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ABSTRACT Ceramic grinding processing technology continues to advance rapidly. Recent studies are
increasingly adopting ultrasonic-assisted grinding (UAG) for obtaining improved surface quality and reduced
surface roughness. Because different grinding parameters could lead to different machining quality, operators
may find it difficult to select grinding parameters on the basis of the expected machining quality alone. In this
article, an intelligent UAG system (IUAGS) that provides suitable grinding parameters for the operator is
proposed. This IUAGS employs a proposed one-dimensional convolutional neuro-fuzzy network (1DCNFN)
to establish a surface roughness prediction model, and then a particle swarm optimization algorithm is used
to optimize the grinding parameters. The experimental results demonstrate that our proposed 1DCNFN has
a lower mean absolute percentage error (MAPE) in surface roughness prediction than other methods do.
Moreover, our IUAGS can provide appropriate UAG parameters on the basis of the specific requirements of
the operator.

INDEX TERMS Intelligent ultrasonic-assisted grinding system, ultrasonic-assisted grinding, grinding
processing, convolutional neural fuzzy network, particle swarm optimization.

I. INTRODUCTION
In recent years, silicon carbide (SiC) has been widely used in
aviation, automobile, and semiconductor industries [1]–[3].
SiC is a next-generation semiconductor material with excel-
lent wear resistance, favorable corrosion resistance, and high
thermal conductivity. However, SiC is hard and brittle; thus,
material removal from SiC can lead to problems such as sur-
face breakage, tool wear, and poor surface roughness. Many
scholars have recently adopted ultrasonic-assisted grinding
(UAG) systems to process ceramic materials and found that
introducing UAG can improve machining quality consid-
erably. For instance, Ding et al. [4] compared UAG with
conventional grinding and found that UAG afforded less
fiber fracture and 12% reduction in surface roughness. More-
over, Cao et al. [5] designed an ultrasonic-assisted internal
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grinding (UAIG) technique for grinding SiC ceramics and
compared it with the conventional internal grinding tech-
nique. The results indicated that UAIG improved cylindricity
accuracy and reduced surface roughness by 84.9%. Uhlmann
and Bruckhoff [6] also reported that the use of UAG in the
machining of ceramic matrix composites is able to reduce
process forces significantly and increase material removal
rates; it also shortened machining time and reduced machin-
ing force and tool wear.

In the machining process, surface roughness and milling
accuracy are regarded as product quality indicators. The
use of machining parameters to predict machining qual-
ity can not only save time but also reduce incurred costs.
Chen and Tang [7] developed a mathematical model for
predicting surface roughness in UAG to discuss the effect
of the ultrasonic vibration amplitude on surface rough-
ness. The authors noted the maximum error of different
ultrasonic vibration amplitudes to be <15%. However, the
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aforementioned model required experts to design complex
mathematical formulas and did not consider all aspects of the
problem. Consequently, the data-driven approach combined
with machine learning is becoming a preferred method for
constructing predictive models. Wu and Lei [8] used a back-
propagation neural network (BPNN) to construct a forecast
model for predicting the surface roughness of S45C steel:
The vibration signals forming the time domain and frequency
domain filtered out through Pearson correlation analysis were
extracted as features. The cutting parameters and vibration
signal features were then selected as the BPNN input. Their
results indicated that prediction accuracy can be improved
using cutting parameters and vibration signal features.
Singh et al. [9] compared the effectiveness of surface rough-
ness prediction models by using a neural network (NN) and
adaptive-network-based fuzzy inference system (ANFIS).
ANFIS [10] combines the advantages of the fuzzy infer-
ence system (FIS) and NN. An FIS resembles the human
reasoning mechanism, making it more flexible in network
design, whereas an NN enables the modelling of the non-
linear mapping of relationships between inputs and outputs.
Singh et al. [9] used the standard deviation, mean-square
error (MSE), and root MSE (RMSE) to evaluate the NN and
ANFIS precision and found that these evaluation indicators
for ANFIS were superior to those for NN. Cheri et al. [11]
established a fuzzy NN (FNN) to predict the surface rough-
ness of the cold-rolled steel strip. Although most artificial
NNs (ANNs) adopt the gradient descent method [12] to
update network parameters, the gradient descent method may
lead to the local-minimum problem. Liu et al. [13] con-
structed a high-speed grinding temperature prediction model
by introducing a particle swarm optimization (PSO) algo-
rithm [14] to optimize the NN parameters. Xu et al. [15]
proposed a prediction model to estimate tool life; in the
prediction models, PSO and differential evolution (DE) algo-
rithms [16] were used to adjust the ANFIS parameters,
and these models were named PSO-ANFIS and DE-ANFIS,
respectively. The results indicated that both PSO-ANFIS and
DE-ANFIS provided better tool life prediction performance
than did conventional ANN.

Deep learning technology is developing in tandem with
the rapid developments in the high-performance hard-
ware accelerator and graphics processing unit technologies.
Currently, deep learning is applied in various fields, such as
computer vision, natural language processing, autonomous
vehicle technology, and medical image analysis [17]–[20].
The most popular deep learning architecture is the con-
volutional neural network (CNN), composed of a con-
volutional layer, a pooling layer, and a fully connected
layer. Lin et al. [21] employed one-dimensional CNN
(1DCNN) to predict the surface roughness in the milling
process. The authors applied a convolution filter to auto-
matically extract vibration signal raw data and reported
that their 1DCNN provided highly accurate predictions.
Ambadekar and Choudhari [22] designed a prediction sys-
tem to monitor the flank wear of the cutting tool: To classify

the cutting tool into different flank wear classes, the authors
used cutting tool images as the CNN input; their experimental
results indicated that the prediction accuracy of CNN was
87.26% in the classifying tasks. Compared with machine
learning, deep learning can extract features automatically
and construct models without handcraft designing, thus pro-
viding excellent prediction and classification performance.
However, deep learning requires a large amount of mem-
ory and computational resources for training the network
parameters.

The combination of different parameters affects different
machining quality. Providing appropriate parameters through
machining quality can be considered an optimization prob-
lem. Chandrasekaran and Tamang [23] developed a surface
roughness prediction model by using an ANN, with spindle
speed, feed rate, and cut depth as inputs and surface roughness
as the output. Subsequently, the authors obtained a combina-
tion of optimum parameters through the adoption of the PSO.
Fé-Perdomo et al. [24] designed a decision-making system
for selecting optimal parameters in the micromilling process.
The authors used an ANN to establish the micromilling pro-
cess prediction model, followed by the cross-entropymethod,
to optimize the multi-objective problem. Their experimen-
tal results demonstrated that the decision-making system
provided a reliable optimal solution in the micromilling
process. Notably, those aforementioned methods depend on
the high-accuracy prediction model. If the accuracy of the
prediction model is insufficient, the parameters optimized
by the evolutionary algorithm cannot achieve the expected
results.

In the past studies, most of the researchers used the
UAG parameters to establish the surface roughness predic-
tion model. They did not consider using surface roughness
value which required by the operator to generate the UAG
process parameters. In this article, an intelligent UAG system
(IUAGS) is developed to provide a suitable parameter com-
bination according to the requirements of the operator in the
UAG process. This IUAGS adopts the techniques of the one-
dimensional convolutional neuro-fuzzy network (1DCNFN)
and PSO algorithm. The proposed 1DCNFN (a combination
of a convolutional layer and a neural fuzzy network) plays
the role of a surrogate surface roughness prediction model,
whereas the PSO aids in obtaining the optimization parame-
ters of the grinding process. Finally, the experimental results
illustrate the efficiency of the proposed IUAGS.

II. DATA COLLECTION
A. EXPERIMENTAL SETUP
The computer numerical controlled machine tool (MV184C,
QUASER, Taiwan) [25] equipped with HEIDENHAIN
TNC640 was used to collect the UAG experiment data.
Fig. 1 and Table 1 present a photograph and specifications of
the machine, respectively. To improve the grinding quality,
the ultrasonic tool holder BT-40 (Hantop Intelligence Tech,
Taiwan) [26] was also used. Fig. 2 and Table 2 present a
photograph and specifications of BT-40, respectively.
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FIGURE 1. QUASER-MV184C.

TABLE 1. Specifications of QUASER-MV184C.

FIGURE 2. BT40.

TABLE 2. Specifications of BT40.

SiC ceramics have many advantages, such as excellent
chemical resistance, high strength, and low thermal expan-
sion capacity. The disadvantages of SiC is to chip easily,
poor manufacturability, and low mechanical shock tolerance.
Thus, it is important for SiC to select appropriate processing
parameters. In the UAG experiments, SiC ceramics were used
as the experimental material. The mechanical properties of
SiC ceramic used are listed in Table 3. Moreover, Fig. 3 and
Table 4 present a schematic and specifications of the diamond
grinding pin LHM-DIA-D6.0-T5-K5-#60 [27] used in the
experiment.

TABLE 3. mechanical properties of SiC ceramic.

FIGURE 3. Diamond grinding pin.

TABLE 4. Specifications of the diamond grinding pin.

B. UAG PROCESSING PARAMETER DESIGN
The accuracy of a predictive model is critical to the effec-
tiveness of its prediction. A good UAG experiment can not
only collect experimental data in different grinding situations
but also aid in constructing a high-precision predictionmodel.
The main parameters that affect the CNC machining results
are considered in this experiment, including cutting speed,
feed rate, axial depth of cut, and radial depth of cut [28], [29].
In addition, different materials and ultrasonic power will
also cause different surface roughness results [30], [31].
In this article, we focus on SiC materials and utilize five
parameters mentioned above to design UAG experiments.
The full factorial design method was used to collect the
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TABLE 5. Parameters of UAG experiment.

UAG experiment data. As listed in Table 5, the UAG param-
eters include material, cutting speed, feed rate, cutting depth,
cutting width, and ultrasonic power. The UAG experiments
were performed a total of 11× 20× 2× 1× 5 = 2200 times.
Therefore, 2200 sets of data were collected, 80% of the data
was used for predictive model training, and the remaining
20% was used for model testing.

C. SURFACE ROUGHNESS MEASUREMENT
After the UAG experiment, a 3D optical surface profiler
(NewViewTM 8300, Zygo, USA) [32] was used to measure
surface roughness of SiC. NewViewTM 8300 nondestruc-
tively provides a wide range of precise surface roughness
measurements. Fig. 4 and Table 6 present a photograph and
specifications of this profiler, respectively.

FIGURE 4. NewViewTM 8300.

III. IUAGS
This section introduces the proposed IUAGS. In UAG appli-
cations, the parameters for product quality with a specific
requirement are usually determined on the basis of the expe-
rience of an expert. However, if an operator does not have any
knowledge regarding the selection of the grinding parameters,
starting a grinding process may be difficult. Thus, herein we
propose an IUAGS that can assist an operator in grinding

TABLE 6. Specifications of NewViewTM 8300.

FIGURE 5. Flow of the proposed IUAGS.

parameter selection. Our IUAGS comprises three parts: data
collection (as indicated in Section II), predictionmodel estab-
lishment, and UAG parameter optimization (Fig. 5). In brief,
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FIGURE 6. 1DCNFN structure.

after data collection, the predictionmodel is established using
the proposed 1DCNFN, and the relationship between UAG
parameters and surface roughness is obtained. Then, PSO is
used to optimize the UAG parameters.

A. PROPOSED 1DCNFN FOR SURFACE
ROUGHNESS PREDICTION
1) 1DCNFN STRUCTURE
Fig. 6 presents the structure of our 1DCNFN, which can be
divided into input, convolutional, pooling, flatten, fuzzifica-
tion, rule, and output layers. The convolutional layer aids fea-
ture extraction, whereas the prediction model is constructed
on the neural fuzzy network.

The operation of each 1DCNFN layer is detailed as
follows.

a: INPUT LAYER
The input X is i-nibble (i = 1, . . . , 5) of one-dimensional raw
data and passed to the next layer.

X = {x1, x2, . . . , xi} (1)

b: CONVOLUTIONAL LAYER
The input is convolved with kernels with a restricted region of
the visual field known as the receptive field to extract features
in the convolutional layer. The operation of convolution is
defined as

Cpi =
∑ks−1

u=0
xi+u ∗ kp,u (2)

where C denotes the convolution feature maps, p presents
the number of convolution feature maps, ∗ denotes the
convolution, ks is the convolution kernel size, k ∈ R is
the convolution kernel (which randomly generates form the

uniform distribution), and u is the column indices of the
convolution kernel.

c: POOLING LAYER
Herein the channel max-pooling [33] is adopted to eliminate
redundant information. The channelmax-pooling compresses
several feature maps to one by selecting the maximum value
among the same locations. In contrast to the max-pooling
operation, the channel max-pooling operation, which reduces
the number of parameters by reducing the number of chan-
nels, does not change the width and the height of the feature
map. The channel max-pooling operation is defined as

Smi = max
1:G

Cz,i, (3)

where S denotes the pooling feature maps,m is the number of
pooling feature maps,G is the pooling kernel size, and z is the
index of the convolution feature map, which is calculated as

z = (m− 1) s+ 1, (4)

where s denotes the stride.

d: FLATTEN LAYER
The feature data that flatten into a one-dimensional vector is
passed to the fuzzification layer. The operation of flattening
is defined as

ui = Smi. (5)

e: FUZZIFICATION LAYER
The fuzzy operation is calculated in this layer. The IF–THEN
rule can be represented as
Rulej: IF u1 is A1j and . . . and un is Anj THEN yj = wj,

where Aij represents the fuzzy sets, i = 1, 2, . . .K , n is the

VOLUME 8, 2020 195725



C.-J. Lin et al.: Parameter Selection and Optimization of an Intelligent UAG System for SiC Ceramics

input numbers and j = 1, 2, . . .K , r is the rule numbers, and
wj is a weight of zero-order Takagi–Sugeno–Kang type. The
fuzzy set Aij, which adopts a Gaussian membership function,
is defined as

Mij = exp

{
−

(
ui − mij

)2
σ 2
ij

}
, (6)

where mij and σij are the mean and standard deviation of the
fuzzy set Aij. The advantage of using the Gaussian member-
ship function is that it covers the whole input space to prevent
the zero firing strength problem.

f: RULE LAYER
The firing strength of a fuzzy rule is calculated by the alge-
braic product operator as

Rj =
∏n

i=1
Mij. (7)

g: OUTPUT LAYER
The output y is calculated as

y =
∑r

j=1
Rjwj. (8)

2) PARAMETER LEARNING OF THE 1DCNFN
Herein the parameter learning method using the gradient
descent algorithm for 1DCNFN is introduced. The objective
to minimize the loss function is defined as

L =
1
2

(
ŷ− yd

)2 (9)

where ŷ and yd are the model output and desired output of
1DCNFN. In parameter learning, the parameters containing
wj, mij, σij, and kp,u update from the end to start. On the basis
of the gradient descent algorithm, the updated parameters can
be expressed as

wj (t + 1) = wj (t)− η1wj (10)

mij (t + 1) = mij (t)− η1mij (11)

σij (t + 1) = σij (t)− η1σij (12)

kp,u (t + 1) = kp,u (t)− η1kp,u (13)

where η ∈ (0, 1] represents the learning rate. The derivation
of wj can be expressed as follows:

1wj =
∂L
∂wj
=
∂L
∂ ŷ

∂ ŷ
∂wj
=
∂ 1
2

(
ŷ− yd

)2
∂ ŷ

∂
∑r

j=1 Rjwj
∂wj

= (ŷ− yd )Rj (14)

The derivation of mij and σij can be expressed as follows:

1mij =
∂L
∂mij
=

∂L
∂Mij

∂Mij

∂mij
=
∂L
∂Rj

∂Rj
∂Mij

∂Mij

∂mij

=
∂L
∂ ŷ

∂ ŷ
∂Rj

∂Rj
∂Mij

∂Mij

∂mij
= (ŷ− yd )wjRj

2(ui − mij)

σ 2
ij

(15)

1σij =
∂L
∂σij
=

∂L
∂Mij

∂Mij

∂σij
=
∂L
∂Rj

∂Rj
∂Mij

∂Mij

∂σij

=
∂L
∂ ŷ

∂ ŷ
∂Rj

∂Rj
∂Mij

∂Mij

∂σij
= (ŷ− yd )wjRj

2
(
ui − mij

)2
σ 3
ij

(16)

Finally, the derivation of convolution kernel weights is
expressed as follows:

1kp,u =
∂L
∂kp,u

=
∂L
∂Cpi

∂Cpi
∂kp,u

=
∂L
∂Smi

∂Smi
∂Cpi

∂Cpi
∂kp,u

=
∂L
∂ui

∂ui
∂Smi

∂Smi
∂Cpi

∂Cpi
∂kp,u

=
∂L
∂Mij

∂Mij

∂ui

∂ui
∂Smi

∂Smi
∂Cpi

∂Cpi
∂kp,u

=
∂L
∂Rj

∂Rj
∂Mij

∂Mij

∂ui

∂ui
∂Smi

∂Smi
∂Cpi

∂Cpi
∂kp,u

=
∂L
∂ ŷ

∂ ŷ
∂Rj

∂Rj
∂Mij

∂Mij

∂ui

∂ui
∂Smi

∂Smi
∂Cpi

∂Cpi
∂kp,u

= (ŷ− yd )wjRj
−2(ui − mij)

σ 2
ij

∂Smi
∂Cpi

xi+u (17)

∂Smi
∂Cpi

=

{
1, Cpi is maximum value
0, otherwise

(18)

B. UAG PARAMETER OPTIMIZATION
To establish our IUAGS, we combined 1DCNFN with a
PSO algorithm. In general, a PSO algorithm is an evolution-
ary algorithm, inspired by the collective behavior of birds.
Compared with other optimization algorithms, PSO requires
fewer adjusting parameters, has global search ability, and
provides fast convergence. Its mathematical model can be
defined as

Vi (n+ 1) = ωVi (n)+ C1ϕ1 (Pbest − Xi (n))

+ C2ϕ2 (Gbest − Xi (n)) (19)

and

Xi (n+ 1) = Xi (n)+ V i (n+ 1) (20)

where Vi (n) denotes the velocity for Xi (n) particle, ω repre-
sents the inertia weight,C1 andC2 are the cognitive parameter
and the social parameter, respectively, Pbest is the personal
best solution of the current particle, and Gbest is the global
best value of all particles; moreover, ϕ1 and ϕ2 are random
numbers between [0, 1].

The fitness function F(·) of the PSO algorithm adopted in
our IUAGS is defined as

F (·) =
1

1+ (|Tra −Mra|)
(21)

where Tra represents the target surface roughness of the UAG
process setting provided by the operator and Mra is the pre-
dicted surface roughness provided by the prediction model.
After the surface roughness prediction model using the pro-
posed 1DCNFN is established, the goal of the fitness function
of the PSO algorithm is to optimize the grinding parame-
ters. If the fitness function value is higher and close to 1,

195726 VOLUME 8, 2020



C.-J. Lin et al.: Parameter Selection and Optimization of an Intelligent UAG System for SiC Ceramics

the approximate parameters of the target surface roughness
can be obtained.

The steps of PSO for UAG parameter optimization are
described as follows.
Step 1: Set the population size, maximum iteration, inertia

weight ω, social coefficients C1 and C2.
Step 2: Encode UAG parameters as a particle and initialize

randomly. Each particle represents a solution of UAG pro-
cessing.
Step 3: Evaluate the fitness value of each particle by

Eq.(21) and find out the personal best Pbest and global
best Gbest .
Step 4: Update the velocity Vi and the position Xi of the

particle according to Eqs.(19)-(20).
Step 5: Compute the fitness values. If the computed values

are worse than previous particles, then abandon them. Other-
wise, replace the previous particles.
Step 6: Repeat step 4-5 until the termination criterion is

met (current iteration ≥ max iteration).
Step 7: Obtain the Gbest as an optimal UAG parameter.

IV. EXPERIMENTAL RESULTS
In this section, we describe the experimental results in three
parts: (i) analysis of variance (ANOVA) results for the rela-
tionship between the UAG parameters and surface rough-
ness, (ii) surface roughness prediction results by adopting
the proposed 1DCNFN and their comparison with different
prediction models, and (iii) UAG processing results with
optimized parameters on our IUAGS.

A. UAG PARAMETER ANALYSIS
To establish a high-precision prediction model, we used the
full factorial design method for collecting the UAG exper-
iment data. After data collection, we employed ANOVA,
which can quantify the effect of various input factors affecting
processing, to estimate the percentage contribution (Pc) of
process factors on the UAG experiment data. The analyzed
UAG factors included cutting speed (11 levels), feed rate
(20 levels), axial cutting depth (2 levels), and ultrasonic
power (5 levels). The Pc for each UAG factor was calculated
as follows:

DOF = KA − 1 (22)

SSA =
∑KA

i=1

(
A2i
nAi

)
−
T 2

N
(23)

SST =
∑N

i=1
y2i −

T 2

N
(24)

SSE = SST − (SSA + SSB + . . .) (25)

Here, DOF denotes degrees of freedom, SSA presents the
sum of squares for factor A, SST presents the total sum of
squares, SSE presents the error sum of squares, KA is the
number of levels for factor A, Ai is the summation of all
observations of level i for factor A, nAi is the number of
all observations at level i for factor A, T is the summation
of all observations, N is the total number of experiments, and

yi is the observation of i.

MSA =
SSA
DF

(26)

MSE =
SSE
DF

(27)

FA =
MSA
MSE

(28)

Pc =
SSA
SST
× 100% (29)

Here, MSA denotes the variance of each factor, MSE is
the MSE, FA represents the F ratio of factor A, and Pc is
the percentage of contribution for each factor. The higher the
Pc, the more significant is the factor to the results. Table 7
presents the ANOVA results.

TABLE 7. Anova results for the UAG experiment.

As displayed in Table 7, the most significant factors con-
tributing to surface roughness were found to be feed rate
(61.69%), followed by ultrasonic power (23.32%), whereas
cutting speed (3.57%) and axial cut depth (3.31%)were found
to be the least significant. On the other hand, the total contri-
bution rate of main parameters reaches 80%, the insignificant
parameters can be ignored. If the error of percent contribution
(uncontrolled and unknown factors) is <50%, it can assume
that no significant factor has been omitted in the experiment.
In our UAG experiment, the error of percent contribution
was 8.12%, indicating that no significant factor has been
omitted.

B. SURFACE ROUGHNESS PREDICTION RESULTS
We next compared the proposed 1DCNFN with different
models containing BPNN [8], ANFIS [10], FNN [11], and
1DCNN [21] to verify the prediction effectiveness. Here,
the 1DCNN (used for comparison) has two convolutional
layers, one pooling layer, and one fully connected layer; its
architecture 1DCNN is detailed in Table 8. Of the 2200 sets
of experiment data collected from the UAG experiment,
80% (1760) was denoted as training data and 20% (440)
was denoted as testing data. Each model was trained through
1000 iterations, followed by the evaluation of its effectiveness
by using evaluation functions. The performance of the testing
data for each surface roughness prediction model is shown
in Fig. 8: among all prediction model networks, the BPNN
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FIGURE 7. Performance of testing data for each prediction model.

demonstrated the largest prediction error, followed by ANFIS
and FNN, whereas the 1DCNN and 1DCNFN afforded the
smallest prediction errors.

Moreover, we used different evaluation functions to eval-
uate the effectiveness of each model. These evaluation func-
tions includedMSE, RMSE, mean absolute error (MAE), and
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FIGURE 7. (Continued.) Performance of testing data for each prediction model.

TABLE 8. 1DCNN architecture.

mean absolute percentage error (MAPE). These evaluation
functions are defined as follows:

MSE =
1
n

∑n

i=1
(ŷi − yi)

2 (30)

RMSE =

√
1
n

∑n

i=1
(ŷi − yi)

2 (31)

MAE =
1
n

∑n

i=1

∣∣ŷi − yi∣∣ (32)

MAPE =
100%
n

∑n

i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ (33)

Here, ŷi denotes the actual measured surface roughness value,
yi is the predicted value, and n presents the number of
data. Different MAPE values indicate different prediction
performance [34].

The levels of different prediction performances are listed
in Table 9, and the detailed prediction results are summarized
in Table 10. As presented in Table 10, the MAPE of all
established prediction models was <10%, indicating that all
the prediction models had high accuracy. Compared with
other models, those with 1DCNN and the proposed 1DCNFN
had lower MAPE (2.61% and 2.41%, respectively).

In this experiment, the total number of adjustable parame-
ters of each predictionmodel were also compared in Table 11.
As shown in Tables 10 and 11, BPNN, ANFIS, and FNN
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TABLE 9. Prediction performance of MAPE.

TABLE 10. Prediction performance of MAPE.

TABLE 11. Number of adjustable parameters of the prediction model.

had fewer parameters (n < 200) but their MAPE was greater
than 5%. Although the 1DCNN had a high prediction accu-
racy (MAPE < 5%), it contained more than 10,000 param-
eters. In contrast, the proposed 1DCNFN has less than
1000 parameters and is superior to other models in surface
roughness prediction accuracy (i.e., it has a lower MAPE).
In manufacturing, the computing resources of each equip-
ment are precious. The proposed 1DCNFN can achieve the
performance of traditional 1DCNN with fewer parameters
and calculations without the need for expensive GPU hard-
ware costs. Therefore, the proposed 1DCNFN can be easily
implemented on embedded devices.

C. UAG PARAMETER OPTIMIZATION RESULTS
We applied the PSO algorithm to determine the optimization
solution and provide operators with suitable UAG processing
parameters. Table 12 lists the initial parameters of PSO,
including the number of particles, the single inertia weight ω,
acceleration constants C1 and C2, and number of iterations.

TABLE 12. Initial parameters of PSO.

FIGURE 8. Experimental results of UAG processing.

FIGURE 9. Error of UAG processing.

TheUAGparameters were generated by using the proposed
IUAGS according to the requirement of the operator. Then,
UAG processing was performed using the generated param-
eters on the QUASER-MV184C machine tool. In this
experiment, we set different target surface roughness values,
ranging from 0.5 to 1.5 (um), for performance evaluation.
The experimental results are illustrated in Figs. 8 and 9: the
performance of UAG processing with 12th, 13th, and 21st
parameters were not as satisfactory as expected. Table 13
provides the detailed experimental results of each UAG
process: the 21 sets of parameters for UAG processing
selected by our IUAGS had a low MAPE (2.43%). Taken
together, these results indicated that the proposed IUAGS can
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TABLE 13. Prediction performance of MAPE.

provide suitable parameters for UAG processing with high
accuracy.

V. CONCLUSION
In UAG processing, grinding parameters have direct effects
on the product quality, and an operator may not have
the expertise of selecting suitable parameters. Herein we
designed an IUAGS that can assist the operator in selecting
suitable UAG processing parameters. Our IUAGS contains
our newly proposed 1DCNFN for establishing the surface
roughness prediction model; in this 1DCNFN, a convolu-
tional layer and an FNN are combined to facilitate auto-
matic feature extraction and increase prediction accuracy.
To find the optimal combination of grinding parameters for
expected surface roughness, the PSO algorithm is applied
subsequently. Our experimental results demonstrated that the
IUAGS can aid in selecting themost suitable UAGparameters
on the basis of the quality requirements at high accuracy,
as indicated by the low MAPE (2.43%).
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