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ABSTRACT Between January and October of 2020, the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) virus has infected more than 34 million persons in a worldwide pandemic leading to
over one million deaths worldwide (data from the Johns Hopkins University). Since the virus begun to
spread, emergency departments were busy with COVID-19 patients for whom a quick decision regarding
in- or outpatient care was required. The virus can cause characteristic abnormalities in chest radiographs
(CXR), but, due to the low sensitivity of CXR, additional variables and criteria are needed to accurately
predict risk. Here, we describe a computerized system primarily aimed at extracting the most relevant
radiological, clinical, and laboratory variables for improving patient risk prediction, and secondarily at
presenting an explainable machine learning system, which may provide simple decision criteria to be used
by clinicians as a support for assessing patient risk. To achieve robust and reliable variable selection, Boruta
and Random Forest (RF) are combined in a 10-fold cross-validation scheme to produce a variable importance
estimate not biased by the presence of surrogates. The most important variables are then selected to train
a RF classifier, whose rules may be extracted, simplified, and pruned to finally build an associative tree,
particularly appealing for its simplicity. Results show that the radiological score automatically computed
through a neural network is highly correlated with the score computed by radiologists, and that laboratory
variables, together with the number of comorbidities, aid risk prediction. The prediction performance of
our approach was compared to that that of generalized linear models and shown to be effective and robust.
The proposed machine learning-based computational system can be easily deployed and used in emergency
departments for rapid and accurate risk prediction in COVID-19 patients.

INDEX TERMS Associative tree, Boruta feature selection, clinical data analysis, COVID-19, generalized
linear models, missing data imputation, random forest classifier, risk prediction.

I. INTRODUCTION
Coronavirus disease 2019 (COVID-19), caused by the
novel severe acute respiratory syndrome coronavirus 2
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(SARS-CoV-2), emerged in Wuhan, China, in
December 2019. COVID-19 quickly became a pandemic [1]
and is still threatening the lives of populations worldwide.
Given the promising results achieved by studies exploiting
Artificial Intelligence (AI) and/or probabilistic models for
outcome prediction [2]–[4] in bio-medical problems where
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human skill and know-how are not able to provide precise and
reproducible solutions, in this worldwide health crisis, a great
deal of research effort has been devoted to the development of
Robotics andDataAnalytics techniques [5], [6] exploiting the
potentials of AI methods to either predict, monitor, and com-
bat the virus by simulating the virus spread or the time needed
to recover [7] ensuring and promoting social distancing
[5], [8], identifying early COVID-19 infections, or predicting
patient outcome to improve patient care [8]–[11]. Thanks to
such AI techniques, wearable devices and Web applications
may be used by affected individuals for self-monitoring
COVID-19 related symptoms, while clinicians are aided
in the diagnosis of COVID-19 infection from either CT
[12], [13] or XRay lung images [11], [14], or in the prediction
of patient mortality risk, progression to severe disease, inten-
sive care unit admission, ventilation, intubation, or length of
hospital stay [8], [15].

In particular, an effective risk prediction model would con-
tribute to precision medicine strategies for tailoring clinical
management to the needs of individual patients and thereby
increasing the probability of complete recovery. It would also
allow emergency departments to optimize patient flow and
reduce waiting times.

A substantial amount of research has therefore been been
conducted with the goal of predicting patient outcome by
analysing different types of data, including clinical, labora-
tory, and radiological features [15]–[17]. Although promis-
ing results have been reported by several authors, a recent
survey of COVID-19 prognosis/risk prediction methods [15]
reported that most of them are biased due to one of two
reasons. Firstly, many published studies lack clinical follow-
up data, implying that the categories (labels) used formachine
learning may be inaccurate, because patients may develop
severe complications subsequently to the initial clinical
encounter used for ML. Secondly, many studies use the
last available predictor measurements from electronic health
records, rather than the predictor values acquired at the time
when the model is intended for use. Moreover, several meth-
ods do not include any description of the study popula-
tion, or the intended use of the developed models, are not
explained clearly, or are not exhaustively tested. In other
cases, parameter values are arbitrarily set, or the experiments
at the base of hyper-parameter setting are not robust or are
not reported. These considerations lead to the conclusion that
most of the presented methods are poorly described and at
high risk of bias, raising concern that their predictions could
be unreliable when applied in clinical practice [15].

In this article, we therefore aimed to develop a rigorous
and explainable risk prediction model that avoids weak-
nesses mentioned above. Each of the relevant steps of our
algorithm was critically designed, tested, and compared
to state-of-the-art techniques from the published literature.
Moreover, the dataset used to develop and test the algorithms
is described in detail (see Section III), and each of the meth-
ods and parameter settings used by our approach is described
andmotivated. The principal aim of this study is to develop an

unbiased automatic system primarily devoted to selecting the
most important clinical and laboratory variables to be used
for COVID-19 risk assessment. Importantly, the variables
considered in the present study also include two radiological
scores resulting from radiologists’ evaluation of CXRs and
two ‘‘lung involvement’’ scores computed by one of the best
performing deep neural networks aimed at COVID-19 risk
diagnosis. This allows assessing the integration of a radio-
logical score computed by humans and radiological scores
computed by a deep network (see Section II.B), to assess the
trustworthiness of computerized AI systems, whose disad-
vantage is often related to their ‘‘black box’’ nature.

To properly manage the missing data issue that arises from
the integration of multiple sources of data for COVID-19 risk
prediction, we assessed a number of imputation techniques
(see Section IV), including methods that do not assume Nor-
mality of the data [18]–[20] and several other methods that
have been shown to be effective [21]–[23].

Secondarily, in Section V we present a novel feature selec-
tion technique exploiting a cross-validation strategy to com-
bine the Boruta [24]–[26] algorithm and a permutation-based
feature selector embedded into Random Forests (RFs, [27]).
The proposed feature selection method enables robust and
stable feature selection (Section V-A1).
The selected features are then used as input to RFs [27]

(see Section V-A2) and to the derived Associative Trees
(AT, [28], [29], see Section V-A3). While RFs produce a
great number of rules, sometimes difficult to be understood,
ATs are constructed from RFs, to essentially summarize them
producing a simpler rule set that can easily be evaluated and
interpreted by clinicians.

RFs and ATs were chosen since their interpretability does
not require any (post hoc, proxy) explainer model to analyze
their predictions, therefore avoiding unreliable and mislead-
ing explanations [30]. Results computed by these algorithms
were compared to those obtained by Generalized Linear
Models (GLM [31], Section V-B), which assume a binomial
distribution for the response variable, therefore removing the
normality hypothesis, and estimate a linear regression model
‘‘linked’’ to the response variable through a logit distribu-
tion. To avoid any bias [15], since the rules are intended to
be used at the time of admission of patients to the Emer-
gency Department (ED), our dataset is composed of data
acquired upon ED admission of 300 patients, for whom five-
months of follow-up data are available, and whose CXR was
evaluated by two experienced radiologists blinded to patient
status.

In sum, the main contributions and novelties of this article
are:
• A machine learning-based computational system that
can be easily deployed and used in emergency depart-
ments for an early and fast assessment of risk prediction
in COVID-19 patients.

• Integration of clinical, laboratory and radiological data
for the prediction of COVID-19 disease risk. The inte-
grated prediction system includes radiological scores
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estimated by both expert radiologists and by specialized
state-of-the-art deep neural networks.

• A novel, robust feature selection algorithm that com-
bines the Boruta algorithm [24], [25] with permutation-
based feature selection methods embedded in RFs
[27], [32], [33] to select variables that are most relevant
for COVID-19 risk prediction.

• An explainable machine learning decision system based
on Additive Trees that can support physicians in the
early COVID-19 risk assessment through a set of simple
and human-interpretable decision rules.

• A thorough comparative evaluation of different impu-
tation techniques to manage the problem of missing
data in the context of outcome prediction for COVID-19
patients.

This retrospective study was approved by the ethics com-
mittee of the hospital where data were collected, which also
waived the requirement for informed patient consent because
of its retrospective nature.

II. RELATED WORK
In this section we overview related works concerning: miss-
ing data imputation methods (Section II-A) underlying the
algorithms we have studied and compared in Section IV,
deep learning models for diagnosis of COVID-19 from lung
CT or chest CXR images (Section II-B), which are related
to the deep model we use to compute automatic COVID-19
severity scores from CXR images (Section III-B), and risk-
prediction methodologies (Section II-C) linked to the pro-
posed risk-prediction models (Section V).

A. MISSING DATA IMPUTATION
Medical/clinical research is often performed on datasets with
a limited number of samples, some of which are described by
vectors containingmissing values, andwhere themissing data
can be described by one of the following mechanisms [18],
[20], [34], [35]:
• Missing-Completely-At-Random (MCAR), meaning
that the event of a value being missing is independent
from both observed and missing values, and occurs
totally at random;

• Missing-At-Random (MAR), occurring when the prob-
ability of missing values only depends on observed data,
i.e., the latter define groups within which the probability
of being missing is constant;

• Missing-Not-At-Random (MNAR), taking place when
data are not MCAR or MAR, and missingness depends
on unobserved data. In other words, there is a well-
defined (even though often unknown) cause for missing
values. In the case of MNAR, having a missing data
in one variable often has some relationship with the
observations of other variables. For example, values
for variable x1 may be missing/observed when variable
x2 has high/low values. Alternatively, values in variable
x1 may be missing when values in variable x2 are also
missing [34].

In any case, due to the limited number of samples, removal
of points with missing data is not a good option. Instead,
data imputation algorithms are generally applied, which may
be grouped into three categories: methods employing sta-
tistical models to essentially estimate the underlying data
distribution, methods based on machine learning techniques,
and methods based on hybrid combinations of the previous
approaches.

Statistical methods replacemissing data by estimating their
underlying distribution and/or the whole data distribution.
The imputed values are drawn from the estimated distribu-
tion when a random error may be added to simulate real
distributions. Examples of such methods are Hidden Markov
Models [36], linear regression models [37], [38], KNN-
imputation [39], cold and hot-deck imputation [40], SVD-
based imputation [41], or methods that explicitly estimate
the underlying distribution by using, for instance, Gaussian
mixture models [42]–[44]. These methods are well suited for
MAR or MNAR data because they are tied to the estimation
of a distribution. However, they are often based on critical
parameters having a high impact on the computed values, and
setting and evaluating these parameters can be quite difficult
because the ground truth (the missing values themselves) is
not known.

Machine-learning methods are more recent. They perform
imputation by learning the data distribution from the com-
plete samples. For example, Random Forests [19] are par-
ticularly appealing because they deal with heterogeneous
data whose features can have different data types, do not
need any data normalization, and produce explainable values.
Other, more complex techniques, are based on neural net-
works. Among them, several proposals leverage auto-encoder
networks [45]–[49] or encoder-decoder Convolutional Neu-
ral Networks (CNNs) [50], [51] in order to reconstruct the
training samples in their decoding output. Once trained, such
decoding networks are able to reconstruct the missing values
in test samples.

A completely different imputation approach is used by
Generative Adversarial Neural Networks (GANN) [52],
which learn to generate ‘‘missing’’ data with the same dis-
tribution as the training set. This is done by training a ‘‘gen-
erative’’ network, which generates possible imputed values
and proposes them to a ‘‘discriminative’’ network, which
is trained to accept only those generated values that prop-
erly fill the missing ones according to the underlying data
distribution. Neural networks may be better able to model
MCAR, MAR, and MNAR data because of their inherent
non-linearity, but their main disadvantage is the need of a
large training set, which is often not available in case of
(bio-)medical data. Moreover, neural networks are ‘‘black
box’’ models whose predictions are difficult to explain.

Hybrid approaches have been proposed to exploit and
merge the advantages of different methods. They are essen-
tially based on the multiple imputation approach initially
presented in [53], [54] (see Section IV). Multiple imputa-
tion (MI) methods, e.g., MICE [23], [35] (see Section IV),
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essentially produce several estimates of the missing data by
techniques containing some randomness. Then, two possible
approaches are used to obtain the final result: (i) the first
approach processes each imputed set in the same way and
then combines the computed results through statistical meth-
ods [53], [55] (see Section VI-A2); (ii) the second one com-
bines the computed imputations through classical techniques,
such as the mean of the imputed values [56] (which may
not be appropriate [35]) or by exploiting machine learning
methods [57] (which require a lot of training samples).

Although MI techniques are able to produce effective
results, their main parameter, i.e., the number m of imputa-
tions to be generated and then combined, must be carefully
chosen in order to reach a low and stable between-imputation
variance (see Section IV-B1). Also, the kind of data missing-
ness (MCAR, MAR, or MNAR) that hybrid techniques are
best suited for depends on the merged imputation methods.

B. AUTOMATED COVID-19 DIAGNOSIS FROM
LUNG IMAGES
Since the beginning of 2020, several deep neural models
have proven their effectiveness in the diagnosis of COVID-19
infection from either lung CT or CXR images [58]. Although
the proposed deep neural networks were developed upon
completely different architectures, and exploit different train-
ing losses and optimization algorithms, their common trait is
the ‘‘Active, Incremental Learning’’ approach used for learn-
ing [59], [60], which is especially needed when the available
datasets are limited in size and only small numbers of new
cases can be acquired incrementally.

Thanks to the existence of large open datasets contain-
ing either lung CT [61] or CXR [62] images from patients
with various diseases other than COVID-19 (e.g., lung can-
cer, pneumonia, pleural effusion, and others), the problem
of COVID-19 diagnosis is commonly addressed by train-
ing well-known existing deep neural networks [62]–[64],
such as ResNet [65], [66], Inception-Net [67], [68], or VGG
[69], [70], on the existing, large datasets. In this way, the
network is first trained on a similar task, such as lung can-
cer or pneumonia diagnosis. Next, the knowledge of the pre-
trained network is ‘‘incremented’’ by applying a training
phase where an augmented COVID-dataset is used [12], [71].

Importantly, considering that deep models have been
highly criticized in the past for their ‘‘black-box’’ explana-
tions, several deep models proposed for COVID-19 diagno-
sis [12], [14] include a further interpretation step, applied
to motivate the computed prediction. Among the various
state-of-the-art methods for interpreting the predictions of
deep models [72], the mostly used are sensitivity analysis
[12], [73], [74], which allows the areas of highest activation to
be identified, e.g., in the first hidden layer (since this layer is
often considered as the onewhere base textural and color/gray
level features are learned). Another common approach is
output back-propagation as used by algorithms such as
GRAD-CAM [13], [75] or layer-wise relevance propagation
[14], [76], which essentially back-propagate the activation

in the output layer to understand which areas are the most
relevant in the computation of the final decision.

Deep models for lung CTs and models for CXRs differ in
the dimensionality of the input images (CTs are 3D images
while CXRs are 2D images), meaning that deep models
with 3D convolutional layers are used for processing CTs,
whereas models with 2D convolutional layers are used for
CXRs. On the other hand, all the methods apply a transfer
learning technique and most of them start by a ResNet or an
inception-Net.

The work proposed in [13] represents an exception to the
above considerations, since the authors eschew the 3D pro-
cessing generally applied for CT images in favor of the clas-
sical 2D processing applied for 2D (CXR) images. The 2D
ResNet50 architecture process each 2D slice of the CT and
the output of all the ResNet are subsequently used as input to a
max pooling layer followed by a dense layer, which computes
the final prediction. Another interesting example of a deep
learning model for CTs applies transfer learning to ResNet
architectures and creates an augmented dataset by applying
the usual image transformations to both the original image
and the images obtained by wavelet decomposition. More
precisely, instead of augmenting the dataset by transforming
only the original image, wavelet decomposition is applied and
also the images obtained from wavelet decomposition up to
3 levels are added to the training set [12].

In general, deep learning models for CT data obtain higher
performance than those trained on CXR data, which pre-
sumably reflects the higher sensitivity of CT for diagnosing
abnormalities related to COVID-19 as compared to CXR.

Despite this initial enthusiasm for machine learning based
on lung CT data, their longer acquisition time and higher
costs (when compared to chest CXRs) mean that lung CT
are impracticable for the early screening of patients with
suspected COVID-19 in EDs, even though CT may be the
preferred modality for predicting the disease progression in
COVID-19 patients. To this end, a recent study presented a
severity score index computed by humans from chest CT,
and used it together with other inflammatory indexes and age
to form a patient’s feature vector input to logistic regression
classifiers [77].

A recent approach to feature selection in COVID-19 CXR
data used the first convolutional layers of existing networks
(e.g. AlexNet, VGGs, GoogleNet, ResNets, InceptionNets,
DenseNet) as extractors of ‘‘Deep Features’’. The convo-
lutional layers were connected to a dense fully connected
layer that transforms the output of the convolutional layers
into a 1000 dimensional vector, whose weights are tuned
via transfer learning. The 1000-dimensional outputs are then
used as input to support vector machines (SVMs). The results
showed that a ResNet architecture followed by SVM achieves
the best performance [78].

Based on the notion that the residual layers of ResNet
are the key for its success, in [11], [14] authors presented
CovidNet, a tailored CNN model using residual connections,
which is trained to reproduce the scores of lung involvement

196302 VOLUME 8, 2020



E. Casiraghi et al.: Explainable Machine Learning for Early Assessment of COVID-19 Risk Prediction

(extent and severity, cf. Section III-B) produced by human
experts. Given the successful results obtained by such net-
work, we used it to produce two radiological features, which
have been added to our dataset.

C. RISK PREDICTION MODELS FOR COVID-19 PATIENTS
A recent exhaustive survey of the literature on multivariate
models and scoring systems for predicting COVID-19 related
outcomes revealed 107 studies describing 145 prediction
models. Of these, four models aim to identify people at
risk in the general population; 60 exploit medical imaging
for diagnosing COVID-19 in patients with suspected infec-
tion; nine models diagnose disease severity; and 50 propose
prognostic models for predicting mortality risk, progression
to severe disease, intensive care unit admission, ventilation,
intubation, or length of hospital stay.

Besides being a precise report of all the available state-of-
the-art works (up to May 5th, 2020) for COVID-19-related
predictions based on patient data, themethod proposed in [15]
is very interesting since it highlights all the biases men-
tioned in Section I and that affect several of the published
methods. However, the work in [15] does not describe the
different machine learning or statistical approaches used for
prediction.

In this work, we sought to update the survey of
COVID-19 methods with papers published up to October 7th,
2020. We considered all prognosis prediction models for
COVID-19 patients, in order to identify their main processing
steps. First, we noted that most of the proposed approaches
avoid, or do not even mention, any pre-processing phase
for data normalization/standardization, missing value impu-
tation, or feature selection, which would surely increase
robustness and improve performances. Moreover, while some
works only report descriptive statistics obtained by univari-
ate [79] or multivariate [80] analysis, the majority of the
approaches exploit logistic regression classifiers [81]–[97].
The remaining methods use RF classifiers [85], [87], [91],
[92], [97]–[101] or XGBoost [102], [103], SVMs [87], [91],
[97], [100], [101], K-Nearest Neighbor classifiers [87], [91],
[100], Cox regression models [104], [105], or artificial neural
networks [106].

Unfortunately, except for an approach that was developed
and tested based on a private dataset with 929 COVID-19
patients [107], all the published methods were developed
with datasets with relatively small sample sizes. This hinders
the usage of sophisticated learning models, such as neural
networks, which could uncover highly nonlinear relation-
ships.Moreover, since all the datasets are private, an objective
comparison between different methods is impossible.

III. COVID-19 DATASET
In this section we describe our patient dataset and provide a
description of the radiological feature computation used by
our method.

A. PATIENT DATASET
This study was performed on clinical, comorbidity, labora-
tory, and antero-posterior (A-P) or posterior-anterior (P-A)
CXR data from patients referred to the ED of an urban
multicenter health system, fromMarch, 7, 2020, to April, 10,
2020. All patients in our cohort were RT-PCR positive for
COVID-19.

Our inclusion criteria stipulated the availability of
five-months of clinical follow-up data, to allow a truthful
and reliable risk classification. Additionally, patients were
included only if a CXR was performed and evaluated by
two experienced radiologists before the availability of the
nasopharyngeal swab result.

The five-month follow-up allowed us to accurately clas-
sify low-risk patients, who were either not hospitalized or,
despite hospitalization, were never intubated and survived
with no serious consequences, and patients at high risk, that
is patients that either were intubated, experienced serious
consequences, or died.

With this setting, the patient set included, 207 and 94 adult
men and women with a mean age of 61± 1 years [min = 23,
max = 95], and with a number of days with symptoms from
COVID-19 that were on average 7±0 [min = 1, max = 30].
Among them 214 patients were at low risk, while 87 patients
were at high risk.

The data included symptoms (e.g., fever, cough, dysp-
nea, etc.), clinical history and comorbidities (such as arterial
hypertension, chronic obstructive pulmonary disease, cancer,
asthma, etc.), laboratory measurements (e.g., LDH, white
blood cell count, lymphocyte), saturation/oxygen values, and
patient data (age, sex).

Although effective data imputation techniques were
applied to fill missing values (see Section IV), two lab-
oratory variables lacking more than 50% of observations
(LDH, AST) were removed. Moreover, to avoid singular-
ity, variables having a variance below 0.025 were removed
(precisely, logical variables recording the presence/absence
of two symptoms, ageusia/anosmia and thoracic pain, and
three variables recording comorbidities, that is pulmonary
interstitial disease, hepatopathy, and dementia).

The resulting dataset (summarized in Table 1) is composed
of 41 variables, whose values were recorded during patients
visits at the ED:
• twelve are logical variables representing the presence/
absence of a symptom,

• nine are logical variables describing the presence/
absence of a comorbidity,

• patient sex is represented with a logical variable (true for
men and false for women),

• four integer variables report: patient age, the number of
comorbidities, the number of symptoms, and the number
of symptomatic days before presentation to the ED,

• two real-valued and two integer-valued variables encode
radiological features,

• two integer variables record saturation values,
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TABLE 1. Variables in the patient dataset.
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• nine real values variables describe laboratory (blood)
test results.

Boolean variables (symptoms, comorbidities, and sex) are
described through the percentage of true values in all the
patient dataset (column ‘‘All samples’’ in table 1), in the
subset of patients at moderate risk (column ‘‘Moderate Risk’’
in table 1), and in the subset of patients at severe risk (column
‘‘Severe Risk’’ in Table 1). Integer and real valued vari-
ables are represented through their mean ± standard error
(s.e.) of the mean and their range ([minim value, maximum
value]) in the entire dataset (column ‘‘All samples’’), the sub-
set of patients at moderate risk (column ‘‘Moderate risk’’),
and the subset of patients at severe risk (column ‘‘Severe
Risk’’).

To provide a first hint of the class separation provided
by each variable, we performed statistical analysis to check
whether there are statistically significant differences in the
patients distributions. Precisely, for boolean variables we
applied the chi-squared test to determine if statistically sig-
nificant differences were present between patients at low or at
high risk. Numerical variables were analyzed to detect sta-
tistically significant distribution differences by applying the
one-sided Wilcoxon signed-rank test.

B. CHEST X-RAY ANALYSIS AND
AUTOMATED PROCESSING
The Fleischner Society presented three different scenarios
and an algorithm for recommending chest imaging that
includes CT and/or CXR to direct patient management during
the COVID-19 pandemic. Ultimately, the choice of imaging
modality is left to the judgement of clinical teams at the point
of care, accounting for the differing attributes of CXR andCT,
local resources, and expertise [2]. Though CXR shows clear
patterns, distinguishable from those of pneumonia [108],
when COVID-19 infection becomes serious, it is insensitive
in mild or early infection stages [108]. In contrast, lung CT
has greater sensitivity for early pneumonic changes, but this
advantage is partially diminished by the huge burden placed
on radiology departments in terms of staff commitment,
CT room workflow, and disinfection procedures [2], [109].
Therefore, many Italian hospitals decided to employ CXR as
a first-line triage tool [108]–[111].

Several recent studies on the utility of initial CXR for
predicting clinical outcome correlated the presence and the
extension of opacities on initial CXR with the need for hos-
pitalization and/or intubation [17], [108], [110], [111].

In light of these considerations, in our study we included
four radiological variables expressing the extent and severity
of the COVID-19 pattern, visible from the CXR acquired at
the time of presentation to the ED.

Two of the four radiological variables, radio.score and
usa.radio.score, were evaluated by expert radiologists, which
were blind to the patients’ condition; the other two radiolog-
ical variables, GEO.extent.score and OPC.extent.score, were
computed by a deep neural network trained on a radiological
score evaluated by clinical experts [11], [14].

Radio.score and usa.radio.score were defined by two tho-
racic radiologists with 23 and 20 years of experience in
thoracic imaging, after re-evaluation of the initial CXR that
the patients underwent during the admission at the ED.
The radio.score index was used to assess the severity of
pulmonary involvement from both the 156 antero-posterior
(A-P) and the 143 postero-anterior (P-A) images. The score
is calculated by dividing each lung into three areas (upper,
middle, and lower); each area is then scored with an involve-
ment value in the range {0, . . . , 4}, where 0 means that no
anomaly has been found, while higher scores mean increased
presence of severe COVID-19 CXR patterns: 1 = reticular
interstitial thickening, 2 = reticular interstitial thickening
and ground glass, 3 = ground glass opacities and consoli-
dation with ground glass as the most widespread anomaly,
4 = consolidation as themost widespread anomaly. Summing
up the scores assigned to each of the six areas, each lung gets a
score in the range {0, . . . , 24}. Lin’s concordance correlation
coefficient [112] between the scores of the two radiologists
(cLin = 0.76, c.i. = [0.65, 0.76], p-value < 1E-58) showed a
substantial agreement. Therefore, we averaged the two scores
to get a single value.

By binarizing the scores of each lung area, that is by assign-
ing a value of 1 to each area showing at least ground glass
opacities and consolidations (area scores greater or equal
to 2), an summing up all the binary values, we obtained a sim-
plified version of radio.score, falling in the range {0, . . . , 6}
and referred to as usa.radio.score. Since in this case Lin’s
correlation coefficient showed a low agreement (cLin = 0.40,
c.i. = [0.30, 0.49], p-value < 1E-11), a pooled score was
obtained by taking the maximum value for each patient. This
is a conservative way of pooling the results, based on the
assumption that a false positive error is less costly than a
false negative error. In other words, diagnosing a mild case
as severe is better than wrongly considering a severe case to
be mild.

To assess the reliability of the scoring system computed
through a deep network, we used the state-of-the-art Covid-
Net deep neural network [11], [14]. Precisely, we automat-
ically preprocessed the CXR images of each patient to first
remove positional artifacts, such as rotations and variations in
zooming. Subsequently, gray levels were normalized through
ACE [113], a spatial color equalization algorithm [114] that
has been often used to remove unwanted and adverse illumi-
nation conditions [115] and that recently gained importance
in the field of medical image processing [116], thanks to
its ability to reveal small details without introducing noise
and artifacts. The preprocessed images of each patient were
used as input to CovidNet in order to get a geographic
extent score (GEO.extent.score) and an opacity extent score
(OPC.extent.score).

CovidNet is a deep neural network that was origi-
nally developed for recognition of COVID-19 patients [14].
CovidNet was subsequently extended by transfer learning
on an augmented dataset composed of only 130 CXRs
from Chinese patients [14], which were scored by two
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experienced radiologists by adapting the scoring system
proposed in [116]. Such scoring method quantifies both
the extent of lung involvement by ground glass opac-
ity or consolidation, through the geographic extent score
(GEO.extent.score), and the kind of COVID-19 patterns
seen in the radiographs, through the opacity extent score
(OPC.extent.score). Both scores are computed separately on
each lung, and a final value is then obtained as sum of the
left- and right-lung scores. More specifically,

• GEO.extent.score takes the following scores on each
lung: 0 = no lung involvement; 1 =< 25% of lung
involvement; 2 = 25-50%; 3 = 50-75%; 4 => 75%
of lung involvement; thus, the final score ranges from
0 to 8.

• OPC.extent.score ranges from 0 to 6, and it quantifies
the degree of opacity in each lung by using the following
values: 0 = no opacity; 1 = ground glass opacity;
2 = consolidation; 3 = white-out [11].

IV. APPROACHES TO MISSING DATA
The available dataset contains both logical, integer-valued,
and real-valued attributes. Both the discrete and continuous
variables are affected by missing data; thus, it is appropriate
to consider an imputation phase.

A. UNCOVERING THE MISSING DATA MECHANISM
Since the validity of any imputation method depends on
the missing data mechanism, care must be taken to under-
stand whether the involved data are MCAR, MNAR, or
MAR [18], [20], [34], [35].

FIGURE 1. Histogram of missing values for each sample: the maximum
number of missing values is 12, corresponding to 25% of the variables.
Only one sample has 12 missing values.

Precisely, to confirm that data is, or is not, MNAR,
the missing data pattern is generally observed through visual-
izations (see Fig. 1 and Fig. 2). We searched for someMNAR
pattern by expressing each attribute as a binary variable,

whose observations are set to 1 (missing) or 0 (observed).
Using this binary representation, we applied the following
analysis, which provided no evidence of MNAR data. For
each pair of attributes, we found no high correlation between
the corresponding binary representations (Pearson correla-
tion coefficient <0.75, with a significant p-value), or we
confirmed the independence of their missing/observed data
proportions, using the chi-squared test (with Yates’s correc-
tion). Further, for each variable with a sufficient number of
missing values (we set this value to be 25), x1, and each
other numeric variable, x2, we used theWilcoxon signed-rank
test to confirm that the difference between the distributions
of x2 values for missing and observed values of x1 was not
statistically significant.

Next, to determine whether our data are MAR or MCAR,
we used the non-parametric test of Jamshidian and Jalal
[18], [20], an extension of Little’s test [117] that is suited
both in case of a high and a low proportion of missing val-
ues. Precisely, if homogeneity of covariances (homoscedas-
ticity) between subsets of data having identical missing data
patterns is detected, data are supposed to be MCAR. The
novelty of the approach relies on the fact that authors test
for homoscedasticity using a modification of the statistic
proposed by Hawkins [118]. This statistic has the peculiar-
ity of working well for testing homoscedasticity in com-
plete data when group sizes are small. In order to process
a complete dataset, in case of unknown data distribution
authors perform imputation by a method, distFree, that only
assumes independence of the observations, and the continuity
of their cumulative distribution function; no further specific
distributional assumptions are required. distFree is similar to
the imputation technique proposed in [119], which exploits
maximum likelihood estimators to compute a linear predictor
of the missing observations, and then adds a random error to
obtain the final imputations. Although this method implicitly
assumes that the variables are linearly related, authors argue
that the maximum likelihood technique may indeed provide
consistent estimators [120]. In sum, using Jamshidian’s and
Jalal’s test we determined that our data are MCAR.

B. MISSING DATA IMPUTATION
At the state of the art, several imputation models for MCAR
methods have been presented that can deal with ‘‘complex’’
data [45]. Among such methods, we experimented both Mul-
tiple Imputations by Chained Equations (MICE [23], [121]),
using either predictive mean matching (micePMM) or Ran-
dom Forest classifiers (miceRF) as the base imputation
model, and missForest [19], which also exploits RFs.

More precisely,MI techniques [22] are an effective strategy
that exploit randomness for producing unbiased estimates,
with a reduced dependency on the normality assumption [22].
MIs are mainly used for estimating the linear or logis-
tic regression coefficients that link predictor variables to
a response variable. In this case, given a dataset (with
MCAR or MAR values) and an imputation model con-
taining some randomness, m imputed datasets are drawn,
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FIGURE 2. Missing data patterns. (left) Proportion of missing values for all variables in the dataset, sorted by decreasing order.
(right) Combinations of missing values: red squares in a matrix entry denote the presence of missing values for the variable associated to
the column in the samples corresponding to the row; the bars on the right show the cardinality of each set of points.

and subsequently processed separately but identically by the
chosen estimator. The resulting coefficients are expressed
through their mean and (global) variance, computed accord-
ing to Rubin’s Rule [53], [55] (see Section VI-A2), which
in turn allows the Wald test to be applied for checking
their significance [122]. Note that, although some authors
[123], [124] suggest that setting m = 5 MIs is enough to
produce unbiased estimates, other contributions [35], [125]
show that m > 20 should be used to obtain reliable estimates
for the global variances, so that the simulation error is almost
cancelled (in Section IV-B1 we experimentally determine a
value for m minimizing the variance).

MICE (aka Fully Conditional Specification, or FCS) is
a MI technique that uses a set of conditional densities for
each variable with missing data to build a multivariate impu-
tation model on a variable-by-variable basis. Initially, all
missing values are replaced by simple random sampling with
replacement from the observed values. Subsequently, when
using predictive mean matching (PMM [126]) as the base
imputation model, the following steps are applied:
• starting from the first variable, x1, a regression model is
fit to the observed x1 by using the remaining variables
as the independent predictors;

• randomness is introduced by drawing a subset of
regression coefficients from the posterior predictive
distribution of the computed coefficients; the drawn
coefficients are used to predict all (observed and
missing) values for x1;

• each missing value in x1 is finally imputed by consider-
ing the predicted value of one among k donors, randomly
selected among observed elements in x1 whose predicted
values are close to the predicted value for the case with
missing data.

This process is repeated by using all the variables as inde-
pendent predictors. When all variables are imputed, a cycle

is complete. To stabilize the process, the cycle is repeated
n times by using, at each iteration, the previously imputed
values as initialization values (authors suggest setting n in
the range {10, . . . , 20} for obtaining unbiased results [126]).
Note that the variable order used by the iterative univari-
ate imputation may be defined according to different crite-
ria based on missing value proportion, such as decreasing,
increasing, or random sorting.

As highlighted in [35], PMM has the advantage of using
an implicit data model, thus avoiding the explicit definition
of the distribution of missing values, which often brings
to model misspecification. Moreover, the values imputed
by PMM are actually observed values, therefore avoiding
the generation of out-of-range imputations. However, PMM-
based MICE (micePMM) is a parametric approach that
assumes that the observed data have a distribution similar to
that of missing data [127]. To avoid any parametric approach,
a novel model was presented (miceRF), where RFs substitute
PMM. More precisely, for each variable, a bootstrap sample
is used to impute missing values in the dependent variable
by using RFs. The advantage lies here in the usage of a
further internal bootstrap sampling, allowing each tree to be
fit to a different data sample. Results aggregated by the RF
are therefore supported by a source of randomness that is
greater than that of PMM; moreover, RFs do not rely on
any specific assumption regarding the distribution underlying
missing data. Indeed, results shown in [127] suggest that both
miceRF and the missForest algorithm produce more robust
results than those computed by micePMM.
missForest [19] iteratively exploits the ability of RF clas-

sifiers to deal with mixed data types without making any
assumption about the underlying data distribution. It follows
an iterative approach similar to that applied by MICE, that is
it iteratively imputes each variable with missing data using
the remaining variables. After making an initial guess for the

VOLUME 8, 2020 196307



E. Casiraghi et al.: Explainable Machine Learning for Early Assessment of COVID-19 Risk Prediction

FIGURE 3. Between-imputation variances computed on 100 datasets imputed with distFree. Dots and
triangles mark the variances computed using increasing and decreasing imputation order, respectively.

missing values, e.g., by using the mean of observed values,
it considers in turn each variable x with missing entries (by
default, variables are considered by increasing missing value
proportion, though other sorting criteria can be used). An RF
is fit to the observed values of x using the other variables
as predictors, and subsequently used to impute the miss-
ing values. Such procedure is repeated until the difference
between the newly imputed data matrix and the previous one
increases for the first timewith respect to both continuous and
categorical variables (obviously using two separate difference
metrics). missForest has the same appealing properties of
micePMM and miceRF. Indeed, since RFs are trained on
bootstrapped samples, MIs can be computed by using differ-
ent bootstrap sets, which introduces randomness. Moreover,
this method can deal with multivariate data consisting of
continuous and categorical variables. Finally,missForest does
not require assumptions about distributional aspects of the
data, nor does it have critical hyper-parameters to be tuned.
More precisely, it only requires the number of trees (nt ) to be
specified; although this value is generally set to a high value,
e.g. nt = 500, we set nt = 100 to avoid overfitting and reduce
computational time.

The first aim of this work is to provide suggestions about
the employment of imputation techniques using different
baseline theories. Therefore, we experimented with dist-
Free, micePMM, miceRF, and missForest, considering both
univariate imputation orders defined by the increasing and
decreasing missing values proportion (henceforth referred to
as ‘‘increasing imputation’’ and ‘‘decreasing imputation’’,
respectively). To avoid bias, all imputations were performed
after discarding the point labels.

Note that, though distFree and missForest are not MI
techniques, they both rely on a randomness source (distFree
adds random noise to each imputation, while missForest
trains RFs by using randomly bootstrapped samples) and

may be therefore used to produce m different imputations.
In all imputation algorithms we set the maximum number of
iterations to 11, since values in {10, . . . , 20} allow unbiased
imputations to be obtained [126]. Finally, we limited miceRF
and missForest univariate imputations by training RFs with a
maximum of nt = 100 trees.

1) CHOOSING THE PROPER IMPUTATION ALGORITHMS
AND THE VALUE FOR m
To compare the imputation algorithms and the univariate
imputation order we produce m = 100 different imputa-
tions and analyze the between-imputation variance. Given
the original dataset D with S missing values, xmiss(s) (s =
1, . . . , S) and given an imputation method, imp, specified by
an imputation algorithm and an univariate imputation order,
let’s denote with Dimp(1), . . . ,Dimp(m) the m imputations
produced with imp.

To compute the between-imputation variance, we found
the normalization coefficients that allow the observed val-
ues in each column to be mapped to the range [0, 1] (they
depend on theminimum andmaximumof the observed values
in each column of D) and used them to normalize each
imputed set, therefore obtaining D∗imp(i) (i = 1, . . . ,m).
Next, we computed the between-imputation variance of each
missing value xmiss(n) in D, Var(xmiss(s)), s = 1, . . . , S,
by using its m imputed values in Dimp(1), . . . ,Dimp(m). The
global between-imputation variance was finally computed as
the mean of the Var(xmiss(s)), s = 1, . . . , S.

Figs. 3–5 show the global between-imputation variances
achieved by the four methods (using the increasing (dots)
and decreasing (triangles) order of missing values) for m ∈
{2, . . . , 100}. In Table 3 (Appendix A) the ranges of such
between-imputation variances are reported.

For both univariate imputation orders, distFree achieves
the highest between-imputation variances with a mean
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FIGURE 4. Between-imputation variances computed on the 100 datasets imputed with micePMM (left) and
miceRF (right), using the same scale for Y axis. Same notations as in Fig. 3.

FIGURE 5. Between-imputation variances computed on the 100 datasets imputed with missForest. The
obtained values are negligible, as highlighted by the span of Y axis: this practically means that the imputed
values are always similar. Same notations as in Fig. 3.

slightly lower than 0.3 (Fig. 3; cf. also Table 3 in
Appendix A); this variance is very high, considering that data
are normalized. Moreover, the between-variance ranges of
distFree are respectively 103 and 102 times bigger than those
of missForest and of multiple imputations exploiting MICE.

The high between-imputation variance computed when using
distFree practically means that, for each missing value, its
imputed values are very noisy. On the contrary, missForest
has negligible between-imputation variance, meaning that the
predicted values are stable.
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Each imputation method is characterized by a between-
imputation variance whose order of magnitude is indepen-
dent of the univariate imputation order. However, distFree
has completely different behaviors when the two orders are
used, further suggesting that its results may not be consid-
ered as sufficiently robust. In Fig. 4 we show the zoomed
between-imputation variances achieved by micePMM and
miceRF, while those computed when using missForest are
plotted in Fig. 5. When using such algorithms, the between-
imputation variances reach a sort of plateau after an ini-
tial variability involving around 30 imputations. Although
the plot based on missForest suggests a higher variation of
the between-imputation variance, all the values are near to
zero. In sum, when using the increasing univariate imputa-
tion order, both micePMM and missForest obtain the lowest
between-imputation variance.

Note also that the negligible between-imputation variances
produced by missForest highlight the fact that the different
imputations it computes are very similar. For this reason, this
method should not be used to impute missing data when there
is the need to test the robustness of subsequent processing
steps w.r.t. data variability. On the other hand, missForest
should be used when the goal is to obtain (almost) repro-
ducible results.

When the underlying data distribution is unknown,
we therefore suggest performing imputation with eithermiss-
Forest, when negligible between-imputation variances are
needed, or miceRF, because it combines the advantages pro-
vided by working on multiple imputations and therefore
allows the robustness of subsequent algorithms to be tested by
considering some randomness in the data. Obviously, when
the normality assumption holds micePMM is also a viable
option. Moreover, to achieve stable between-imputation vari-
ances, in our problem we suggest using m > 20 imputed sets
as advised in [35], [125].

In the problem under study we cannot make assump-
tions about the underlying data distribution; therefore, though
micePMM achieves low and stable variances, its use would
not guarantee a proper imputation ofmissing values. Anyhow,
miceRF has similar variances and therefore we can use it
to assess MICE-based techniques, comparing it to missFor-
est, which obtained the lowest between-imputation variance.
With both methods we choose to use the increasing univariate
imputation order, which produces more stable results, gener-
ating 50 imputed sets. More precisely, after imputing missing
data by using these methods, we trained and tested RFs,
ATs, and GLMs (see Section V) in order to obtain predicted
risk levels, as well as the relevance of each variable in the
prediction. For each method, the predictions and relevance
computed on the m imputations were pooled by applying
Rubin’s rule (see Section VI-A2).

V. RISK PREDICTION APPROACHES
Once missing data have been imputed, we apply two different
risk prediction approaches, both described in this section.

Given a training set, the first approach firstly applies a
feature selection algorithm,1 which combines the Boruta
algorithm [24], [25] and permutation-based feature selection
methods embedded in RFs [27] through a cross-validation
strategy (see Section V-A). Secondly, RF classifiers
(Section V-A2) are trained on the selected features. To sum-
marize and ‘‘explain’’ the trained RFs, ATs [28], [29] are
generated by the former trained RFs (SectionV-A3).

The results computed by RFs are then compared to those
obtained by applying GLMs [31], [129] (see Section V-B).
GLMs have been chosen since they may be considered as
a more powerful extension of logistic regression models,
which have been widely used in the medical research field
both for their simplicity and for the explainability of their
predictions. Since GLMs use a combination of Lasso and
Ridge constraints to select the most important features, they
were applied to the imputed set without previously applying
any feature selection algorithm.

A. FEATURE SELECTION AND RISK PREDICTION WITH
BORUTA, RANDOM FOREST AND ASSOCIATIVE TREES
In this section we describe the overall induction process at the
basis of the proposed risk-prediction scheme exploiting RFs
and ATs.

1) FEATURE SELECTION
Feature selection is performed on the training set through an
internal 5-fold cross-validation (5-cv), where 4 folds are used
in each iteration as an ‘‘internal’’ training set to train a RF
classifier on the features selected as confirmed or tentative
by the Boruta algorithm.

Precisely, Boruta [24]–[26] starts with the complete set of
features and applies n iterations that each train a RF on a
feature set augmented by ‘‘fake features’’ obtained by random
permutations of the actual ones. The features that, for a statis-
tically significant number of iterations, are less/more relevant
than all the fake features (relevance is quantified by the
mean decrease in accuracy when the feature is permuted), are
selected and removed/confirmed. When Boruta has executed
n iterations, all features for which a decision has not been
taken are returned as tentative. Boruta is a promising feature
selection method whose analysis of shuffled, fake features
mitigates the impact of false correlations between features
and target labels, which sometimes leads to overfitting [25].
However, even when setting a high value for n, some fea-
tures are returned as tentative. Unfortunately, the relevance
computed by Boruta cannot be used for selecting/discarding
such features because such value is biased by the fake features
used by the method. Moreover, Boruta does not account for
class imbalance. To remove some uncertainty, Boruta is there-
fore also internally applied within a 5-fold cross-validation
(5-cv), and all the features returned as confirmed are selected,

1Feature selection is applied on the training set to avoid incurring a
selection bias [128].
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together with those selected as tentative at least 3 out of
5 times.

The existence of tentative features and the lack of robust-
ness with respect to class imbalance is the reason why we
applied the 5-cv, which trains weighted RFs on the confirmed
and tentative features: this approach assigns a ‘‘permutation
test importance’’ [27], [32], [33] to each of the features,
in turn evaluated on the left out fold. Therefore, after the 5-cv
iterations, the mean importance for each feature is computed
and normalized so that the sum of the normalized impor-
tances equals one. The most important features are finally
selected by sorting the normalized importance in decreas-
ing order and selecting the features that retain 0.95 of the
cumulative sum.

The feature importance can be evaluated by using either the
‘‘mean decrease in node impurity’’ (via the Gini criterion),
which essentially evaluates how much each feature decreases
themean impurity over all the trees of the forest, or the ‘‘mean
decrease in accuracy’’ after feature value permutation, which
essentially evaluates how the accuracy of the prediction over
the training set decreaseswhen the feature values are shuffled.
We preferred the ‘‘mean decrease in accuracy’’ (also called
‘‘permutation test’’) to the Gini criterion, since the latter may
lead to biased results [32], [33].

Once the most informative features have been selected,
the selected feature set is input to RFs (described in the
next subsection V-A2), which are trained to predict the
patients’ risk. Subsequently, the trained RFs are merged to
summarize all their rules through Associative Decision Trees
(subsection V-A3), which provides more explainable
predictions.

2) RISK PREDICTION TROUGH RANDOM FORESTS
The main advantages of RF classifiers are the potential
explainability of their decisions, their capability of com-
puting adimensional importance measures (‘‘mean decrease
in accuracy’’) describing the relevance of each variable in
the risk prediction task, and the few number of involved
hyper-parameters [27]. The main hyper-parameters of
RFs are:
• the number of trees to grow: this parameter was set to
100 since grid search allowed us to discover that higher
numbers of trees not only increase computational time,
but also tend to produce overfitting

• the number of variables to sample for each split: this
number is automatically set in order to maximize the
misclassification cost on the training set, by a greedy
search algorithm which evaluates all the points in the
range {nfeat/3, . . . , nfeat}, where nfeat is the number of
features obtained after feature selection;

• minimum size of terminal nodes, where the size of a
node is the number of training samples falling in that
node: low values for this parameter may cause over-
fitting and tend to grow tall trees; based on this con-
sideration and following the advice of clinical experts,
we require that the minimum node size is 10.

Though easy to use, RFs are not robust with respect to class
imbalance. Therefore, training was performed by constrain-
ing the number of bootstrapped samples per class to be less
than or equal to the number of samples of the underrepre-
sented class [130]. Moreover, recalling that RFs are trained
and tested by applying a 10-cv, at the end of the latter we have
10 importance measures for each variable. To obtain a single
estimate for each variable, we first normalize the importance
computed in each cross-validation run so that they sum to one;
the global estimate of each variable in the 10-cv run is then
computed as the average of the normalized importance for
that same variable.

3) ASSOCIATIVE TREES GENERATED BY RANDOM FORESTS
As mentioned before, RFs are considered as relatively
explainable models since their output is a set of decision
trees, each describing a set of classification rules. When a
novel sample must be classified, all the trees in the trained
RF provide their response and majority voting is used to
provide the pooled response. Despite the simplicity of this
process, retrieving the rules that led to a specific classification
becomes difficult whenmany trees are grown. For this reason,
we translated each trained classifier into a simple associative
tree, as described in [28], [29]. Associative classifiers are
defined as models made of rules ‘‘whose right-hand side are
restricted to the classification class attribute’’ [131]. In other
words, they are composed by a set of rules which are con-
secutively evaluated. The first rule that is met provides the
classification label. Associative Trees (ATs) are a simple
representation of associative classifiers (see Fig. 6), charac-
terized by the fact that each node which is not a terminal node
has one child which is a leaf node.

FIGURE 6. An associative tree. The tree consecutively evaluates all the
conditions, until a condition is met, bringing to a decision.

To generate an AT from a trained RF, the following steps
are consecutively applied.

1) All trees are translated into logical expressions, through
a process that follows the paths from roots to leaves.
Since the most informative splits often occur in the top
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level of a tree, the rule extraction process is stopped
when it reaches the node at depth 6 [28], [29]. This
procedure allows a rule to be extracted from each tree
that is composed of a maximum of 6 atomic conditions
joined by the logical AND operator. Each atomic rule
is expressed as C H⇒ T , where C , referred to as the
condition of the rule, is a conjunction of variable-value
pairs, and T is the outcome of the rule.

2) The trees resulting from RFs are sometimes redundant;
the first step after the rule extraction is therefore aimed
at applying logical simplification to the rules, discard-
ing redundant duplicates.

3) Next, each rule is pruned by eliminating its atomic
conditions whose removal increases the classification
error by not more than 0.05. The error of a rule is
intended as the proportion of misclassified instances
among all those satisfying the rule condition.

4) After pruning, each rule is expressed by a binary vector,
whose length is equal to the number of samples. Each
element of the vector is set to one if and only if the
rule is satisfied for the corresponding sample. This
encoding is used in order to apply a simple feature
selection algorithm [29], which in turn allows discard-
ing redundant and non-informative rules. A further
reduction is done by discarding rules whose frequency
is less than 0.01, where frequency is defined as the
proportion of training instances satisfying the rule
condition.

5) The remaining set of rules is finally used to combine
an AT, by using a greedy iterative algorithm; at each
iteration, the best rule (intended as that with lowest
error, breaking ties by taking the most frequent rule)
is added to the tree until no more rules remain. After
inserting each best rule, all remaining rules are re-
evaluated and those with a frequency lower than 0.01
are removed before the iteration continues.

B. GENERALIZED LINEAR MODELS
GLMs [31], [129] generalize linear regression by allowing
the learnt linear model to be related to the response vari-
able via a link function. Ordinary linear regression esti-
mates the coefficients of a linear model combining a set of
variables for predicting the expected value of the response
variable, implying normality for the conditional distribution
of the response variable given the values of the explana-
tory variables in the model. GLMs allow this conditional
distribution follow different models, e.g., Gaussian for con-
tinuous responses or binomial when dealing with a binary
response.

In our problem, the binomial function links the linear
combination of explanatory values to the response variable;
in practice, given a training set T = {x1, . . . , xN } ⊆ Rp

containing N samples and their labels {y1, . . . , yN } ∈ [0, 1],
GLMs find the p+ 1 coefficients (β0, β) ∈ Rp+1 by using a
penalized logistic regression, whose objective function uses

the negative binomial log-likelihood:

min
(β0,β)∈Rp+1

−

[ 1
N

N∑
i=1

yi · (β0 + xTi β)

− log
(
1+ e(β0+x

T
i β)
)]

+ λ
[
(1− α)||β||22/2+ α||β||1

]
Note that the objective contains an (elastic-net) penalty

factor, weighted by the tuning parameter λ which not only
reduces the negative effect of degeneracies when p > N or
p ≈ N , but also regularizes and selects the most important
variables. Such penalty factor mixes ridge constraint (when
α = 0, which tends to select correlated predictors shrinking
their coefficients [132]) and lasso constraint (α = 1, which
selects only one of the correlated predictors [132]).

In our implementation, GLMs work on standardized data,
and grid search is applied through an internal 10-cv to auto-
matically choose the most suitable values for λ and α. The
coefficients computed for each variable are often regarded
as an (adimensional) measure related to the importance of
the variable in the prediction problem. Recalling that, for
each imputed set and fold stratification we obtain an unbiased
evaluation by applying 10-cv, we averaged the coefficients
obtained in the 10 folds to compute a unique coefficient for
each feature.

VI. RESULTS
Our dataset D contains 41 features; 14 (numeric) features
(saturation values and laboratory values) havemissing values,
for a total of 188 missing values. Among features with miss-
ing values, those having the highest number of missing values
are the two variables related to oxygen (saturation) values
(SpO2 in free air, having 50 missing values, and PaO2.PF,
having 45 missing values; both values are missing for only
9 patients), followed by lymphocyte values (%lymphocyte
has 16 missing values, lymphocyte count has 15 missing
values, and all patients with missing lymphocyte values have
also%lymphocytemissing); the other 10 features lack at most
5 values.

In this this section we firstly report the experimental setup
(Section VI-A); secondly, we report an exhaustive description
of the computed results (Section VI-B).

A. EXPERIMENTAL SETUP
To obtain an unbiased evaluation, all the risk prediction
models were trained and tested on each of the m = 50
imputed sets, by applying an (external) stratified 10-fold
cross-validation (10-cv).

Further, since the results may depend on the specific ran-
domly computed 10-fold stratification, each risk predictor
model is applied on each imputed set ncv = 5 times by
applying ncv different 10-fold stratifications.
In this way, given a performance evaluation mea-

sure among those we chose to collect (described in
subsection VI-A1), for each imputed set we obtain m × ncv
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values, which are combined through Rubin’s rule
[22], [122], [123] (described in Section VI-A2), and statis-
tically compared with a one-sided Wilcoxon rank-signed test
(see subsection VI-A3).

1) PERFORMANCE EVALUATION MEASURES
Several published methods were evaluated by the C-statistic
(that is, the area under the ROC curve, or AUC [133]). The
C-statistic is the probability that the model predicts a higher
risk for positive samples. Moreover, it is adimensional,
and thus it allows the comparison of different predictors.
However, as highlighted in [133], the C-statistic is not an
exhaustive description: for instance, it does not account for
uneven class distributions, and hides the method perfor-
mance on the positive or on the negative samples. To provide
an exhaustive description, we therefore decided to record
also sensitivity (performance on positive samples), speci-
ficity (performance on negative samples), accuracy (ratio
of misclassified samples), and F1 score (harmonic mean
of precision and recall, which accounts for uneven class
distributions). In practice, we used the AUC to select the most
promising combinations of imputation method, univariate
variable imputation order, and risk prediction method (RFs,
ATs, or GLMs). We subsequently selected the most appropri-
ate risk predictionmodel by analyzing the performance on the
positive and negative samples, as described by the remaining
performance measures.

2) COMBINING RESULTS THROUGH RUBIN’s RULE
Given the imputed set, we obtain a robust comparative eval-
uation by training and testing each predictor model (RF,
AT, or GLM) ncv = 5 times on each of the m imputed sets,
by using ncv different, randomly generated 10-fold stratifi-
cations. For each stratification and each model, we output
the previously described performance evaluation measures
(namely, AUC, sensitivity, specificity, F1 score, accuracy)
and, for each variable, a measure of its relevance in the risk
prediction task.

More precisely, given a risk prediction model RM (that
is, RF, AT, or GLM) and an imputation method imp
(miceRF or missForest), producing m imputed sets Dimp(i),
i = 1, . . . ,m, Rubin’s rule [53], [55] provides a way to
combine the ‘‘results’’ (that is either risk prediction perfor-
mance or the importance of a single variable) computed by
the ncv different runs of each risk prediction model on each
of the m imputed sets. Precisely, let RM(Dimp(i), fold(t))
denote the result computed by RM (e.g., RF importance
for a single variable), when using the t th fold stratifica-
tion, fold(t) (t = 1, . . . , ncv), and the ith imputed set
Dimp(i) (i = 1, . . . ,m). For the sake of simplicity, we orga-
nize all RM(Dimp(i), fold(t)) values in a matrix RM(i, t) with
m rows and ncv columns. For a fixed imputed set i, the mean
over the fold stratifications (over the columns of the matrix):

θ (i) =
1
ncv

ncv∑
t=1

RM(i, t) (1)

is the performance over each Dimp(i), and the mean over all
such values is the global result computed using RM and imp:

θ =
1
m

m∑
i=1

θ (i). (2)

Rubin’s rule [53], [55] defines the variance of such result by
applying the law of total variance [134] to consider both the
uncertainty that comes from the processing method applied
to each of the imputed datasets (within-imputation variance)
and the added uncertainty that comes from the multiply
imputed data (between-imputation variance). Precisely, vari-
ances computed along each row (over the ncv values) are the
within-imputation variances over each imputed set:

Var(θ (i)) =
1

ncv − 1

ncv∑
t=1

(RM(i, t)− θ (i))2 (3)

while the mean of all themwithin-imputation variances is the
global within-imputation variance:

W =
1
m

m∑
i=1

Var(θ(i)) (4)

and the between-imputation variance is the variance of the
performance measures achieved over all the imputations:

B =
1

m− 1

m∑
i=1

(
θ (i)− θ

)2
. (5)

Then the global (normalized) variance associated obtained by
imp and RM is computed as [122]:

Var (θ) = W +
(
1+

1
m

)
B. (6)

At the state of the art, MI is used before linear or logistic
regression, to determine the coefficients that link predictor
variables to a response variable. As reported in [122], for
two-sided hypothesis testing of single regression coefficients
after MI, the Wald statistic:

Wald =
θ − θ0

Var (θ)
(7)

can be used to assess the significance of the difference
between the computed estimate θ , and the value under the null
hypothesis, θ0 (which is generally set to zero), exploiting the
fact that Wald follows a chi-square distribution with 1 degree
of freedom.

3) STATISTICAL ANALYSIS OF COMPUTED RESULTS
Besides computing a global performance measure by
applying Rubin’s rule, statistical analysis was applied to com-
pare the performance values computed by different combina-
tions of imputation algorithm and risk prediction approach
(Section V). Precisely, we averaged the ncv = 5 perfor-
mance values obtained on each imputed set (we recall that
ncv are the different 10-fold stratifications), thus obtain-
ing m mean values for each imputation method + risk
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TABLE 2. Global performance measures computed by each imputation algorithm + risk prediction model.

FIGURE 7. Top: estimates (and standard errors) of the feature relevance computed by RFs. Bottom: estimates (and standard errors) of the
feature coefficients computed by GLMs. Only the significant feature relevances/coefficients are plotted.

prediction approach. At this stage, the one-sided Wilcoxon
signed-rank test at the 99% confidence level (p-value < 0.01)
was applied to perform the statistical comparison between the

distributions of the mmean performance values computed by
a combination of imputation algorithm and risk prediction
model.
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FIGURE 8. Relevance/coefficient estimates computed by RFs and GLMs. Only the significant estimates are reported. For GLMs, red bars highlight negative
coefficients (that is variables, inversely related to the risk).

B. COMPARATIVE EVALUATION
We started our comparative evaluation by applying the one-
sided signed-rank Wilcoxon to compare the performance
measures computed when using miceRF or missForest as the
first step for data imputation (see Table 4 in Appendix B).
We firstly compared the risk prediction performance mea-
sures achieved by the two imputation methods, irregardless
of which risk prediction model is used (column ‘‘All risk
models’’ in Table 4, Appendix B). Then, we iterated over
all risk prediction models, in turn fixing one of them and
comparing the performance distribution when using either
miceRF or missForest followed by the fixed risk predic-
tion model (columns ‘‘RF’’, ‘‘AT’’, and ‘‘GLM’’ in Table 4,
Appendix B). Only the specificities obtained with fixed
ATs do not show any statistically significant difference;

otherwise, missForest always achieved the best result. There-
fore, we conclude that in this risk prediction task missForest
is the most suitable imputation method.

In Table 2 we show the performance measures (and
variance) computed by using Rubin’s rule to combine the
results computed on the 50 × 5 10-fold cross-validation
runs performed by each of the three risk-prediction mod-
els when using either the datasets imputed by using miss-
Forest or miceRF and the increasing univariate imputa-
tion order. For each column in Table 2, the highest global
mean, confirmed by the one-sided Wilcoxon signed-rank test
(p-values reported in Table 5, Appendix B), is highlighted
with bold typeface. The results show that, for what regards
the AUC, the sensitivity, the F1-score, and the accuracy, RF
is the best performing method, especially when combined
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with missForest. Note that, though no statistically significant
difference has been found by one-sided Wilcoxon signed-
rank test when comparing the specificity values computed by
the three models (see Table 5 in Appendix B), the seemingly
lower specificity achieved by RFs both in the comparison
with ATs and GLMs is balanced by a higher sensitivity.
In practice, both ATs and GLMs are affected by class imbal-
ance, while RFs can cope with such problems by balancing
the sampled points during the training phase. Since in our risk
prediction model type II errors are worse than type I errors,
we can state that the combination of missForest+ (balanced)
RFs is the best performing risk prediction model.

Finally, since our principal aim is the identification of the
most important predictors of severe risk, we analyzed the nor-
malized variable importance computed by RFs, when using
either missForest or miceRF as the preliminary imputation
steps. For the sake of comparison, we also considered the
coefficients computed by GLMs. After applying Rubin’s rule
(see Section VI-A2) to compute, for each feature, the mean
(RF) importance or the mean (GLM) coefficient, and their
respective variances and standard errors, we applied the
Wald significance test to determine the coefficients that
were significantly different from zero. The significant RF
importance and GLM coefficients, along with their standard
errors, are plotted, in the top and bottom panel of Fig. 7,
respectively. Fig. 8 reports the precise values of coefficients
resulting as significant (Column ‘‘Global Estimate’’) when
usingmissForest followed by RFs (left panel) or GLMs (right
panel), together with their standard errors, and the p-values
computed by the Wald test. In the visual table in Fig. 8
a column-wise visual comparison of the reported values is
allowed by data bars, whose different colors highlight that
row-wise comparison is not meaningful. However, to allow
a visual comparison of the two global estimates computed
by RFs and GLMs, Column ‘‘Normalized Estimate’’ con-
tains the RF variable relevance (left) and GLMs coeffi-
cients (right) normalized so that the sum over the column
equals one.

Interestingly, the distribution of the feature relevance com-
puted by RFs is very different from that computed by GLMs;
generally speaking, RFs mainly consider as relevant all the
laboratory variables, the saturation values, and the radiologi-
cal scores. Even if GLMs predictors selected a similar number
of variables (26 variables were selected byGLMs and 25 vari-
ables were selected by RFs, see Figs. 7 and 8), and 19 of them
are also contained in the subset of variables selected by RFs,
the relative importance GLMs attributed to the variables is
less balanced. Indeed, GLMs attributed a much higher impor-
tance to two comorbidities (cardiovascular pathologies and
neoplasia in the last 5 years), followed by only one saturation
value (spO2.in.FA), two symptoms (presence of Dyspnea,
and Vomiting/Nausea), and only C-Reactive Protein was used
among the laboratory variables; the other variables had neg-
ligible importance. Such results can be explained by consid-
ering that GLMs do not take into account class imbalance;
the objective function is easily minimized by decreasing the

FIGURE 9. Global, significant estimates of pooled correlation coefficients
between each feature and the label computed on the 50 sets imputed by
missForest.

number of false positives (high specificity), at the expense of
a high false negative proportion. Therefore, the features and
their relative importance identified by GLMs may be deemed
as relevant in the correct identification of patients at low risk.
Conversely, the feature selection and importance weighting
performed by the proposed RF-based risk prediction system
can properly balance sensitivity and specificity.

In sum, we believe that the feature relevance com-
puted through the feature extraction algorithm presented in
Section V-A1, followed by the (‘‘balanced’’) RFs, is the
most reliable. Indeed, the relevant features are similar to
those extracted by the papers reported in Table 3 in [15],
though none of those works sorted features according to
their relevance. We identified the following variables as most
relevant (in decreasing order): saturation values (spO2 in
free air and paO2.PF), white blood cell counts, lympho-
cyte counts, the number of comorbidities, C-reactive pro-
tein, diabetes, cardiovascular pathologies, age, haemoglobin,
neoplasia in the past 5 years, the opacity score computed
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FIGURE 10. Pooled significant estimates of feature importance computed by RFs on the 50 sets (imputed by missForest) when saturation variables are
removed.

on CXR by the deep network, nausea, the extent of
COVID-19 pattern computed on CXR by the deep network
(OPC.extent.score and GEO.extent.score), the red blood cell
count, usa.radio.score, dyspnea, radio.score, respiratory fail-
ure (IR), and haematocrit.

Interestingly, the relevance attributed by RFs to radiolog-
ical features are quite low; moreover, the radiological score
computed by deep networks is higher than that computed by
experts. To understand such results, we considered the 50 sets
imputed with missForest and, for each set, we computed
the pairwise Pearson, Spearman, and Kendall correlations
between features. Subsequently, we usedRubin’s rule in order
to pool the mean correlation estimates and to verify their
significance (see Fig. 11 in Appendix C). The same procedure
was used to compute an estimate of the correlation between
each feature and the label (see Fig. 9).

By observing the computed pairwise correlations
(in Fig. 11, Appendix C), we note that radiological fea-
tures are positively correlated (as expected); moreover, they
also correlate with C-Reactive Protein (CRP), and have an
inverse correlation with the saturation values. Concerning the
correlations with the label (Fig. 9), we note that saturation
values have the highest (absolute) correlation with the label,
followed by CRP, the radiological scores computed by Covid-
Net, and the radiological scores computed by experts. The
obtained correlation results explain the computed relevance;
indeed, among a set of correlated features, RFs tend to
choose the variables with the highest discriminative power,
neglecting the other ones.

As expected, oxygen saturation values are inversely cor-
related with some symptoms (dyspnea and respiratory fail-
ure - IR) and comorbidities (cardiovascular pathologies or
arterial hypertension) (Fig. 11, Appendix C). Therefore we

performed a test by running all the algorithms without using
the two saturation variables (SpO2 in free air - SpO2.in.FA -
and PaO2.PF); we retrained RFs (on the features selected as
described in Section V-A1) by using 50 MI sets imputed by
missForest.

With this setting the pooled risk prediction estimates dis-
played a reduction in accuracy by amean of 0.06, over the five
performance measures (AUC from 0.81 to 0.76, sensitivity
from 0.72 to 0.66, specificity from 0.76 to 0.71, F1 score from
0.62 to 0.55, accuracy from 0.74 to 0.68).

The pooled, significant feature-importance estimates are
shown in Fig. 10. In this case, CRP is attributed a much
higher relative relevance, together with patient’s age. The
importance of lymphocyte values, and of all the laboratory
variables, is confirmed and radiological features (particularly
those computed by CovidNet) have an increased relevance.
As expected, those symptoms and comorbidities that are
related to saturation values have a significant importance.

VII. LIMITATIONS OF THE STUDY
Though promising results were obtained with the proposed
risk-prediction system, our study has some limitations.

At first, though we use RF classifiers for the high explain-
ability of their decisions, the complexity of RFs explanations
grows with the number of trained trees. For this reason,
we propose usingATs, which are derived by the trainedRFs to
produce a unique, simple, explainable predictor summarising
the RF rules. Unfortunately, ATs are not robust with respect
to class imbalance. This is because the greedy procedure
used to generate ATs iteratively adds the best rule from the
RFs, where rule evaluation is measured on all the training
set, without normalization with respect to the between-class
proportions.
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TABLE 3. Ranges of between-imputation variances achieved by the four imputation methods when using the increasing and decreasing univariate
imputation order.

TABLE 4. p-values resulting from the one-sided Wilcoxon signed-rank tests applied to compare the performance values computed when
miceRF or missForest are used for imputation.

Therefore, even if ATs can provide simple and human
understandable decision rules, a limitation of this approach is
that the resulting model does not exactly fit the original RFs,
and the accuracy is significantly worsened. To deal with this
issue, our future work will be therefore aimed at modifying
the procedure proposed in [28], [29] in order to obtain ATs
robust w.r.t. class imbalance.

With this setting, the features that were considered as
most relevant during training were: saturation values, lab-
oratory values (lymphocyte counts, C-Reactive Protein,
white blood cells counts, haemoglobin), variables related to
comorbidities (number of comorbidities, presence of car-
diovascular pathologies and/or arterial hypertension), radi-
ological values computed through CovidNet, and presence
of symptoms (vomiting/nausea or dyspnea or respiratory
failure).

Another limitation of our study is that the dataset contains
only 300 patients and is not public due to privacy restrictions.
Since no public dataset with a larger sample size is available
yet, the importance of the selected feature set was confirmed
by clinical experts, but it has yet to be validated on a larger
and more diverse population.

Finally, the limit of the review in [15] and of our work,
which stems from the lack of a shared dataset, is that an
objective comparative evaluation with state-of-the-art models
is not possible. The opportunity for the scientific community
to use common datasets is one of the main and important
goals to simplify and speed up research activity. In summary,
it is necessary to create a deidentified, shareable database to
enable an objective comparative evaluation of more rigorous
and exhaustively tested prediction models.

VIII. CONCLUSION
In this article we pursued the development of a prediction
model able to process clinical, radiological, and laboratory
data of COVID19-related patients in order to predict their risk
of severe outcomes.

The clinical and laboratory values were collected at the
time of each patient’s presentation to the ED, while the four
radiological values were retrospectively evaluated from the
patients CXR, by either pooling radiological experts’ evalua-
tions or by applying CovidNet [11], [14].

The collected variables contain missing values. Therefore,
as advocated in [15], we firstly conducted a thorough analysis
for identifying both the missingness pattern and the most
stable missing data imputation algorithm, among two dif-
ferent MI techniques (micePMM and miceRF), an RF-based
technique (missForest), and a maximum-likelihood estimator
(distFree).

Our evaluation shows that: (i) though the maximum-
likelihood imputation method is effective when used for
statistically determining whether the data are MCAR or
MAR [34], [35], it produces too noisy estimations; (ii) MI
techniques reach stability after at least m = 25 multiple
imputed datasets; (iii) the only method showing negligible
between-imputation variance is missForest. Our results con-
firm that, at least m = 20 imputed sets should be used for MI
to reduce between-imputation variance [35], [125].

Our results demonstrate that stable feature-selection
may be obtained by combining the Boruta algorithm and
permutation-based feature selection embedded in RFs. When
the selected feature set is input to RFs constrained to work
on balanced bootstrapped samples, the effect of class imbal-
ance is reduced and improved results are obtained, better
than those achieved by either ATs or GLMs. Additionally,
we showed that all the risk prediction approaches obtain the
best results when using missForest as the previous imputation
model.

In conclusion, our analysis demonstrates that the best
results are obtained when: (i) imputing the missing data
with missForest, where the univariate imputation order is
based on the increasing amount of missing values, (ii) select-
ing the most discriminative features by combining Boruta
and permutation-based feature selection through an internal
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TABLE 5. p-values obtained by one-sided Wilcoxon signed-rank test when comparing the three risk prediction models.

FIGURE 11. Pooled pairwise (Perason, spearman, and Kendall’s) correlation coefficients between pair of variables computed over the 50 datasets
imputed by missForest.

cross-validation, and (iii) training RFs on the selected
features.

APPENDIX A
BETWEEN-IMPUTATION VARIANCES
In Table 3, the between-imputation variances obtained by
the imputation methods missForest, miceRF, micePMM, and
distFree are reported. As also illustrated in Fig. 5, missForest
has negligible between-imputation variance, meaning that

similar imputations are computed for each missing value.
Conversely, distFree produces noisier imputations.

APPENDIX B
COMPARATIVE EVALUATION THROUGH ONE-SIDED
WILCOXON SIGNED-RANK TESTS
In this appendixwe firstly report the p-values for comparisons
of the performance evaluation measures computed by using
miceRF or missForest as imputation methods (see Table 4).
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The column ‘‘All risk models’’ shows the p-values com-
puted when neglecting the separation given by the employed
risk prediction models. Columns ‘‘RF’’, ‘‘AT’’, and ‘‘GLM’’
report the p-values achieved for RFs, ATs, and GLMs as risk
prediction models.

Columns ‘‘lower’’ report the p-value of the one-sided test
where the alternative is: ‘‘miceRF < missForest’’; columns
‘‘greater’’ report the p-value of the one-sided test where the
alternative is: ‘‘missForest < miceRF’’. Note that only the
specificities obtained with fixed ATs do not show a statis-
tically significant difference; otherwise missForest always
achieves the best result.

Next, in Table 5 we report the result of the one-sided
Wilcoxon signed-rank test comparing RF vs AT and RF
vs GLM, when either missForest or miceRF are fixed. The
p-values express the probability of the null hypothesis when
the alternative is ‘‘AT < missForest’’ and ‘‘GLM <

missForest’’.

APPENDIX C
PAIRWISE CORRELATION COEFFICIENTS
BETWEEN VARIABLES
To visualize the pairwise similarities/dissimilarities between
variables distributions, in Fig. 11 we show the pooled corre-
lation coefficients between pairs of variables. These pooled
coefficients were computed on the 50 datasets imputed by
missForest by calculating three pairwise correlation indices
(Pearson, Spearman, and Kendall’s coefficients), and by
applying Rubin’s rule to pool the 50 × 3 correlations com-
puted for each pair of variables.

Note that the radiological variables have a relevant and
statistically significant (inverse) correlation with saturation
values and a high direct correlation with CRP. Such high cor-
relation may be the reason why radiological features obtain
a unexpectedly low importance; if two variables have similar
distributions, once the RF has used the most discriminating
for a split, it will never use the other one for the next splits.

In the plot, each variable name has a prefix that reminds its
type; boolean variables have prefix ‘‘CAT’’, integer variables
have prefix ‘‘INT’’, real variables have prefix ‘‘NUM’’.
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