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ABSTRACT In this study, a novel multiphase converged control structure with a switching mechanism is
established based on the fundamentals of the fast-terminal sliding mode. This control structure achieves
an excellent performance in a nonlinear dynamic system, and its primary objective is to control the piston
trajectory in an innovative electrohydraulic, pneumatic, and mechanical hybrid system. This work focuses
on abrupt gain-scheduled acceleration, which has been rarely studied in the literature but has increasingly
diverse high-technology applications across various industries. The greatest challenge lies in the sensitivity
and instability of the system during a sudden actuator acceleration. Moreover, the system parameter
uncertainties and external disturbances strongly influence the degree of control of the system. By inheriting
the robustness and fast convergence properties of sliding-mode algorithms, the proposed control law not
only guarantees a finite-time convergence of tracking errors to their origin but also reduces the impact
of composite disturbances in an extremely rapid experimental process. The effectiveness of the proposed
structure is analyzed via numerical simulations and industrial implementation.

INDEX TERMS Finite-time convergence, finite-time stability, robust sliding-mode control, acceleration
tracking control, hydraulic actuator, pneumatic system.

I. INTRODUCTION
High-precision gain-scheduled acceleration is used by var-
ious industries in crash simulations [1], safety tests [2],
absorbance system design [3], deconstruction machines, and
dummy tests [4]. Fluid power control, which uses electro-
hydraulic system [5] and pneumatic control technologies [6],
has attracted the attention of academics and industrial prac-
titioners for many decades. Rapidly decelerating an actuator
has a great impact on the external mass and internal reaction
force inside the system. These working conditions require a
platform that can absorb the reaction force of external loads
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while maintaining high energy output and precision. For this
platform, a hybrid electro-hydraulic and pneumatic actua-
tor (HEHPA) is designed as an innovative combination of
hydraulic and pneumatic technologies. A pneumatic actuator
with high-pressure gas can produce high energy output while
simultaneously absorbing a high-level reaction force due to
gas elasticity. The piston movement accuracy, which is the
main weakness of pneumatic technology, can be guaranteed
by using a hydraulic brake with a proper controller.

Control performance is influenced by the uncertainties
and inaccuracies in modeling system dynamics and measur-
ing parameters. A complex system that faces external dis-
turbances has highly nonlinear properties and sensitivity in
transition mode. For example, the variation in fluid viscosity
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affects the efficiency and flow of the fluid, changes the speed
and pressure inside the brake chamber, and subsequently
alters the friction control force and piston acceleration. Sim-
ilarly, fluctuations in temperature and an increase in abrasion
between piston and brake-pad surfaces significantly alter the
friction coefficient, thereby changing the control force and
movement of the actuator. Moreover, the actuator acceler-
ation must be controlled within an short period. A strong
convergence and robust control law are then necessary for
handling these uncertainties, nonlinearities, and disturbances
and for improving control quality.

Conventional sliding-mode controls (SMCs) [7]–[10],
integral SMC (ISMC) [11]–[13], and super-twisting SMC
(STSMC) [14] have been studied for more than a half
of century due to their robust nature [15], [16] and short
finite-time convergence [17]–[19]. These features are fur-
ther enhanced in the fast-terminal version (FTSMC) [20]–
[25]. Specifically, a nonlinear switching manifold substi-
tuting for a conventional sliding surface can substantially
improve transient performance and shorten the convergence
period [24], [25]. Therefore, FTSMC has been employed for
a wide range of second-order nonlinear systems [26], [27],
including under-actuated systems [20]. For a system with
many uncertainties, the robustness of the controller [28] is
essential. Meanwhile, this robust property is an inherent char-
acteristic of sliding mode algorithms and FTSMC [29] that
can be simply reinforced by combining with the adaptive
law, such as observers [21]–[23]. These characteristics are
potentially suitable for overcoming the aforementioned con-
trol problems.

In a control strategy with a dynamic system (1), (5-9), an
input command signal (voltage) is sent to the servo valve
to control the spool movement. Spool displacement deter-
mines the level of hydraulic pressure inside a brake chamber
and controls the movement of a pneumatic piston. Detailed
analyses are presented in Section 3. No direct relationship
is observed between voltage and actuator acceleration given
the nonlinear features of subsystems. A single controller
developed based on mathematical dynamics also has limited
applications. Moreover, the switch part of the dynamic model
[30], [31], which is derived from the unbalanced properties
of the servo valve circuit (8), (9), is included in the system.
Based on the approaches described in [32], [33], this system
can be described as a slow switching system. The greatest
challenge in tracking rapidly changing acceleration lies in
the highly nonlinear system and its extremely sensitive fea-
tures. For example, a considerable variation in fluid viscosity
is usually accompanied by changes in friction coefficients,
asperity contacts, and fluctuations in oil temperature. The
robust characteristics and ability of the switched law to
reduce convergence time are therefore required in designing
controllers. These problems both challenge and motivate us
to build a control structure for achieving high-performance
control.

The fundamental contributions of this work are given as
follows.

FIGURE 1. Experimental HEHPA system configuration: (1) Hydraulic
bladder accumulator, (2) variable flow controller, (3) proportional
pressure control valve, (4) proportional directional valve, (5)
high-pressure supply unit, (6) relief valve, (7) quick exhaust valve, (8)
low-pressure compressor, (9) hydraulic brake system, and (10)
accelerometer, velocity, and displacement sensors.

i) This work presents a rare control problem (rapid accel-
eration tracking control in 0.1 s) and proposes a hybrid of
pneumatic and hydraulic systems and its correspondingmath-
ematical model that can achieve the required control quality.
The physical characteristics of hydraulic fluid flows, direc-
tional valves, and mechanical brake–actuator system, which
allow the application of nonlinear control, are described via
dynamic equations.

ii) Comprehensive controllers for single first- and second-
order nonlinear subsystems are developed. These controllers
have enough robustness to overcome the effects of bounded
uncertainties and disturbances.

iii) An alternative multistage sliding-mode control struc-
ture with switching mechanisms for the unbalanced dynamic
part is developed. The finite-time stability and accuracy of
the controlled system satisfy the work requirements and are
analyzed via a simulation and experiment.

II. HEHPA AND EMPIRICAL DYNAMIC MODELING
A. HEHPA SYSTEM
Fig. 1 presents the detailed schematic of the industrial
HEHPA system. The major mechanical element of this sys-
tem is a pneumatic cylinder fixed with an external mass
(M) and a hydraulic brake (9). The energy supplied for the
positive movement of the actuator is derived from the pneu-
matic system. The compressed gas inside the high-pressure
supply unit (5) maintains a roughly invariant pressure if the
volume of the piston chamber and gas leakage are negligible.
The alternative incompressible hydraulic pressure controls
the presiding friction force and piston movement with an
external load. An industrial desktop computer controls the
entire system in real time through a reliable microcontroller-
based field-programmable gate array. The physical system
has three major subsystems, namely, a mechanical brake
actuator, servo-hydraulics system, and pneumatic system.
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Before reaching thewaiting port (P) of the directional servo
valve (4), the supply pressure is controlled by a proportional
pressure control valve (3) to ensure a stable input pressure
and an offset level that exceeds the desired hydraulic pressure
inside the brake chamber, thereby enhancing control quality
especially in cases with high-peak reference acceleration.

B. SYSTEM MODELING
Mathematical formulas highlight the dynamic behavior of
the overall system in the transient working mode. Based on
Newton’s second law, the translational dynamics of a piston
are defined as follows according to [34]–[36]:

(mP+mL)χ̈P+bPχ̇P+KLχP

+ sgn(χ̇P)
(
Ffc0 + Ffs0e−|χ̇P|c

−1
s

)
+8D

=−(aP − aR)pp1 − µd0(nve−mvχ̇P + 1)aBpB + aPpP2,

(1)

where mL and mP are the masses of the external load and
piston, respectively, bP is the friction coefficient among the
piston, the inner working surface of the cylinder, and the
external damper, KL is the equivalent stiffness applied on the
hydraulic system, Ffc0 and Ffs0 are the Coulomb and static
friction, respectively, aR and aP denote the cross-sectional
areas of the piston rod and the effective piston-cylinder area,
respectively, pB denotes the hydraulic brake pressure, aB
denotes the brake pad effective area, µd0 is the steady-state
coefficient of friction between the piston rod and brake pad,
mv and nv represent the parametric coefficient of the expo-
nential friction-speed function and the multiplication factor,
respectively, and8D(t) is the bounded composite disturbance
on the actuator movement.

The function sgn(χ̇P)
(
Ffc0 + Ffs0ee

−|χ̇P|c
−1
s

)
expresses

the external frictional force, which depends on the direction
of the piston velocity vector as described by the sign of the
actuator velocity χ̇P(t):

sgn(χ̇P) =

{
χ̇P
/
|χ̇P| χ̇P 6= 0

0 χ̇P = 0.
(2)

Based on actual working conditions, the composite dis-
turbance in (1) is mainly caused by the vibration of the
piston rod and the parameter estimation inaccuracy resulting
from unpredictable variations and external disturbances. In a
system where large state changes occur within a short period,
relatively large variations can be observed in the parameters
due to brake-pad imbalance and inaccuracies during manu-
facturing and assembly. The vibrations caused by external
masses lead to system uncertainties that involve additional
forces, 8D(t), directly affecting the system. Drawing on
[37], overall disturbance can be modeled as a linear dynamic
system of unmeasurable, time-varying, bounded disturbance
functions. Given that neither these functions nor the initial
conditions are measurable and only the ranges over which
these functions can vary are known, one can describe the total

composite disturbance as a time-varying bounded function
|8D(t)| ≤ 8̆D(t).

The supply pressure at the input port of the directional
valve depends on the flow through a P point and the flow that
returns to the tank through the pressure control valve. Fol-
lowing [34], [36], [38], the supply pressure can be calculated
as

VS
βE

ṗS = +Cd1AF
√
2(ph1 − pS )ρ

−1
H

− sgn(pP − pB)Cd3πDSV sn(χSV )

×

√
2ρ−1H |(1− ηH ) pS − pB|

−Cd2πDpcsn(−χPC )
√
(pS − ph3)ρ

−1
H , (3)

where Cd1 is the discharge coefficient of the flow controller,
AF is the total flow area, ρH is the hydraulic fluid density
(a function of Reynolds and cavitation numbers), sn(χ) is a
rectifier linear unit of χ , and Cd2 and Cd3 are the discharge
coefficients of the pressure control and directional servo
valves, respectively. The variables ωpc = πDpc and ωSV =
πDSV are the perimeters of the slide valve orifices, with DSV
and DPC representing the base diameters of the spools of the
hydraulic servo valves. As functions of input signals uPC and
uS , χpc(t) and χsv(t) represent the positions of spool servo
valves, βE is the hydraulic effective bulk modulus, and VB is
the brake chamber volume.

In case of turbulent flow, when pressurized fluid is trans-
mitted in the pipe, the influence of viscous friction is deter-
mined by ηH = 1.79µ0.25ρ0.75H Q1.75

F lp1π−1.75p
−1
S d−4.57p in

(3). Here, QF (t) is the flow at the flow controller, µ is the
hydraulic fluid dynamic viscosity, lp1 is the pipe length from
S to the directional servo valve, and dp is the inner diameter
of the hydraulic pipe.

The spool displacement of the pressure control valve,
χPC (t), is formulated as follows following [34], [36], [38]:

mPC χ̈PC + bPC χ̇PC + cPCχPC + 0.25πCfD2
PC (ph3 − pS )

= −mPCKPCuPC , (4)

where mPC denotes the spool mass, bPC and cPC are the
damping coefficients when the spool moves and the equiva-
lent stiffness of the servo valve’s return springs, respectively,
KPC is the input gain of the controller, uPC is the input volt-
age to the valve, and Cf indicates the fluid-force coefficient
caused by the difference between the inside pressure pS and
outside pressure ph3.
The dynamic behavior of pressure in the brake chamber

[34], [36], [38] can be calculated as

VB
βE

ṗB = sgn(pP − pB)Cd3πsn(χSV )DSV

×

√
2ρ−1H |(1− ηH ) pS − pB|

−Cd4πsn(−χSV )DSV
√
2(pB − pT )ρ

−1
H , (5)

where Cd4 is the discharge coefficient of the proportional
directional servo valve in the case of A–T connection.
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The position of the hydraulic directional servo valve spool,
χSV (t), is formulated as follows according to [34], [36], [38]:

χ̈SVω
−2
SV + 2ξSVω

−1
SV χ̇SV + χSV + Ff = KUuS , (6)

where ωSV and ξSV are the natural frequency of the servo
valve and the damping ratio, respectively, and Ff denotes the
steady flow force, which is calculated as follows according to
[36]:

Ff = 2λ11pC2
d3Ao cos(θv), (7)

where 1p is the pressure drop level, θv is the jet angle,
λ1is the adjustment coefficient, and A0 is the function of
the opened area of the outlet port, which is calculated
as 2DSχSV sin−1(HS/DS ), where DS and HS represent the
spool diameter of the servo valve and the outlet port height,
respectively.

The requirements of varied pressure inside the brake cham-
ber lead to an imbalance in designing the directional servo
valve. According to (5), an increase in hydraulic pressure in
the entire brake chamber coincides with the connection of
ports P and B in the proportional directional valve. In case
A, the brake pressure surge over time can be computed as

VB
βE

ṗB = sgn(pP − pB)Cd3πDSV |χSV |

×

√
2ρ−1H |(1− ηH ) pS − pB|. (8)

Meanwhile, in case B,

ṗB = −Cd4πDSV |χSV |βEV
−1
B

√
2(pB − pT )ρ

−1
H . (9)

When the supply pressure is set to

pST =

(
1
ηH
+

C2
d4

ηHC2
d3

)
p̄B, (10)

the same amount of fluid flows through the valve in both
directions. The imbalance can therefore be ignored. Here, p̄B
is the average value of brake pressure.

The system dynamics should be simplified to achieve
rapid sampling times and high-speed control performance.
To accelerate the computation and control processes, the fol-
lowing assumptions are made based on actual operating con-
ditions and technical requirements:
Assumption 01: χ32 is always greater than 0 when t > 0,

and sgn(χ̇P) = 1.
Assumption 02: The average brake pressure is set to p̄B ≈

45 bars, whereas the desired supply pressure pST is set to
100 bars. As a result, pP is always greater than pB, and
sgn(pP − pB) = 1. Condition (10) is also satisfied.

III. ADVANCED CONTROL STRATEGY FOR SUDDEN
GAIN-SCHEDULED ACCELERATION
A. COMPREHENSIVE SMCS FOR SISO SUBSYSTEMS
1) FTSMC FOR SECOND-ORDER SUBSYSTEMS
Second-order nonlinear SISO subsystems can be described as

χ1 = χ, y = χ (k0) (k0 = {0, 1, 2})

χ̇1 = χ2, χ̇2 = ϕ(χ s,χp, t)+ θ (χ s,χp, t)τ (t)+8f (t),

(11)

where ϕ(χ s,χp, t) and θ (χ s,χp, t) 6= 0 are nonlinear
dynamic functions, and τ (t) is the command input of the
subsystem. 8f (t) is the function of composite disturbance
whose first-time derivative constitutes time-varying bounded
functions

(∣∣8f (t)
∣∣ ≤ 8̆f

)
and

(∣∣8̇f (t)
∣∣ ≤ 8̆fd

)
, χ s =

[χ1, χ2]T = [χ, χ̇ ]T is a vector of controlled subsystem
states, and χp = [ς1, ς2, . . . , ςh, . . . , ςm]T , (h,m ∈ N),
where ςh denotes the real-time system parameters. The target
trajectories of the states areχ sT = [χ1T , χ2T ]T = [χT , χ̇T ]T ,
and the vector of the tracking error is χ̃ s = χ s − χ sT =[
χ̃1, χ̃2

]T
=

[
χ̃ , ˙̃χ

]T
=
[
χ̃1 − χT , χ̃2 − χ̇T

]T .
For the second-order subsystem (11), which is a finite-time

stable control law, a fast-terminal slidingmode is appliedwith
the following exponential sliding variable:

ζf (t) = β1χ̃1 + β2χ̃
α
γ

1 + χ̃2 = β1χ̃ + β2 sgn (χ̃)
α
γ + ˙̃χ,

(12)

or

ζf (t)=χ2−χ2T+β1 (χ1−χ1T )+β2 sgn (χ1−χ1T )
α
γ ,

(13)

where β1 and β2 are strictly positive parameters, and the
positive integers α and γ satisfy α < γ < 2α. The function
β2 sgn (χ̃)

α
γ is then defined as

β2 sgn (χ̃)
α
γ , sgn (χ̃) |χ̃ |

α
γ , . (14)

TSM function (6) is continuous and differentiable even
though the absolute value and signum operators are involved.
The first derivative of this function can be expressed as (see
Appendix A), and the first-order derivative of (12) is com-
puted as

ζ̇f (t) = χ̇2 − χ̇2T + β1 (χ̇1 − χ̇1T )

+β2αγ
−1 (χ̇1 − χ̇1T ) |χ1 − χ1T |

α−γ
γ , (15)

This calculation is based on the following lemma:
Lemma 1: The FTSMC control law [39] for the given

second-order subsystem (11) is comprehensively designed as

τ (t) = 1f × θ
−1(χ s,χp, t), (16)

with

1f =

{
−µf 1ζf (t)− β1 (χ̇1 − χ̇1T ) − µf 2 sgn

(
ζf (t)

)ε
+ χ̇2T − ϕ(χ s,χp, t)− µf 3 sgn

(
ζf (t)

)
− β2αγ

−1 (χ̇1 − χ̇1T ) |χ1 − χ1T |
α
γ
−1
}
, (17)

where µf 1, µf 2, and µf 3 are positive controller gains. This
controller satisfies the sliding condition where ε ∈ <, 0 <
ε < 1, and sgn

(
ζf (t)

)ε means sgn
(
ζf (t)

) ∣∣ζf (t)∣∣ε.
196778 VOLUME 8, 2020
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Proof: Consider the defined Lyapunov candidate func-
tion

ϒf (t) =
1
2

(
ζ 2f (t)

)
. (18)

According to (11), (15), (16), and (17), differentiating (18)
with respect to time yields

ϒ̇f (t) =
dϒf
dζf

dζf
dt

= ζf (t)
{
−µf 1ζf (t)− µf 2 sgn

(
ζf (t)

)ε
−µf 3 sgn

(
ζf (t)

)
+8f (t)

}
≤

{
−µf 1

(
ζf (t)

)2
− µf 2

∣∣ζf (t)∣∣1+ε
+
∣∣ζf (t)∣∣ 8̆f (t)− µf 3

∣∣ζf (t)∣∣
}

⇒ ϒ̇f (t) ≤

{
−µf 1

(
ζf (t)

)2
− µf 2

∣∣ζf (t)∣∣1+ε
−
∣∣ζf (t)∣∣ (µf 3 − 8̆f (t)

) }
.

(19)

The real function ϒf (t) is always positive or equal to 0(
ϒf (t) ≥ 0, ζf (t) ∈ <

)
. If the selected controller gains sat-

isfy µf 1 > 0, then µf 2 > 0, µf 3 is selected, and µf 3 = µ∗f 3is
guaranteed. When µf 3 − 8̆f (t) ≥ 0, the derivative of the
Lyapunov function (19) ϒ̇f

(
χ̃ s, t

)
is always negative or equal

to 0
(
ϒ̇f (t) ≤ 0

)
. The functionϒf (t) ≤ ϒf (0) decreases

when t → ∞. Function (18) is Lyapunov stable, and the
sliding condition is guaranteed. The tracking errors converge
to their origin, thereby ending the proof of Lemma 1.
Lemma 2: For a continuous dynamic system (32), the slid-

ing surface (33) is asymptotically stable with the control law
(35).

Proof: Set µ̂f 3 = µ∗f 3 − 8̆f , then

ϒ̇f (t) ≤
{
−µf 1

(
ζf (t)

)2
− µ̂f 3

∣∣ζf (t)∣∣} ≤ 0. (20)

Integrating this equation yields

t∫
0

ϒ̇f (t)dt ≤

t∫
0

{
−µf 1

(
ζf (t)

)2
− µ̂f 3

∣∣ζf (t)∣∣}dt. (21)

One can then infer

lim
t→∞

t∫
0

{
+µf 1

(
ζf (t)

)2
+ µ̂f 3

∣∣ζf (t)∣∣} dt <∞, (22)

and

lim
t→∞

t∫
0

µf 1
(
ζf (t)

)2 dt<∞, lim
t→∞

t∫
0

µ̂f 3
∣∣ζf (t)∣∣ dt<∞.

(23)

Given that

ϒf (0) ≥ ϒf (t)+

t∫
0

{
+µf 1

(
ζf (t)

)2
+ µ̂f 3

∣∣ζf (t)∣∣} dt

≥

t∫
0

{
+µf 1

(
ζf (t)

)2
+ µ̂f 3

∣∣ζf (t)∣∣} dt, (24)

one can obtain ζf (t) ∈ L1 and ζf (t) ∈ L2.
Furthermore,

ϒf (t) ≤ ϒf (0)−

t∫
0

{
+µf 1

(
ζf (t)

)2
+ µ̂f 3

∣∣ζf (t)∣∣} dt
≤ ϒf (0) ≤ ∞, (25)

and ζf (t) ∈ L∞.
By contrast, if ϒ̇f (t) = ζ̇f (t) ζf (t) ≤ 0, then ζ̇f (t) ∈ L∞.
According to the collected evidence, function ζf (t)

is asymptotically stable. This function approaches 0(
ζf (t)→ 0

)
as time approaches infinity (t →∞), that is,

lim
t→∞

ζf (t) = 0. The reaching time is tfr ≤
∣∣ζf (0)∣∣µ−1f

according to [37], [40], [41], thereby ending the proof of
Lemma 2.

Given that the control strategy primarily focuses on the
piston movement with mass (1) and that the greatest con-
trol challenge is derived from this subsystem, a thorough
investigation of the second-order fast-terminal sling mode for
finite-time stability is necessary. The fundamental concepts
of finite-time stability have been discussed in many reports,
including those by Fridman [42]–[44]. One state-of-the-art
perspective is described as follows:
Definition 1 [43], [44]: Consider a system

χ̇ = f (χ), (26)

where χ ∈ <n. Afterward, f (0) = 0, and f (χ) : D → <n

is continuous in the open neighborhood D of the origin. The
equilibrium point χ = 0 of the system is finite-time stable
if this point is Lyapunov stable and finite-time convergent
in neighborhood U ⊆ D. The term finite-time convergence
indicates that for an arbitrary initial condition χ0 ∈ U/{0},
there is a settling time function T (χ0) : U/{0} → (0,∞)
such that every solution χ (t, χ0) of the system (26) is defined
as χ (t, χ0) ∈ U/{0} for t ∈ [0,T (χ0)), thereby ensuring
lim

t→T (χ0)
χ (t, χ0) = 0 and χ (t, χ0) = 0 if t ≥ T (χ0).

Definition 2 [42]–[44]:Consider the non-autonomous sys-
tem

χ̇ = f (χ)+ g (χ) u, (27)

where χ ∈ <n and u ∈ <m. In this case, f (0) = 0,
g (χ) 6= 0, and f (χ) : D→ <n. The closed-loop system can
be stabilized in finite time if there is a feedback control law
usuch that χ = 0 represents the finite-time stable equilibrium
of the given system.
Lemma 3: If the equilibrium point χ = 0 of the contin-

uous differential equation is globally finite-time stable for
any given initial condition χ (0) = χo, then the tracking
error χ̃ s converges to χ̃ s ≡ 0 in finite time and remains 0
forever. Following [42], [43], [45], [46], if the non-negative
Lyapunov function L (χ) satisfies the condition

L̇ (χ)+ βlLγl (χ) ≤ 0, (28)
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where the coefficients are βl > 0 and 0 < γl < 1,
then the system is finite-time stable. The convergence time
is t ≤ 2δ−1L

1
2 (0), where δ is the function of the controller

parameters [42], [43], [47]–[49].
According to [42], [50], [51], an extended Lyapunov func-

tion that illustrates finite-time stability for a fast terminal
sliding mode is defined as

L̇ (χ)+ αlL (χ)+ βlLγl (χ) ≤ 0, (29)

where αl , βl > 0 and 0 < γl < 1. The settling time is
generally obtained by

T (χ0) ≤
1

αl (1− γl)
ln
(
αlL1−γl (χ0)+ βl

βl

)
. (30)

Condition (29) is strong and ensures inequality (28)
because αlL (χ) is non-negative.

The basis of Lemma 3 is proven by Fridman, Levant, and
several other studies, such as [42], [43], [45], [46]. This
lemma has also been successfully applied in numerous stud-
ies, such as in [45], [50], [52], [53].

According to (19), if µf 3 > 8̆f , then one can infer

ϒ̇f (t) ≤ −µf 1
(
ζf (t)

)2
− µf 2

∣∣ζf (t)∣∣ε ∣∣ζf (t)∣∣ , . (31)

Eventually, the function ϒf (t) satisfies the conditions spec-
ified in Lemma 3. The investigated candidate function and
second-order system are then finite-time stable with the con-
trol law shown in Lemma 1.
The settling time is given in Lemma 3 and can be directly

calculated in Lemma 7.

2) ISMC FOR FIRST-ORDER SUBSYSTEMS
We consider the first-order nonlinear subsystem

χ̇s = ϕ(χs,χp, t)+ θ (χs,χp, t)τ (t)+8i(t),

y = χ (k0)
s (k0 = {0, 1}), (32)

where ϕ(χ,χp, t) and θ(χ,χp, t) 6= 0 are dynamic nonlin-
ear functions, 8i (t) is the bounded composite disturbance
impacting the subsystem that satisfies |8i (t)| ≤ 8̆i and∣∣8̇i (t)

∣∣ ≤ 8̆id , and τ (t) is the input command signal.
χp = [ς1, ς2, . . . , ςh, . . . , ςm]T and (h,m ∈ N), where ςh
represents the time-varying parameters of the subsystem.
Meanwhile,χs andχsT are state variable with the target value,
and χ̃s = χs − χsT is defined as the tracking error.
ISMC is a classical controller that has been widely used

for many decades [41], [54]. The sliding variable of this
controller is defined as

ζi (t)=βi

t∫
0

χ̃sdτ + χ̃s=βi

t∫
0

(χs − χsT ) dτ+χs−χsT ,

(33)

where βi is the controller coefficient.
Accordingly,

ζ̇i (t) = βiχ̃s + ˙̃χs = βi (χs − χsT )+ χ̇s − χ̇sT . (34)

Lemma 4: For subsystem (32), the general finite-time-
convergence ISMC law is formulated as

τ (t) = 1i × θ
−1(χs,χp, t), (35)

where

1i =

{
−µi2 sgn (ζi (t))+ χ̇sT − βi (χs − χsT )

−ϕ(χs,χp, t)− µi1 |ζi (t)|
1
2 sgn (ζi (t))

}
, (36)

which guarantees the sliding condition.
Proof: The Lyapunov candidate function is selected as

ϒi (t) = 0.5
(
ζ 2i (t)

)
. (37)

From (32), (34), (35), and (36), the first-order time deriva-
tive of function (37) can be calculated as

ϒ̇i (t) = ζi (t)
{
−µi1 |ζi (t)|

1
2 sgn (ζi2 (t))

−µi2 sgn (ζi (t))+8i (t)

}
. (38)

µ∗i2 guarantees µ∗i2 − 8̆id ≥ 0 when the value of µi2
is µi2 = µ∗i2, andϒ̇i (t) is always negative or equal to 0(
ϒ̇i (t) ≤ 0

)
and (ϒi (t) ≥ 0) asζi (t) ∈ <. t → ∞ yields

ϒi (t) ≤ ϒi(0), thereby suggesting that ζ 2i (t), (ζi (t) ∈ <)
is decreasing. Consequently, the candidate function is stable
in a Lyapunov sense. Furthermore, the sliding condition is
guaranteed, and the tracking errors are consolidated to zero
following the convergence of the sliding surface.

The fundamentals of the sliding-mode control law have
been reported byUtkin in 1992 [37], [55] and by other authors
[56], [57].

The proof of Lemma 4 is thus completed.
Lemma 5: The continuously nonlinear subsystem (32) is

asymptotically stable for control laws (35) and (36).
Proof: Lemma 5 is proven in an approach similar to that

used for Lemma 2.
Lemma 6: For dynamic system (32), the control law given

in Lemma 4 ensures the finite-time stability of the closed-
loop system with the convergence time satisfying tic ≤

2δ−1i ϒ
1
2
i (0). Here, δi is the function computed from the con-

troller coefficients.
Proof: Form (38), if the value ofµi2 isµi2 = µ∗i2 ≥ 8̆id ,

then one can infer that
(
µi2 − 8̆id (t)

)
≥ 0. Consequently,

ϒ̇i (t) ≤ −µi1 |ζi (t)|
1
2 |ζi (t)|. (39)

Following [29], the uniform Lyapunov function ϒi (t) enters
a ball with radius ϒi (0) in finite time. Eventually, the given
first-order system (32) with bounded composite function
8i(t) is inferred to be finite-time stable based on Lemma 3,
hence ending the proof of Lemma 6.

This lemma has been proven and applied in recent works,
including [34], [35], [47]–[50].
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FIGURE 2. A multiphase control structure for abrupt acceleration tracking.

B. A NOVEL SWITCHING-TECHNIQUE-BASED CONTROL
STRUCTURE FOR INSTANTANEOUS ACCELERATION
TRACKING
Fig. 2 presents a three-phase finite-time convergence con-
trol structure. From the dynamic system (1) and (5–9), the
system that controls acceleration (System 1) is considered
a single-input and single-output (SISO) system with voltage
uS and actuator movement χP as its overall command input
and output, respectively. The SISO system has three main
subsystems, namely, a proportional directional servo valve,
a hydraulic brake subsystem, and a pneumatic piston with a
brake subsystem. Calculating the direct relationship between
uS andχP introduces a significant challenge in the application
of a single nonlinear control algorithm because each subsys-
tem is a nonlinear SISO system. This study then establishes a
novel multiphase finite-time convergence structure of SMCs
to control the entire system (Fig. 2). In Phase 1, the con-
trol input given to the servo valve accurately controls the
spool movement. The precise displacement determines the
pressure in the brake chamber and the friction force between
the brake pad and piston rod in Phase 2. The exact brake
pressure determines the actuator movement and guarantees
the acceleration-tracking condition in Phase 3.

The imbalance in the installation of the proportional servo
valve leads to different dynamic behaviors when two sides
are working. These differences in turn lead to variations in
fluid flow and in the hydraulic oil pressure. The mathematical
model of the servo valve is therefore split into return and
forward model dynamics, and the switched ISMC controllers
of brake pressure are established. In the control process,
the tracking error of the hydraulic brake pressure is trans-
ferred to the switching block (Sw), which determines the
proper working dynamic model and control law.

The controllers are calculated as follows.
The system states are defined as
χ1 = χP, χ2 = χ̇P, χ3 = χSV , χ4 = χ̇SV , χ5 = pB,

χ6 = pS , χ7 = χPC , χ8 = χ̇PC .

The reference values of the state variables are
χ1T = χPT , χ2T = χ̇PT , χ̇2T = χ̈PT , χ3T = χSVT , χ4T =

χ̇SVT , χ̇4T = χ̈SVT , χ5T = pBT , χ̇5T = ṗBT , χ6T = pST ,
χ̇6T = ṗST , χ7T = χPCT , χ8T = χ̇PCT , χ̇8T = χ̈PCT .
The tracking errors between the system states and their

desired values are

χ̃i = χi − χiT , for i = 1 . . . 8,
˙̃χi = χ̇i − χ̇iT , for i = 2, 4, 5, 6, 8.

Following Lemma 1, the controller for high-accuracy
acceleration tracking is computed as

pBT (t)

= −(mP + mL)
(
µd0(nve−mvχ̇P + 1)aB

)−1
×

−µ2P sgn
(
ζfP
)εP
+ χ̈PT − µ3P sgn

(
ζfP
)

−β1P (χ̇1 − χ̇PT )− (mP + mL)−1aPpP2

−µ1PζfP − β2P
αP

γP
(χ̇1 − χ̇PT ) |χ1 − χPT |

αP
γP
−1


−

(
µd0(nve−mvχ̇P + 1)aB

)−1
×

((
Ffc0 + Ffs0e−|χ2|c

−1
S

)
+bPχ2 + KLχ1 + (aP − aR)pp1

)
, (40)

ζfP

= β1Pχ̃P + β2P sgn (χ̃P)
α
γ + ˙̃χP

= β1Pχ̃1 + β2P sgn (χ̃1)
αP
γP + χ̃2

= β1P (χ1 − χPT )+ β2P sgn (χ1 − χPT )
αP
γP + χ2 − χ̇PT .

(41)

The controller for the spool position is

ζfSV

= β1SV χ̃SV + β2SV sgn (χ̃SV )
αSV
γSV + ˙̃χSV

= β1SV χ̃3 + β2SV sgn (χ̃3)
αSV
γSV + χ̃4

= β1SV (χ3 − χSVT )+ β2SV sgn (χ3 − χSVT )
αSV
γSV

+χ4 − χ̇SVT , (42)

uS (t)

= ω−2SVK
−1
U



+χ̈SVT−β1SV (χ̇3−χ̇SVT )+2ξSVω1
SVχ4

−β2SV
αSV

γSV
(χ̇3−χ̇SVT ) |χ3−χSVT |

αSV
γSV
−1

−µf 1SV ζfSV−µf 2SV sgn
(
ζfSV

)εSV
+χ3ω

2
SV−µf 3SV sgn

(
ζfSV

)
+41pλ1C2

d3DSχ3ω
2
SV sin−1(

HS
DS

) cos(θv)


.

(43)

Based on Lemma 4, the control law for brake pressure in
both cases is formulated as follows.
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FIGURE 3. Control structure for the supply pressure.

In Case A, the level of surge in brake pressure is controlled
by

ζiBA = βiBA

t∫
0

χ̃5dτ + χ̃5

= βiBA

t∫
0

(χ5 − pBT ) dτ + χ5 − pBT (44)

χ3 =

−µi1BAVB |ζiBA (t)|
1
2 sgn (ζiBA (t))

−VBµi2BA sgn (ζiBA (t))
+ṗBTVB − βiBAVB (χ5 − pBT )


−1

×Cd3πDSV

×βE

√√√√ 2
ρH

∣∣∣∣∣
(
1−

1.79µ0.25ρ0.75H Q1.75
F lp1

π1.75pSd4.57p

)
χ6−χ5

∣∣∣∣∣.
(45)

In Case B, the control law for reducing brake pressure is

ζiBB = βiBB

t∫
0

χ̃5dτ + χ̃5

= βiBB

t∫
0

(χ5 − pBT ) dτ + χ5 − pBT (46)

χ3 =

−µi1BBVB |ζiBB (t)|
1
2 sgn (ζiBB (t))

−VBµi2BB sgn (ζiBB (t))
+ṗBTVB − βiBBVB (χ5 − pBT )


−1

×

(
−Cd4πDSVβE

√
2(χ5 − pT )

1
ρH

)
. (47)

C. MECHANISM FOR CONTROLLING SUPPLY HYDRAULIC
PRESSURE
Fig. 3 presents the two-phase structure for controlling the
inlet hydraulic pressure (System 1).

The command signal for the proportional pressure control
valve is calculated as

ζfPC

= β1PC χ̃PC + β2PC sgn (χ̃PC )
αPC
γPC + ˙̃χPC

= β1PC χ̃7 + β2PC sgn (χ̃7)
αPC
γPC + ˙̃χ8

= χ8 − χ̇PCT + β1PC (χ7 − χPCT )

+β2PC sgn (χ7 − χPCT )
αPC
γPC , (48)

uPC (t)

= −K−1PC



+m−1PCbPCχ8−m
−1
PC
πCfD2

PC

4
(χ6−ph3)

−µf 1PCζfPC−µf 2PC sgn
(
ζfPC

)εPC
+cPCχ7−µf 3PC sgn

(
ζfPC

)
+χ̈PCT

−β1PC (χ̇7−χ̇PCT )−β2PC
αPC

γPC

(χ̇7−χ̇PCT ) |χ7−χPCT |
αPC
γPC
−1


.

(49)

When the pressure control valve is opened, sg(−χPC ) =
−χPC , and the desired displacement of its spool is determined
by

ζiS

= βiS

t∫
0

χ̃6dτ + χ̃6

= βiS

t∫
0

(χ6 − pST ) dτ + χ6 − pST (50)

χPCT (t)

= VS

(
βECd2πDpc

√
(χ6 − ph3)

1
ρH

)−1

×



−
βE

VS
Cd1AF

√
2(ph1 − χ6)

1
ρH

+ṗST − µi1S |ζiS (t)|
1
2 sgn (ζiS (t))

−µi2S sgn (ζiS (t))− βiS (χ6 − pST )

+
βE

VS
Cd3πDSV sn(χ3)

√
2
ρH

∣∣∣∣ (1− ηH ) χ6−χ5

∣∣∣∣


.

(51)

The symbols and definitions involved in the proposed control
scheme are presented in Table 1.

D. TIME-CONVERGENCE ANALYSES
Given the control laws (40)–(51) and the control structure
in Figs. 2 and 3, Phase 2 converges only after the convergence
of Phase 1 and so on. Therefore, the convergence time of each
phase is always longer than that of the previous phase and
shorter than that of the later phase. The convergence time of
each phase is calculated by summing the convergence times
of all previous and current phases.
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TABLE 1. Symbols used throughout the paper.

Based on (51–53), the convergence time of the entire SISO
system is calculated as

TC =
n∑
j=1

trj, (52)

where n is the number of subsystems, and trj is the conver-
gence period of thejth phase.
Lemma 7:The times of convergence of supply pressure and

actuator acceleration to their reference values are denoted by
TC1 andTC2 (as in (54) and (53)), respectively.

TC2=


γPC (β1PC (γPC−αPC ))−1
. ln
((
β1PC |χ̃PC (0)|

γPC−αPC
γPC +β2PC

)
β−12PC

)
+ 2δ−1iS ϒ

1
2
iS (0)

.
(53)

TC1= ln



(
β1 |χ̃P (0)|

γP−αP
γP + β2P

) γP
β1P(γP−αP)

(
β1SV |χ̃SV (0)|

γSV−αSV
γSV + β2SV

) γSV
β1SV (γSV−αSV )

β

γP
β1P(αP−γP)
2P β

γSV
β1SV (αSV−γSV )
2SV

.

+ 2δ−1iB ϒ
1
2
iB(0) (54)

Proof: The proof of Lemma 7 is given in the Appendix.
Based on these calculations and analyses, the times

for the inlet supply pressure (pS ) and hydraulic pres-
sure in the brake chamber (pB) to be tracked to their
desired trajectories (pST and pBT ) are denoted by TC2

and γP (β1P (γP − αP))−1 ln

((
β1 |χ̃P (0)|

γP−αP
γP

+β2P

)
β−12P

)
+

|ζiB (0)|µ
−1
iB , respectively. These convergence periods fol-

low the error tracking of spool movements of the pres-
sure control and proportional directional valves (χ̃3, χ̃4, ˙̃χ4
and χ̃7, χ̃8, ˙̃χ8) converged to the original point at times
γPCβ

−1
1PC (γPC − αPC )

−1

ln
((
β1PC |χ̃PC (0)|

γPC−αPC
γPC + β2PC

)
β−12PC

)
and

γSVβ
−1
1SV (γSV − αSV )

−1 ln
(
β1SV |χ̃SV (0)|

γSV−αSV
γSV

+ β2SV

)
β−12SV , respectively. Eventually, the time for the

pneumatic actuator acceleration (χ̈P ) to consolidate its ref-
erence curb is denoted by TC1.

IV. SIMULATION AND INDUSTRIAL IMPLEMENTATION
A. NUMERICAL SIMULATION
This section focuses on controlling the acceleration of the
actuator (System 1).

The system parameters for acceleration tracking are
mP = 75 kg, mL = 951 kg, bP = 579 Ns/m, KL = 755

N/m, Ffc0 = 1595 N, Ffs0 = 1375 N, aP = 189 × 10−4

m2, aR = 87 × 10−4 m2, aB = 245 × 10−4, µd0 = 0.45,
nv = 0, 012, mv = 0.00035, cs = 3.5, µd1 = 0.471, ρH =
0.880 g/cm3, pST = 100 bar, Cd3 = 0.67, ωsv = 0.02 m,
βE = 1.39× 109 N/ m2,
VB = 37.397115 × 10−6 m3, lp1 = 3.95 m, dp = 0.006

m, µ = 2.4 × 10−2, ηH = 0.913, Cd4 = 0.616, ξSV = 0.7,
ωSV = 1160 rad/s, DS = 7.145 × 10−3 m, HS = 4 × 10−3

m,λf = 0.0915×10−6, λ1 = 0.9, θ = 60◦,KU = 3.4×10−5

V/m, and AS = 4.25× 10−3 m.
Figs. 4 to 14 show the numerical simulations conducted

within a 0.1 s control period.
Figs. 4 to 6 illustrate the movement of the actuator con-

trolled by three-phase conventional SMCs (green dotted
line) and FTSMCs combined with ISMC (FSTSMCs) (violet
dashed line). In the first half of the simulation, both con-
trollers demonstrate an effective tracking performance with
smooth and non-step sinusoidal patterns, but these controllers
demonstrate different properties 0.05 s later. Based on the
practical working conditions, a composite pulse disturbance
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FIGURE 4. Acceleration tracking.

FIGURE 5. Velocity tracking.

FIGURE 6. Displacement tracking.

FIGURE 7. Composite disturbance.

(Fig. 7) is applied to the mechanical system (Phase 3) of
the controller, after which piston accelerations are deflected
off their reference curbs. Given that both controllers are
robust, they force the actuator acceleration to return to a
sinusoidal curve as shown in Fig. 4. For a conventional SMC,
the acceleration does not return to its desired curve within
0.002 s. By contrast, the satisfactory disturbance rejection
feature of FTSMC ensures that the acceleration can return to
this curve within 0.0013 s. However, the position and velocity
tracking errors accumulate to a larger value at the end of the
simulation. The reference trajectory of brake pressure, which
is roughly proportional to negative acceleration (green line
in Fig. 4), is precisely tracked (violet line in Fig. 8). The shape
of the desired spool position is roughly and continuously
sinusoidal and is accurately tracked by the controlled spool
displacement in Phase 1.

When tracking the pulse profile (Figs. 10 to 14), the con-
trollers demonstrate different responses. Given the high level
of acceleration (exceeding 11 m/s2), the conventional SMC
forces the actuator acceleration to its target within 0.04 s,

FIGURE 8. Brake pressure control.

FIGURE 9. Spool displacement control.

FIGURE 10. Acceleration tracking.

FIGURE 11. Velocity tracking.

FIGURE 12. Displacement tracking.

FIGURE 13. Brake pressure control.

which is approximately twice longer than the convergence
time of FTSMC.

B. INDUSTRIAL IMPLEMENTATION
Fig. 15 presents the industrial platform, and Figs. 16 to
24 present the experimental results. With the command signal
provided in Fig. 16, all movements (red lines) of the propor-
tional servo valve spool are controlled as shown in Fig. 17.
As a result, the hydraulic brake pressure (red lines) converges
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FIGURE 14. Spool postion control.

FIGURE 15. Experimental HEHPA system configuration: (1) Pneumatic
pressure sensor, (2) pneumatic pipe, (3) air tank (150 bar), (4) pneumatic
cylinder, (5) accelerometer, (6) hydraulic pressure sensor, (7) hydraulic
proportional servo valve, (8) LVDT position sensor, (9) hydraulic brake
system, and (10) hydraulic bladder accumulator.

FIGURE 16. Command input.

FIGURE 17. Control the spool displacement.

to its desired values (green lines; Fig. 18). Consequently, the
piston movement, acceleration, velocity, and position (red
lines) are tracked to their reference values.

The trajectory of actuator acceleration in the converged
period has change rules that are roughly inversed with brake
pressure variation in the experimental results. Moreover,
the reduction in brake pressure coincides with the posi-
tive value of the servo valve spool displacement. Therefore,
the dynamic system modeling that involves (1) and (5-9) is
deemed reliable.

FIGURE 18. Control the brake pressure.

FIGURE 19. High-accuracy acceleration tracking.

FIGURE 20. Piston velocity tracking.

FIGURE 21. Piston postion tracking.

The convergence times of three phases, namely, spool
position, brake pressure, and piston acceleration, are 0.0014,
0.0019, and 0.0068 s, respectively. These finite time periods
are appropriate for the order of convergence times analyzed in
Section 3.4 and the numerical simulation results in Figs. 10,
13, and 14.
Remark 1: This study presents a relatively new problem

and approach in actuator control (rapid acceleration tracking
control). The greatest challenges faced in this work lie in the
design and setup of a complex hybrid system where devices
are required to work at extremely high speeds and resolutions.
Furthermore, the parameters of this system greatly vary and
are extremely sensitive when the piston rod moves at a shock
acceleration. The control accuracy reported in this work is
considerably higher than those reported in previous studies
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that only focus on single fluid-power (hydraulic or pneu-
matic) actuators, such as [62], by comparing tracking errors
reported within short periods.
Remark 2: Using the same approach, the control structure

is designed to be applicable to a variety of systems that have
multiple series subsystems, such as hydraulic actuator sys-
tems (including valves, hydraulic subsystems, and actuators)
and industrial excavators (including valves, hydraulic parts,
actuator subsystems, and links).

V. CONCLUSION
An innovative hybrid platform with a technically appropriate
combination of electrohydraulic, pneumatic, and mechanical
subsystems is presented in this paper. This study focuses
on the sudden acceleration-tracking control of an actuator.
An advanced control structure with a switching mechanism is
developed based on a nonlinear dynamic model. The robust
and powerful convergence properties of the proper control
strategy are investigated via numerical simulations. The con-
troller not only overcomes the effects of internal uncertainties
and external disturbance but also drives the actuator to follow
the expected acceleration–time profile. This controller also
forces the system state variables, including spool position and
brake pressure, to their desired trajectories, thereby improv-
ing the quality and safety of the control process. The effec-
tiveness of this approach is experimentally validated via an
industrial implementation. Given that the proposed system is
greatly affected by uncertainties, our future work shall focus
on the robustness of this controller by combining the control
law with adaptive algorithms.
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APPENDIX
PROOF OF LEMMA 7
From the control law and sliding surface in Lemma 1, the con-
vergence time of each phase FTSMC [59]–[61] is determined
by

tfr = −

χ̃1(t=tfr)∫
χ̃1(t=0)

(
β1χ̃1 (t)+ β2 (χ̃1 (t))

α
γ

)−1
d χ̃1 (t)

= −

χ̃1(t=tfr)∫
χ̃1(t=0)

ξ (χ̃1 (t)) d χ̃1 (t). (55)

Based on (14), function Fd (χ̃1 (t)) is given by

ξ (χ̃1 (t))=


β1χ̃1 (t)+β2 (χ̃1 (t))

α
γ , χ̃1 (t)>0

0, χ̃1 (t)=0

−β1χ̃1 (t)−β2 (−χ̃1 (t))
α
γ , χ̃1 (t)<0.

(56)

In the case of χ̃1 (t) ≥ 0, the convergence period can be
computed as

tfr = γ (β1 (γ − α))−1 ln
((
β1 (χ̃1 (0))

γ−α
γ + β2

)
β−12

)
(57)

based on

tfr =−

χ̃1(t=tfr)∫
χ̃1(t=0)

α

(
γ χ̃1 (t) β1

(
α − γ

γ

))−1
d χ̃1 (t)

+

χ̃1(t=tfr)∫
χ̃1(t=0)

((α−γγ ) (
β1χ̃1 (t)+ β2 (χ̃1 (t))

α
γ

))−1
β1

(
β1+β2

α
γ
(χ̃1 (t))

α−γ
γ

)


× d χ̃1 (t), (58)

and

tfr =

β1χ̃1(tfr)+β2(χ̃1(tfr))
α
γ∫

β1χ̃1(0)+β2(χ̃1(0))
α
γ

(
β1

(
α − γ

γ

)
ξ (t)

)−1
dξ (t)

−

χ̃1(tfr)∫
χ̃1(0)

(
γ χ̃1 (t) β1

(
α − γ

γ

))−1
d χ̃1 (t), (59)

where α < γ < 2α.
These equations are derived from (60), as shown at the top

of the next page.
In the case of χ̃1 (t) < 0, the convergence period can be

computed as

tfr = γ (β1 (γ − α))−1 ln
((
β1 (−χ̃1 (0))

γ−α
γ + β2

)
β−12

)
(61)

because ξ (χ̃1 (t)) is an odd function, and

tfr=−

−χ̃1(t=tfr)∫
−χ̃1(t=0)

(
−β1χ̃1 (t)−β2 (χ̃1 (t))

α
γ

)−1
d (−χ̃1 (t)).

(62)

For arbitrary values of χ̃1 (t) ∈ <, the convergence time is
computed as

tfr = γ (β1 (γ − α))−1 ln
((
β1 |−χ̃1 (0)|

γ−α
γ + β2

)
β−12

)
.

(63)

Following Lemma 6, the convergence time is

tic ≤ 2δ−1i ϒ
1
2
i (0), (64)

and the convergence time for controlling the supply pressure
is

TC2 = tfrPC + ticS

=

 γPC (β1PC (γPC − αPC ))−1 .
ln
((
β1PC |χ̃PC (0)|

γPC−αPC
γPC + β2PC

)
β−12PC

)
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tfr =

χ̃1(t=tfr)∫
χ̃1(t=0)


((
β1χ̃1 (t)+ β2 (χ̃1 (t))

α
γ

)
β1 (α − γ ) χ̃1 (t) γ

)−1
.

 γ χ̃1 (t) (β1 + β2 αγ (χ̃1 (t)) α−γγ )
−α

(
β1χ̃1 (t)+ β2 (χ̃1 (t))

α
γ

) 
 d χ̃1 (t)

=

χ̃1(t=tfr)∫
χ̃1(t=0)


(
β1

(
α−γ
γ

))−1 (
β1 + β2

α
γ
(χ̃1 (t))

α−γ
γ

)
(
β1χ̃1 (t)+ β2 (χ̃1 (t))

α
γ

)−1
− (γ χ̃1 (t))

−1 α
(
β1

(
α−γ
γ

))−1
 d χ̃1 (t). (60)

+ 2δ−1iS ϒ
1
2
iS (0). (65)

For SISO system 1, the convergence period is calculated as

TC1 = tfrP + tfrSV + ticB. (66)

TC1 =



 γP (β1P (γP − αP))−1
. ln

((
β1 |χ̃P (0)|

γP−αP
γP + β2P

)
β−12P

)
+2δ−1iB ϒ

1
2
iB(0) γSV (β1SV (γSV − αSV ))−1

. ln
(
β1SV |χ̃SV (0)|

γSV−αSV
γSV + β2SV

)
β−12SV




.

(67)

This computation ascertains the accuracy of TC1 in (54).
The proof of Lemma 7 is therefore completed.
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