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ABSTRACT Wireless power transfer (WPT), a convenient method for powering multiple devices, enables
a truly wireless connection, eliminating the need for periodic charging and replacing a battery. To further
enhance WPT, the unique characteristics of metamaterial, such as its field focusing and evanescent wave
amplification, have been successfully utilized. With subwavelength characteristics, computational chal-
lenges arise when the number of metamaterial unit cells is increased. In this work, we investigate a deep
neural network (DNN)-based design of the tunable metamaterial for WPT. Using structures specifically
designed for different tasks, the DNN predicts the frequency spectra and synthesizes the unit cell’s design
parameters. When trained using a set of ∼23 000 randomly selected designs, we achieve an accumulated
mean square error (MSE) of less than 1.5×10−3 for 97.3% of the 1929 test set. For synthesizing the unit cell’s
design parameters, theMSE is less than 2.5×10−3 for 95.7% of the test set. The data-drivenmethod is further
extended to a generative adversarial network (GAN) to create the WPT paths and predict the frequency
spectra of them. To achieve high efficiency, we propose a cost function focusing on the spectra’s transmission
peak. After training using 80 000 measured data, the GAN can create WPT paths that efficiently connect the
transmitter and the receiver on the metasurface. The results show that the DNN provides an alternative and
efficient design method for the metamaterial, replacing traditional EM-simulation-based approaches.

INDEX TERMS Wireless power transfer, tunable metamaterial, metasurface, field localization, deep neural
network, generative adversarial network.

I. INTRODUCTION
Wave propagation control has played a fundamental role in
generating, transferring, and utilizing energy [1]. Photonic
bandgap (PBG) has been utilized to confine and guide
electromagnetic waves (light) using waveguides, cavity reso-
nance, and emission control [2]. The introduction of metama-
terial marks another significant step up in progress for wave
control.

Metamaterials are artificial composites that exhibit unusual
physical properties such as negative permittivity and per-
meability [3], which are not found in natural materials.
The metamaterial is usually constructed using locally reso-
nant unit cells in the deep subwavelength scale [4]. Unlike
PBG materials based on Bragg interferences of periodic unit
cells, the physical characteristics of metamaterial originate
from overall averaged material properties. New methods for
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wave propagation control using metamaterials have been
introduced with Pendry and Smith’s pioneering work. The
imaging immediately found new applications using the meta-
material’s negative reflective index, which allows overcom-
ing the resolution limit beyond classical optics, i.e., a perfect
lens [5]. In addition to imaging, metamaterials have shown
great potential in innovative applications such as field focus-
ing, beam shaping, steering, and cloaking. The universal
scaling property of metamaterials provides great potential for
a broad range of applications. Great efforts have been put
forth to seek the metamaterial applications across the whole
electromagnetic (EM) spectrum from radio-frequency (RF)
to near-infrared.

In this ubiquitously connected world, one wire remains
necessary to supply power. Although the battery provides
a way to replace the power cable, wireless power trans-
fer (WPT) can enable a truly wireless connection without the
need for periodic charging and eventual replacement of the
battery. Recently, the unique characteristics of metamaterial,
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such as field focusing, evanescent wave amplification, and
strong EM resonance (or coupling), have been successfully
utilized forWPT [6]–[8] and energy harvesting [9]. For exam-
ple, the use of metamaterials enables extendingWPT distance
[6], [7] and mitigates the effect of coil misalignment [8].
Besides, there has been significant interest in a tunable meta-
material, which can dynamically change its material param-
eters [10], [11]. The metamaterial consists of subwavelength
unit cells as its constituent element; the metamaterial design
can be computationally challenging when the number of
cells is increased, when the dimension is increased, or when
tunability is added. Therefore, one crucial question is how
to efficiently design and characterize tunable metamaterials
containing a multitude of unit cells.

The deep neural network (DNN) has recently made
significant progress in achieving decision accuracy beyond
the human level. Starting from a simple convolutional neural
network for image classification [12], the DNN has been
extended for use in many different fields such as speech
recognition [13], face detection [14], and video recognition
[15]. The effectiveness of optimally selecting actions, even
for a search space that was believed impossible to explore,
has been demonstrated [16]. Then, it has penetrated other
disciplines, such as materials science, biology, biomedicine,
medical diagnosis, and physics.

In this trend, the DNN can provide a great opportunity
to extend the design and control of metamaterial. Instead
of the traditional approach of solving Maxwell’s equations,
the data-driven model of the DNN learns from the data based
on physical principles. The DNN generates output using
simple arithmetic computation. Indeed, this new approach
has provided a potent tool in the design of metamaterials
[17]–[24]. For example, the DNN has been successfully
used for predicting the optical response of chiral metama-
terials [19]. A generative model of the DNN has success-
fully replaced the conventional trial-and-error approaches
for the inverse design of the metasurface [20], [22], [24].
These results show the good potential of the DNN to replace
time-consuming EM simulations, which are conducted
case-by-case for each geometry.

Inspired by the paradigm shift, we investigate a
DNN-based design of the tunable metamaterial for future
intelligent WPT. Using the DNN, we aim to complete four
tasks related to the metasurface design for WPT. The first
task is using the DNN for predicting the frequency spectra of
the metamaterial unit cell for a given geometry. The second
task is to synthesize the design parameters of the unit cell
for a given frequency spectrum. The third task is generating
an efficient WPT path connecting a transmitter (Tx) and a
receiver (Rx). For this task, we train the network containing
multiple DNNs using 80000 measured data. To generate
the high-efficiency path, we propose a cost function that
focuses on the spectra’s transmission peak. The fourth task is
predicting the frequency spectra of the generated WPT path.
Using extensive training, the DNN can successfully predict
the spectra and create WPT paths that efficiently connect Tx

FIGURE 1. Concept of the WPT charging table realized using tunable
metasurface. The metasurface consists of multiple receivers on the table
that can be powered simultaneously from a transmitter. The metasurface
dynamically localizes the power into the selected WPT path using
switchable unit cells.

and Rx. The contribution of this paper can be summarized as
follows: we propose a DNN-based design approach to deal
with the computational challenge in the metamaterial design.
Andwe demonstrate that theDNNprovides an alternative and
efficient design method for metamaterial, which can replace
the traditional approach using the EM solver. Applying the
DNN toWPTwill stimulate advancedWPT research, and our
work will be useful for efficient metamaterial design future
intelligent WPT.

II. FIELD-LOCALIZED WAVEGUIDE ON METASURFACE
Metamaterials constructed using a grid of split-ring res-
onators (SRRs) have been investigated for one-dimensional
(1D) arrays [25] and two-dimensional (2D) waveguides [26].
Because the previous works are developed mainly for data
transfer, the energy is not well confined inside the waveguide;
the high losses are not suitable for WPT. The metamaterial-
based cavities can better confine the fields to reduce the loss
[27]. This concept of field localization is further extended for
a resonator-coupled WPT to increase efficiency [28]. In this
work, we modify the cavity mode concept to create a new
type of low-loss waveguide on the tunable metasurface.

Fig. 1 shows an artist’s rendering of the WPT charg-
ing table realized using the tunable metasurface. Previously,
a smart table based metasurface was reported for WPT [7].
The table embedded in the desktop was realized using a
group of wires underneath the dielectric resonators, which
play the role of a channel connection between Tx and Rx. Our
approach is similar to the previous work [7] in that multiple
devices can be powered simultaneously, regardless of the
location on the table. However, the physical principle is quite
different. The proposed method is realized by using cavity
mode enabled for field localization [29] and dynamically
localizes power into theWPT path using switchable unit cells.

To realize the dynamically switchable function, we embed
a nonlinear element in the cell and further extend the func-
tionality of the cavity. The nonlinear varactor allows the
creation of the tunable cavity mode by shifting the res-
onance frequency. This results in a non-uniform metasur-
face, where the unit cells are modified locally to control the
wave propagation [1]. Because the overall material property
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FIGURE 2. (a) Schematic of the switchable unit cell, (b) transmission
related to the resonance frequencies of the unit cell for various VTUNE,
(c) the resistance, the inductance, and the Q factor of the unit cell as a
function of frequency.

governs the physical property of the metamaterial, unit cell
modification does not significantly change its property [30].
Fig. 2(a) shows the schematic of the switchable unit cell,
which is realized using a four-turn spiral resonator (4T-SR)
and tuning elements. The dimension of the 4T-SR is similar
to the one used in the previous work [29]. The varactor CV
provides a variable capacitance from 4 to 81 pF. The total
capacitance Ctotal = CS + (1/C1 + 1/C2 + 1/CV)−1 can
be varied by controlling VTUNE, which tunes the resonant
frequency of the 4T-SR. Fig. 2(b) shows the measured trans-
mission coefficient |S21| of the unit cell for various VTUNE.
The resonant frequency at VTUNE = 0 and 4.5 V are fL =
12.5 MHz and f0 = 14 MHz, respectively. When the unit
cell is activated (VTUNE = 4.5 V), there is a passband at
around f0 while a stopband is formed at fL. When the cell is
turned off (VTUNE = 0 V), the locations of the two bands
interchange. Using the two distinct resonant frequencies,
we create switchable unit cells to form various WPT paths.
Fig. 2(c) shows the Q-factor of the unit cell as a function of
frequency, which exceeds 150 at f0.

Fig. 3(a) shows the field intensity distribution when the
cavities are created on the metasurface. We choose 9 × 9
arrays of unit cells in this work, considering the simulation
time and fabrication labor. In the charging table (Fig. 1),
there will be a larger number of coils (unit cells) considering
the practical desktop size. The unit cells forming the cavity
resonate at f0 while the surrounding cells resonate at fL. The
result shows that we can create a highly confined cavity
mode on the metasurface. The field confinement inside the
cavity can be explained using a hybridization bandgap (HBG)
created by the metamaterial [1].When the resonant frequency
of surrounding cells falls into the HBG, the negative per-
meability of metamaterial forms a stopband for the cavities.
Then, the waves are prohibited from propagating in an area
other than the cavities. Fig. 3(b) shows measured field ampli-
tude obtained by scanning over the metasurface. The field
amplitude in the relative scale is shown in Fig. 3(c). The
cavity region shows a relative field strength higher than 15.

FIGURE 3. (a) Simulated field intensity distribution on metasurface,
(b) measured field amplitude obtained by scanning over the metasurface
at z = 0.5 cm, (c) field amplitude in the relative scale.

FIGURE 4. (a) Schematic of the waveguides, (b) measured dispersion
characteristics of the waveguides, (c) attenuation as a function of
frequency.

Fig. 4(a) shows the 2D waveguide (2DWG) created using
an array of unit cells operating at fL and f0. The unit cells
forming the waveguide resonate at f0 while the surround-
ing cells resonate at fL. Also shown is the 1D waveguide
(1DWG), where energy is transferred to nearby cells through
magnetic coupling without surrounding cells. In both cases,
small probes are used to couple Tx and Rx cells. In WPT,
maximum power is transferred to the load when the Tx and
Rx have the same frequency. All the unit cells in theWPTpath
have the same VTUNE; therefore, they have a similar resonant
frequency.

Fig. 4(b) shows the dispersion characteristics. Both 2DWG
and 1DWG show backward propagation property of meta-
material. The proposed 2DWG is based on the idea that
the dispersion characteristics can be engineered to confine
the magneto-inductive waves (MIWs) into a subwavelength
cavity. The MIW is a type of slow-wave created by
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FIGURE 5. Field intensity distributions in the bender shape WPT path.

inter-element couplings [31], [32]. Therefore, the proposed
method is different from the previous approach of spoof
surface plasmons with the coupled defect mode [33]. Fig. 4(c)
shows the attenuation as a function of frequency. The attenu-
ation shows the minimum at f0, which increases towards the
band edge. Because the fields are better confined inside the
waveguide through the cavity mode, 2DWG shows smaller
attenuation than 1DWG. The coupling coefficient κ is also
shown. The measured κ value of 2DWG is−0.03 for the unit
having cell size a = 6 cm.

By reconfiguring the switchable unit cells, we create vari-
ous shapes of WPT paths such as linear, diagonal, and bender
on the metasurface. Fig. 5 shows the field distribution in the
bender shape WPT path. The result confirms backward wave
propagation. Unlike the previous approach [34], we note that
the result is achieved without structural changes.

III. DEEP NEURAL NETWORKS FOR METASURFACE
BASED WPT
A. DEEP NEURAL NETWORKS FOR UNIT CELL
Fig. 6(a) shows the schematic of the unit cell realized using
the 4T-SR. The substrate material is FR-4. We consider six
design parameters: the width W , the spacing S, the metal
thickness tm, the dielectric thickness td, cell size a, and the
capacitor CS. The thickness of the desk (Fig. 1) is the sum
of td and a cover layer. The td is related to WPT efficiency.
The cover layer, such as glass or wood, is used to avoid direct
contact between the object and the unit cell. When this layer
is a thin and non-magnetic material, its effect on efficiency is
negligible.

Fig. 6(b) shows four examples of the unit cell having
a different W . Fig. 6(c) shows transmission as a function
of frequency for different W . Table 1 shows the design
parameters of the unit cell. When we consider all the com-
binations of the parameters, there are 3.4 × 1011 designs.
Among them, we randomly select 25000 samples. Using the
EM solver Ansoft HFSS, we setup simulations to collect
23071 (92.28%) and 1929 (7.72%) samples for training and
test sets, respectively. Each data set consists of 201 point
transmission spectra over 4 MHz bandwidth. In addition to
the train and test set, the validation set can be assigned for
optimizing hyperparameters such as learning rate, batch size,
and network structure. Because the validation set reduces
the available training data, it is not used in this work.
Instead, we divide the sampled data into different training

FIGURE 6. (a) Schematic of the unit cell realized using 4T-SR, (b) four
examples of the unit cell having different widths, (c) simulated
transmission as a function of frequency for different widths.

TABLE 1. Design parameters of the unit cell.

FIGURE 7. Training and testing process of the DPSP network for
predicting the reflection coefficient.

and testing sets, assuring that the hyperparameters are not
overfitted.

For the design of the unit cell, we use two fully-connected
networks (FCNs), which are the design parameter to
S-parameter (DPSP) and the S-parameter to design param-
eter (SPDP) networks. Both FCNs have nine layers with
1024 nodes. Fig. 7 shows the training and testing process
of the DPSP network. Given the six design parameters,
the DPSP network generates a 201 point reflection coefficient
|S11|. The EM solver’s output is used to calculate the mean
square error (MSE) for training the DPSP network. The MSE
is a standard error estimator as

MSE(a, b) =
1
n

n∑
i

(a− b)2. (1)

VOLUME 8, 2020 194871



H. N. Bui et al.: Design of Tunable Metasurface Using DNNs for Field Localized WPT

FIGURE 8. Training and testing process of the SPDP network for
synthesizing the design parameters of the unit cell.

FIGURE 9. Examples of test data obtained using the DPSP network. The
MSE is listed in each sub-figure. The shaded blue area shows the absolute
value of the difference between the predicted and simulated reflections
on the right vertical axis. A histogram of the MSE for all the test sets is
also shown, where 97.3% of the test set have MSE < 1.5× 10−3, as
indicated by the dashed vertical line.

The DPSP network and the EM solver generate the pre-
dicted (RPre) and simulated (RSim) reflection coefficients,
respectively, to calculate the test error. Fig. 8 shows the
training and testing process of the SPDP network. Given
the desired |S11|, the SPDP network generates the predicted
design parameters (DPre), which are compared with the
desired design parameters (DDes) for training. The DPre is
input to the already trained DPSP network to calculate the
desired reflection coefficients (RDes), and the test error is
obtained.

Fig. 9 shows the examples of test data for the DPSP net-
work after 2500 epoch. For each sub-figure, the MSE is also
shown. When we accumulate the MSE of the 1929 test set,
97.3% of them haveMSE< 1.5×10−3. The results show that
the proposed approach using the DNN faithfully reconstructs
the reflection spectra. Fig. 10 shows the example of a test
set for the SPDP network after the 2500 epoch. When we
accumulate the MSE of the 1929 test data, 95.7% of them
have MSE < 2.5 × 10−3. These results show that the DNN
can be efficiently used for synthesizing the dimension of
the metamaterial unit cell. Table 2 shows the comparison

FIGURE 10. Examples of test data obtained using the SPDP network. The
MSE is listed in each sub-figure. The shaded orange area shows the
absolute value of the difference between the predicted and desired
reflections on the right vertical axis. A histogram of the MSE for all the
test sets is shown, where 95.7% of them have MSE < 2.5× 10−3, as
indicated by the dashed vertical line.

TABLE 2. Comparison with similar studies.

with similar studies. Because each work studies a specific
physical phenomenon using a different DNN structure, direct
comparison is difficult; using one of the largest DNN layers,
our work achieves a relatively small MSE of 9× 10−4 using
25000 samples.

We choose one design among the synthesized unit cell
and fabricate the metasurface for experimental WPT demon-
stration. The design parameters of the unit cell, which are
identical for the Tx and Rx, are W = 3 mm, S = 1 mm,
tm = 0.05 mm, td = 0.5 mm, a = 60 mm, and CS = 220 pF.
The inductance of the 4T-SR is L = 585 nH, and the number
of turns is four. Because both the thickness (td) and periodic
dimension (a) are much smaller than the wavelength of the
operating frequency f0 = 14 MHz, the proposed structure
belongs to metamaterial.

B. DEEP NEURAL NETWORKS FOR WPT
Fig. 11(a) shows the grid map (9 × 9 × 2), which consists
of binary data for the Tx and Rx locations, obstacles, and
WPT paths. After we set the Tx and Rx, obstacles of four
different sizes (1 × 1, 1 × 2, 2 × 1, and 2 × 2) are ran-
domly generated using a binomial distribution. Fig. 11(b)
shows the experimental setup used to collect the training data.
The python code executed in a Keysight E5063A network

194872 VOLUME 8, 2020



H. N. Bui et al.: Design of Tunable Metasurface Using DNNs for Field Localized WPT

FIGURE 11. (a) Schematic of the grid map used to represent the
metasurface. (b) Experimental setup to collect the training data.

FIGURE 12. Structure of the DNN for predicting the frequency spectra of
the WPT path.

analyzer generates various paths between the Tx and Rx. A
microcontroller interfaced with the network analyzer acti-
vates the unit cells to generate the WPT path. For each
generated path, |S21| data are collected by the analyzer.

The quality and the number of training data can signifi-
cantly affect the test error. When arbitrary random paths are
generated, the pathsmost likely result in a relatively low |S21|.
Besides, the obstacle generates cases where no path exists
between the Tx and Rx. These low-quality data can result
in longer training time for the DNN and increase the test
error. To obtain quality training data closely related to the goal
(or achieving a high transmission), we perform preprocessing
using the heuristics pathfinding algorithm A∗ [35]. Using A∗,
we check whether there exists a path connecting between
the Tx and Rx. To further increase the chance of generating
high transmission paths, we modify A∗ by adding a random
value (between 0 and 1) to the calculated heuristic cost. Using
this method, we collect 80000 training sets and 500 test sets.
Each data set consists of 201 point transmission over 4 MHz
bandwidth.

Fig. 12 shows the structure of the DNN, predicting the
frequency spectra of the path or Predictor (See Table 4).
The input to the Predictor is the grid map. The output
has 201 nodes, each representing the magnitude of |S21|
in 32b floating-point format. To investigate the performance
depending on the DNN structure, we test several Predictors,
which have four to six convolutional (CONV) layers and

FIGURE 13. Comparison of measured and predicted transmission
obtained using different DNNs. (a) Straight, (b) ‘L’ shape paths.

FIGURE 14. Histogram of the training and test errors achieved by the
different DNNs.

having one to two fully-connected (FC) layers. For example,
4C2F represents the network having four CONV layers and
two FC layers. Each CONV layer includes a rectified linear
unit (ReLU) as an activation function.

Fig. 13(a) shows the prediction results obtained using dif-
ferent DNNs for a straight-shaped path. The result shows
that all the networks predict the measured data faithfully.
The worst-case error at peak transmission is 2.3% when the
5C1F structure is used. Fig. 13(b) shows the result for the
‘L’ shape path, and the 6C1F structure shows the lowest
error. Fig. 14 shows the histogram of the train and test
errors achieved by different DNNs. The result is obtained at
200 epoch by averaging the MSE of all the train and test sets.
The 4C3F structure shows the lowest train error; this structure
shows a relatively poor test error attributed to overfitting.
Considering the error and complexity, we choose the 4C2F
structure. Fig. 15(a) shows the examples of the measured
and predicted transmission of the WPT paths chosen among
the training set. The training is performed using the 4C2F
network. Fig. 15(b) compares the measured and predicted
results selected among the test set. The results show that the
transmission spectra of the path are faithfully reconstructed
over the 4 MHz bandwidth.

The above results are obtained by the DNN trained using
the MSE(TM, TP) over 201 frequency points, where TM is
the measured transmission, and TP is predicted transmission.
Therefore, the result focuses on fitting the predicted to the
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FIGURE 15. Comparison between the measured and predicted
transmissions for the arbitrarily generated paths. (a) Training set, (b) test
set. The waveguide is shown in each sub-figure, where green, red, yellow
squares indicate Tx, Rx, and WPT path, respectively.

FIGURE 16. An example of the measured and predicted transmission.

measured data over the 4 MHz bandwidth. Because WPT
is usually performed using a narrow frequency band, accu-
rate prediction of the peak transmission with the associated
frequency is important. Fig. 16 shows one example of the
measured and predicted transmission spectra.We observe two
peaks, one measured and the other predicted. The 5(x, y)
represents the error at the peak point as

5(x, y) = MSE
{
x
[
argmax(x)

]
, y
[
argmax(x)

]}
(2)

where argmax returns the point at which the function value
is the maximum. The 5(TM, TP) represents the MSE com-
puted at the single frequency where TM is the maximum.
Similarly, 5(TP, TM) is the MSE at the frequency where TP
is the highest. To make a clear demonstration of the DNN for
practical WPT application, we train the Predictor to focus on
the peak. For this purpose, we minimize the modified cost

FIGURE 17. Train and test errors of the predictor for different α and β.

FIGURE 18. (a) Plot of 5 (TM, TP) as a function of α and β, (b) plot of 5
(TP, TM) as a function of α and β, (c) combined results.

function C5(TM, TP) as
C5(TM,TP) = min [MSE(TM,TP)+ α ·5(TM,TP)

+β ·5(TP,TM)] (3)

where the two parameters α and β are used to assign the
weight for the two peaks.

Fig. 17 shows the train and test errors obtained using the
different α and β. The result shows that error is slightly
reduced when the value of α or β increases, but its effect on
both errors is relatively small, which is an expected result;
the MSE(TM, TP) is computed using 201 points while α and
β affect only two points. These results show that the Predic-
tor can be successfully trained using C5 with the variables
α and β. We can observe the effect of α and β by consid-
ering the narrow region around the peak. Fig. 18(a) shows
5(TM, TP) as a function of α and β. The result shows that
5(TM, TP) decreases with increasing α and decreasing β.
Fig. 18(b) shows5(TP, TM) as a function of α and β, which
decreases with increasing β. To choose suitable α and β,
we combine the two results, as shown in Fig. 18(c). The result
shows that a relatively small error is achieved when α and β
are chosen in the range from 6 to 8.

Fig. 19 shows the computation time of the two approaches
of using the EM solver and DNN. We use Ansys HFSS
version 2019 for the EM solver. We use the Tensorflow

194874 VOLUME 8, 2020



H. N. Bui et al.: Design of Tunable Metasurface Using DNNs for Field Localized WPT

FIGURE 19. Comparison of the computation time.

version 2.0 for DNN. Both HFSS and DNN are run on the HP
Z640workstation having a 64GBmemory, a GTX1080GPU,
and a Xeon E5-1650v3 processor. When the EM solver is
used, the procedure is exact, and the error is attributed to
the estimated parameters such as loss tangent. When this
approach is used, it takes 20× 106 msec (5.5 hours) for each
design. In the case when DNN is used, the time is reduced
to 3 msec, corresponding to 6.7 million times reduction. The
result shows that the DNN approach significantly reduces the
computation time.

To use the DNN for the metamaterial design, we need
to collect the training data, and it takes about 10 hours to
train the DNN. Because the network is trained for the WPT
setup using structural parameters (Table 1), it needs retrain-
ing for different structures; our design is a kind of special
DNN for the WPT setup. Although there exists the overhead
for the data collection and the preprocessing, we believe
that the approach using the DNN is more efficient than the
traditional approach using the EM solver. This is because
the trained network can be reused once the optimized net-
work is established, and the computation is based on simple
arithmetic. Besides, the accumulation of the learned data can
further increase the accuracy. In comparison, computation
using the EM solver does not allow reusing the data by
learning, and design has to be solved case-by-case for each
geometry.

C. GENERATIVE ADVERSARIAL NETWORK FOR WPT
In this work, we investigate a generative adversarial net-
work (GAN) to create theWPT path. The GAN is an unsuper-
vised learning method that uses a Generator and a Discrim-
inator, and this approach has shown good potential for such
tasks as metasurface pattern synthesis [20], image generation
[36], and video prediction [37].

Unlike the variational auto-encoder (VAE), which uses
learned approximate inference [24], we use a pre-trained
Predictor to seek the design goal with other networks in
the GAN. We may consider reinforcement learning (RL),
which has been used for various pathfinding problems. The
RL is a machine learning technique where an agent interacts
with the environment and decides current action to maximize
overall reward [38], [39]. Because the metasurface physics
is relatively complicated, it is difficult to define the agent’s
environment state. In the GAN, the Predictor works as an
environment to train the Generator. Therefore, GAN has an
advantage over RL in that it does not need the complicated
physical model of the metasurface.

FIGURE 20. Block diagram of the overall neural network. The GAN
includes a generator, a predictor, and a discriminator. The GAN generates
the WPT path and predicts the frequency spectra. Two FCNs are used for
predicting the frequency spectra and generating the design parameters of
the unit cell.

TABLE 3. Layer parameters of the generator.

Fig. 20 shows the block diagram of the overall neural
network. Two FCNs (SPDP and DPSP networks) predict the
reflection spectra, and they synthesize the design parameters
of the unit cell. The GAN consists of three sub-networks: a
Generator, a Predictor, and a Discriminator. They are specif-
ically designed for different purposes. The role of the Gener-
ator is to produce a real-like output so that it is classified as
real by the Discriminator. The Discriminator decides whether
its input is made-up (or generated) or real data. Two networks
are trained alternately through competitive learning, and the
Generator continues to produce a refined output.

The data input to the GAN includes gk , rk, and dk. The
gk is the generation information for 9 × 9 × 2 feature
map (See Fig. 11). The rk represents the map containing
the measured path. The dk is the known ground truth of the
binary value (measured or generated). The Generator receives
gk to produce the output G(gk ), which contains the WPT
path data between Tx and Rx. After testing several networks,
we choose the 4C2F structure without the max-pooling layer,
which shows a better result. This may be attributed to the
already dense 9× 9× 2 map, which contains gk and the path
information. Table 3 shows the layer parameters of the Gen-
erator. Batch normalization is not used considering the com-
putational overhead. The Predictor receives rk for training,
and it outputs the predicted transmission spectra P(G(gk )),
which contains 201 points float32 value. The Predictor uses
the 4C2F structure (Table 4). To train the Generator so that
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TABLE 4. Layer parameters of the predictor.

TABLE 5. Layer parameters of the discriminator.

it produces a path having a high transmission, we use the
training loss as

−
1
N

N∑
k=0

log[max(P(G(gk ))] (4)

where the max function outputs the peak value of the
predicted transmission. Because the gradient of log function
decreases with the value, it helps to stabilize the training.

The Discriminator receives either rk or G(gk ) and outputs
the true or false binary result. The output of the Discriminator
is used to train the Generator so that it continues to generate
improved WPT paths. Because the Discriminator performs
a relatively simple task, we use a 2C1F structure (Table 5).
When training the Discriminator, it is desirable to maximize
D(rk ) when dk is true. Similarly, D(G(gk )) needs to be min-
imized for the input G(gk ), or dk is false. The cross-entropy
loss is widely used for its advantage of providing fast training.
When most of G(gk ) is classified as real by the Discrimina-
tor, the cross-entropy loss can show saturation in improving
G(gk ) by the vanishing gradient. To directly penalize the
decision error, we use the least-squares loss [40] as

1
N

N∑
k=0

[D(G(gk ))− dk ]2 while dk = 0. (5)

where N = 50 is the batch size for training chosen by
considering our computing memory size. When the input to
the Discriminator is measured data rk (or dk is true), the
training loss is expressed as

1
N

N∑
k=0

[D(rk )− dk ]2 while dk = 1. (6)

The overall system uses both the Predictor and Discrim-
inator to train the Generator. During training, the weights
of the Generator and the Discriminator are updated alter-
nately. The iterative update algorithm of the GAN can show
nonconvergent oscillation causing excessive training time.
Wasserstein GAN is proposed to improve learning stability
by using the loss function withWasserstein distance (or earth-
mover distance) [41]. Because the oscillation often occurs

TABLE 6. Hyperparameters for training the networks.

FIGURE 21. Transmission as a function of the number of maps.

when the fixed loss function is used, we add an adjustable
parameter σ to avoid the issue [20]. We apply this technique
in combining (4) and (5), and train the Generator using

min

[
−

1
N

N∑
k=0

{log[max(P(G(gk )))]+ σ log[D(G(gk ))]}

]
.

(7)

A large value of σ forces the Generator to output the paths
based on only the collected (measured) training set. By setting
the appropriate value for σ , the Generator can produce a
path showing high transmission, which is not included in
the training set. After testing several networks, we choose
σ = 0.1. Table 6 shows the hyperparameters used for training
the three networks.

Fig. 21 shows the transmission as a function of the number
of training maps. Two results with and without the obstacle
are shown. The result is obtained by averaging the trans-
mission of all the maps. In both cases, the transmission
steadily increases with training. The case without the obsta-
cles increases the transmission up to 0.34. When the obstacle
is present, it increases to 0.29. The lower transmission with
the obstacle present can be explained by the fact that longer
paths are usually needed to connect Tx and Rx while also
avoiding the obstacle. Considering that the transmission is
0.68 when the Tx and Rx are located right next to each
other, the result indicates that relatively high-quality WPT
paths are generated between the Tx and Rx. Fig. 22 shows
examples of the generated path. We observe that most of the
paths are connected with additional side cells, improving the
transmission. Besides, we observe a few cells which are not
connected from the main path; they have a relatively small
effect on transmission in most cases.

Fig. 23(a) shows the experimental setup to demonstrate
WPT to multiple devices. Fig. 23(b)-(d) show the experi-
mental results. Two WPT paths are shown, which transfers
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FIGURE 22. Examples of the generated WPT path (a) without (b) with the
obstacles.

FIGURE 23. (a) Experimental setup of the proposed WPT system using
tunable metasurface, (b)-(d) experimental WPT results using two LEDs,
(e) measured efficiency as a function of the distance.

10 W to light-emitting diode (LED) lamps with the 4 W
and 12 V specifications. The Tx is placed at the meta-
surface center or (x, y) = (5, 5). In this experiment, Rx-
1 and Rx-2, which are connected to the LED, are placed at
(x, y) = (4, 3) and (6, 7), respectively. When the paths
are created, the two LED lamps are turned on, demonstrat-
ing the proposed metasurface’s successful WPT operation.
Fig. 23(e) shows the measured power transfer efficiency.
We obtain the efficiency of 56.8%, 46.3%, 38%, 26.2%, and
9.4% at the distance of 3 cm, 6 cm, 12 cm, 18 cm, and

48 cm, respectively. The efficiency gradually decreases when
the path becomes longer or the distance between Tx and Rx is
increased [42], [43].

IV. CONCLUSION
In this work, we investigate a DNN-based design of the
tunable metamaterial for a future intelligent WPT. We use
specifically designed DNN structures for different tasks of
predicting the frequency spectra and synthesizing the design
parameters of the unit cell. The DNNs are trained using
23070 randomly selected samples. For predicting the spectra,
an accumulated MSE less than 1.5 × 10−3 is achieved for
97.3% of the 1929 test set. The accumulated MSE is less
than 2.5 × 10−3 for 95.7% of the test set for synthesizing
the unit cell’s design parameters. The results show that the
metamaterial unit cell can be efficiently designed with high
accuracy. We further extended the data-driven methods to the
GAN for creating WPT paths and predicting the frequency
spectra. To achieve high efficiency, we train the DNN using a
modified cost function to focus on the spectra’s transmission
peak. After training using 80000 measured data, the GAN
creates WPT paths that efficiently connect the Tx and Rx on
the metasurface. Using the generated paths, we experimen-
tally demonstrate WPT to multiple devices. When transfer-
ring 10 W power, a peak efficiency of 56.8% is achieved.
The results show that the DNN provides an alternative and
efficient design method for the metamaterial, replacing the
traditional EM-simulation based approaches.
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