME CONSENSUS
Since the results are similar for the unperturbed case,
in this subsection, we show the performance of the proposed
robust prescribed-time TBG controller (21) considering dis-
turbances ρi(t) = αi(1+1 sin(5t)), with αi randomly selected
in (0, 1). We evaluated the consensus protocol for both com-
munication topologies G1 and G2. A third-order leader (root
node) is considered, having communication onlywith the first
follower agent, i.e., b1 = 1 and bi = 0, ∀i = {2, . . . , 8}.
The leader’s behavior is modeled as in (6), and its state is
maintained constant and equal to xl(t) = [−1, 0, 0]T by
setting its control input as ul = 0. The gain of the robust
controller is set as k1 = 2.5 and Kfr = [1, 2].
Figs. 2-3 present the results for the directed communi-

cation graph with the described time-varying disturbance
ρ(t). We introduced as the robustness term νi the continuous
fixed-time controller (28) to obtain a completely continuous
prescribed-time control law. In particular, for the same third
order MAS under evaluation, we set:

si = ξ̇i3 + 15|ξi3 |
7/10 sign(ξi3 )+ 66|ξi2 |

7/13 sign(ξi2 )

+80|ξi1 |
7/16 sign(ξi1 )+ 15|ξi3 |

21/20 sign(ξi3 )

+66|ξi2 |
21/19 sign(ξi2 )+ 80|ξi1 |

21/18 sign(ξi1 ) (31)

and

uieq = 15|ξi3 |
7/10 sign(ξi3 )+ 66|ξi2 |

7/13 sign(ξi2 )

+80|ξi1 |
7/16 sign(ξi1 )+ 15|ξi3 |

21/20 sign(ξi3 )

+66|ξi2 |
21/19 sign(ξi2 )+ 80|ξi1 |

21/18 sign(ξi1 ), (32)
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FIGURE 2. State evolution (top) and consensus error trajectories (bottom)
of the third-order perturbed MAS under (21) with νi of (28), for G2 and
tf = 5s. The consensus state at tf is xi (5) = xl (5) = [−1,0,0]T . In the
bottom figure, the continuous lines represent the evolution of the errors
whereas the TBG references are drawn with dashed lines.

FIGURE 3. Sliding surfaces evolution (top) and auxiliary control inputs
response (bottom) of the third-order perturbed MAS under (21) with νi of
(28), for G2 and tf = 5s.

and u̇in = 10 sign(si), which has a convergence bound of
Tmax = 3s (see example in [51]) that is enough for our aim
of achieving consensus in preset tf = 5s.
As shown in fig. 2 (top), the followers achieve consensus

to the leader’s state xl = [−1, 0, 0]T at the prescribed time
5 seconds. The consensus error trajectories shown in fig. 2
(bottom) start over the TBG references and they converge to
the origin in the prescribed time. As can be seen in fig. 3
(top), the sliding surfaces, defined as (31), initiate on zero.
The disturbances make the MAS to evolve slightly out of the

FIGURE 4. State evolution (top) and consensus error trajectories (bottom)
of the third-order perturbed MAS under (21), for G1 and tf = 5 s. The
consensus state at tf is xi (5) = xl (5) = [−1,0,0]T . In the bottom figure,
the continuous lines represent the evolution of the errors whereas the
TBG references are drawn with dashed lines.

surfaces, however the control enforces si = 0 for t ≥ 3. Fig. 3
(bottom) shows the auxiliary control inputs vi of each agent,
which evolve smoothly over time and keep oscillating after tf
in order to reject the disturbance.

Simulations results for the undirected communication
graph are shown in figs. 4-5. The consensus performance
under the robust TBG controller is shown in fig. 4. It can be
observed in the top figure that, in spite of the disturbances
ρ(t), the followers achieve consensus to the leader’s state
xl = [−1, 0, 0]T at the prescribed time of 5 seconds. Fig. 4
(bottom) shows that the consensus error trajectories track the
TBG references, reaching the origin at the preset time. The
sliding surfaces associated to each agent, computed as in
(20), are shown in Fig. 5 (top). As explained in the Part II
of the proof of Theorem 2, since the tracking errors initiate in
zero and due to the stability of the sliding surface dynam-
ics, the evolution of the tracking errors does not leave the
manifold si = 0. In this case, the robustness is achieved by
the discontinuous term νi of (21) as reflected in the auxiliary
control inputs vi shown in Fig. 5 (bottom), which reject the
disturbance vector ρ(t).

B. COMPARISON WITH EXISTING APPROACHES
For comparison purposes, simulations of the prescribed-time
consensus protocols for high-order systems presented in [16],
[18] are given in this subsection. In addition, simulations of
a well-known fixed-time algorithm ( [9]) are included. The
leader-following scheme in [18] is based on a time-varying
scaling function, with a parameter to set, and a matrix
defined by optimal control. The scheme in [16] is a leaderless
discrete-time protocol based on the infinite frequency sam-
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FIGURE 5. Sliding surfaces evolution (top) and auxiliary control inputs
response (bottom) of the third-order perturbed MAS under (21), for G1
and tf = 5s.

pling of a time sequence. For a realistic implementation of
the last scheme, we evaluate the sampling truncation based
on a consensus error bound. The approach in [9] is a two
step fixed-time consensus tracking control. First, the method
estimates the leader’s state using a distributed observer, then
a fixed-time controller is introduced to drive all followers
to the estimated leader’s state at a settling time uniformly
bounded by Tmax , which is defined according to several con-
trol parameters. For comparison purposes, we implemented
the fixed-time controller assuming that the leader’s state is
available to the followers. We set its control parameters to
get a settling time around tf = 5s for all the followers.
To have a fair comparison, all the approaches were imple-
mented without the disturbance ρ(t), because [16] and [18]
are not able to deal with it, although our approach and the
one in [9] are capable to reject lumped uncertainties. The
results are shown in figs. 6-8, where the plots at the top
of both figures show the state response and the plots at the
bottom present the auxiliary control signals produced by
the corresponding evaluated protocol. It can be observed in
the top of figs. 6-8 that the states of all the agents con-
verge at the settling time tf = 5s to the consensus states
xl = [−1, 0, 0]T for the approaches in [18] and [9], and
x∗i = [3.01, 1.32, 0.23]T for the approach in [16]. Notice at
the bottom of figs. 6-8 that the magnitude of the auxiliary
control efforts for the compared control schemes are initially
large, and particularly, the control efforts with the protocol
of [16] become very large and the signals are not smooth
due to its motion planning switching strategy. In comparison,
fig. 3 shows that our proposed control protocol generates
control signals that start in zero, provide a smooth continuous
evolution and exhibit lower magnitudes compared with the
existing prescribed-time consensus approaches.

In order to widely compare the performance of the pro-
posed protocol and the existing ones ( [9], [16], [18]), sim-
ulations were performed with ten different initial conditions

FIGURE 6. State response (top) and auxiliary control inputs (bottom) of
the third-order MAS under the control of [18] (eq. (19)), for G1 and
tf = 5s. The consensus state at tf is xi (5) = xl (5) = [−1,0,0]T .

FIGURE 7. State response (top) and auxiliary control inputs (bottom) of
the third-order MAS under the control of [16] (eq. (2)), for G2 and tf = 5s.
The consensus state at tf is xi (5) = x∗i = [3.01,1.32,0.23]T .

that were randomly selected for the eight agents in such a way
that the norm of x(0) is varied from 1 to 10. The leader state
was kept constant xl = [−1, 0, 0]T for our approach (15) and
for the leader-following schemes in [18] and [9]. The same
previous control gains and preset settling time tf = 5s were
used for all the cases with the graph G1 for [18] and [16], and
the same followers were used for [9]. For every experiment,
the norm of the consensus error e(tf ) and the maximum
absolute value of the auxiliary control input vwere registered.
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FIGURE 8. State response (top) and auxiliary control inputs (bottom) of
the third-order systems under the control of [9] (eq. (30)) without the
observer term. The final state at tf is xi (5) = xl (5) = [−1,0,0]T .

During the simulations, all the controllers achieved consensus
at the prescribed-time, with errors lower than (||ef (tf )|| <
1 × 10−4). The results for the magnitude of the auxiliary
control v are shown in fig. 9 (top). Notice that the maxi-
mum auxiliary control efforts are significantly lower for the
TBG-based proposed controller with respect to the compared
approaches ( [9], [16], [18]). Our prescribed-time scheme
was also compared by computing the maximum value of the
control input max(|v|) for different values of the convergence
time parameter tf . The controller of [9] is not included in this
comparison since it is not able to achieve a constant preset
convergence time and is not straightforward to set a desired
bound of the settling time; re-tuning of several parameters
is needed. Such evaluation was performed using the graph
G1 and the initial states given in Table 1. The results are
presented in fig. 9 (bottom), where it can be seen that themax-
imum control effort is lower for our proposed controller than
using the compared approaches. In a range, the maximum
control effort is lower as the convergence time increases for
our prescribed-time approach and the pre-specified approach
([18]), but the relation is far away from being proportional.
Surprisingly, the control effort was higher as the convergence
time increases for the specified-time approach ([16]) along all
the evaluated range. Further analysis is required to formulate
relations between the maximum control effort, the conver-
gence time and the initial consensus error in the proposed
methodology.

Finally, another comparison was carried out with our
approach and those of [18] and [16] by increasing the number
of agents, in particular for cases with 10, 20, 50, 100 and
200 second-order agents, considering a circular communica-
tion undirected graph (i.e., the i-th follower is connected to

FIGURE 9. Comparison of the maximum value of the absolute auxiliary
control input max(|v|) as a function of the initial condition x(0) (top) and
convergence time tf (bottom). The proposed TBG-based (21),
the Pre-specified finite time ( [18]) and the Specified-time ( [16])
controllers are able to maintain the same convergence time for all the
initial conditions. This is not the case for the Fixed-time ( [9]) controller
which has different increasing settling times in the range from 5.1 to 5.8
for the different tested initial conditions.

FIGURE 10. Comparison of the maximum value of the absolute auxiliary
control input max(|v|) as a function of the number of agents. Controllers:
Prescribed-time with TBG (15), Pre-specified finite time ( [18]) and
Specified-time ( [16]).

followers i − 1 and i + 1). The same initial state conditions
were used for each approach, using values randomly selected
between −5 to 5. The second-order leader state was kept
constant xl = [−1, 0]T for our approach (15) and the com-
pared scheme of [18]. The same previous control gains and
preset settling time tf = 5s were used for all the cases. It can
be seen in fig. 10 that the control effort for our proposed
controller (15) was almost constant for all the simulations
and considerably lower than the compared controllers as the
number of agents increases. Moreover, as the number of
agents increases, the approach of [16] required readjustments
of some control parameters to maintain the final consensus
error lower than (||ef (tf )|| < 1 × 10−2), which was not
required for our proposed TBG controller.
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VI. CONCLUSION
In this work, a couple of distributed control laws to achieve
prescribed-time consensus have been proposed for a class of
high-order MAS with nonlinear agents dynamics. The design
of the proposed leader-following protocols combines the
advantages of time base generators and feedback controllers
to achieve closed-loop stability and robustness. The salient
feature of this methodology is that consensus is achieved
accurately in a prescribed time, independently of the ini-
tial conditions and detailed characteristics in the connectiv-
ity of the communication graph. Furthermore, the proposed
leader-following protocol based on a sliding mode controller,
provides robustness against matching disturbances, whilst the
prescribed-time convergence property is maintained. Another
advantage of the proposed method is that the generated con-
trol efforts can be continuous and smooth over time, exhibit-
ing lower magnitudes than existing protocols for high-order
prescribed-time (preset-time) consensus. Contrary to existing
prescribed-time consensus protocols based on time-varying
gains, in our approach no singularities appear in the control
computation.

It is worth noting that the current results are valid for a
MAS configuration with one leader and N followers, assum-
ing that the network topology contains a directed spanning
tree, with the leader as the root. As a future direction of work,
we are interested in extending the proposed methodology for
MASs in a leader-less configuration and to the case where
the MAS has more than one leader. In the last case, two
problems can be addressed: the containment control where
the followers must enter a target region formed by the group
of leaders, and the problem of reachingmultiple targets where
the targets are specified by the state of multiple leaders and
subgroups of followers must reach them. All these problems
need further investigation to effectively extend our method-
ology to achieve the control objectives in a prescribed time.
To deal with problems in the communication of the agents,
we plan to consider switching topologies and time-delays in
theMAS.Also, we are interested in addressing the casewhere
the agents are time-varying systems.
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