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ABSTRACT In this article, we present a real-time convolutional neural network (CNN)-based Speech
source localization (SSL) algorithm that is robust to realistic background acoustic conditions (noise and
reverberation). We have implemented and tested the proposed method on a prototype (Raspberry Pi) for
real-time operation. We have used the combination of the imaginary-real coefficients of the short-time
Fourier transform (STFT) and Spectral Flux (SF) with delay-and-sum (DAS) beamforming as the input
feature. We have trained the CNN model using noisy speech recordings collected from different rooms and
inference on an unseen room. We provide quantitative comparison with five other previously published SSL
algorithms under several realistic noisy conditions, and show significant improvements by incorporating
the Spectral Flux (SF) with beamforming as an additional feature to learn temporal variation in speech
spectra. We perform real-time inferencing of our CNN model on the prototyped platform with low latency
(21 milliseconds (ms) per frame with a frame length of 30 ms) and high accuracy (i.e. 89.68% under Babble
noise condition at 5dB SNR). Lastly, we provide a detailed explanation of real-time implementation and on-
device performance (including peak power consumption metrics) that sets this work apart from previously
published works. This work has several notable implications for improving the audio-processing algorithms
for portable battery-operated Smart loudspeakers and hearing improvement (HI) devices.

INDEX TERMS Speech source localization (SSL), direction of arrival (DOA), convolutional neural
networks (CNN), beamforming (BF), real-time implementation, hearing improvement (HI).

I. INTRODUCTION
Speech source localization (SSL) estimation generates
the important direction information that can be used to
improve the performance of many audio/speech signal pro-
cessing methods such as microphone array beamform-
ing [1]–[4], speech enhancement [4], [5], speech/speaker
recognition [6], [7], and hearing improvement (HI) devices
such as Roger Select [8] and Roger Table Mic [9]. Many
commercial products are available to the public which use
some types of microphone arrays and some forms of SSL
methods aimed at specific applications. Considering all these,
however, the robustness, accuracy, and cost-effectiveness of
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the SSL-based methods remain a challenging issue, espe-
cially in noisy environments at low signal to noise ratios
(SNRs).

A. PRIOR WORK
The previous SSL methods and direction of arrival (DOA)
estimators include (i) multiple signal classification (MUSIC)
[10], (ii) time difference of arrival (TDOA) based approaches
such as generalized cross-correlation (GCC) [11], and
multi-channel cross-correlation coefficient (MCCC) [12].
These conventional methods often suffer from the high lev-
els of noise, presence of reverberation, and/or the high
computational complexity. Since neural networks-based
machine learning (ML) classification has been success-
fully applied in computer vision and speech recognition,
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FIGURE 1. The block diagram of the proposed real-time platform using eight uniform circular array (UCA) of microphones.

many neural network based DOA estimators have been
proposed [13]–[15]. Even though these methods show the
improvement in estimation accuracy compared to conven-
tional methods, the results are still unsatisfactory. For exam-
ple, (i) they still show low-accuracy estimation in the low
SNR condition, (ii) most of these methods are highly depen-
dent on (overfitted) to the training data and hard to cover
other scenarios, (iii) some of the SSL-based methods still stay
at utilizing a small number of microphones, such as the use
of two microphones in a conventional method in [16], and
neural network based method in [17], which bears the 180◦

ambiguity problem.

B. PROPOSED METHOD
In this article, a novel eight-microphone uniform circular
array (UCA) based SSL estimator using convolutional neu-
ral networks (CNN) is proposed. This work assumes eight
participants are sitting around the circular table since it is a
common case. Previous CNN based methods such as [17]
show that using imaginary-real coefficients as the feature
map can work in several realistic environments but still suffer
from the background noise especially when SNR is low.
As the augmentation of [17], another feature, spectral flux,
is included in the feature map. Additionally, a delay-and-sum
(DAS) beamformer [18] is added to enhance the SNR before
computing spectral flux. Thus, the feature map contains both
of the imaginary-real coefficients of the short-time Fourier
transform (STFT) and the spectral flux with beamforming
which can essentially improve the performance of the pro-
posed estimator. Several microphone array can solve the
180◦ ambiguity issue such as V-shape, circular (UCA), and
spherical arrays. In this work, the UCA of eight microphones
is selected for the proposed method. Such structure has been
used in many commercial products such as smart loudspeak-
ers [19], [20]. Fig.1. shows the block diagram of the proposed
SSL platform. Noisy speech data is received through theUCA
microphones, then the imaginary-real coefficients are calcu-
lated by the STFT. Meanwhile, the STFT outputs are sent
to a DAS beamforming module (which converts the signals
into eight beams), then the spectral flux is generated from the

signals of eight beams. The imaginary-real coefficients and
the spectral flux are combined and reshaped into the feature
map, then fed to the proposed SSL/DOA estimator. Once the
direction of the speech source θ̂ is estimated by the algorithm,
it will be displayed by turning on the proper LED pointing out
the speech source direction. There are 35 LEDs positioned
circularly on top of the development board covering the entire
360◦ azimuth in the horizontal plane. The proposed method
has been implemented to run in real-time on the prototyped
platform which formed with a Raspberry Pi and an internet-
of-things (IoT) development board with UCA microphones.
The proposed method has shown excellent performance and
accuracy offline or in real-time under realistic noisy envi-
ronments. The real-time testing was completed in a separate
room which is different as the room for the data collection.
We selected 8-microphone array because of easy off-the-shelf
availability and our developed proprietary software integra-
tion with Raspberry Pi over GPIO pins. We selected 8 beams
because it was a requirement from our sponsor.

C. CONTRIBUTIONS
In neural network-based SSL, the feature of imaginary-real
coefficients has already been used widely such as the work
in [17]. The major contribution of this work is the augmenta-
tion of the imaginary-real coefficients with spectral flux plus
beamforming. The utilization of spectral flux as one of the
features can incorporate temporal dependency between suc-
cessive signal frames. Since few CNN-based SSL estimators
utilize temporal information, we have shown considerable
improvement of 8% in accuracy by including spectral flux
into the feature set. The beamforming technique essentially
improves the performance of the spectral flux-based method.
Therefore, a pre-processing stage by beamformer enhances
the SNR of the input signal for spectral flux in the pro-
posed method. Typically, CNN models treat each feature
vector to be independent of adjacent frames, hence including
spectral flux can yield better models that are more aware
of voiced-activity-detection (VAD) type activities. Although
some models such as recurrent neural network (RNN) can
essentially learn the above temporal representations, they
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are usually more memory intensive and have higher latency
than their CNN counterparts. Directly stacking coefficients
(imaginary-real or magnitude-phase) from previous frames
brings the CNN model temporal awareness, but it requires
more expensive computation as compared to spectral flux
(due to the longer length of the input feature size). Another
contribution of this work is the prototyped platform with
beamforming which converts the proposed method from an
offline trained model into a real-time SSL estimator. In this
article, the proposed SSL estimator only focuses on the
eight-class which divides the 360◦ azimuth into eight direc-
tions with 45◦ resolution, but it does not limit in eight-
class. For example, it can be extended to a twelve-class (30◦

resolution) case by generating a twelve-beams beamformer.
The end-products similar like [8] and [9] can be built based
on the prototype. The proposedmethod, therefore, offers both
scientific significance and practical importance.

In this article, we use the term ‘‘eight-microphone’’
or ‘‘eight-channel’’ to specify the number of SSL sen-
sors/microphones used. In the figures, we also use the
term ‘‘MIC’’ or ‘‘CH’’ denoting the microphone. The term
‘‘Beam’’ denotes the output signal after beamforming.

II. FEATURE REPRESENTATION FOR TRAINING
The feature representation needs to contain enough informa-
tion for the estimation purpose. In our proposed method, the
imaginary-real coefficients from the STFT and the spectral
flux after beamforming are combined as the feature set. The
speech information is included in the imaginary-real coef-
ficients of the current frame (i.e. the voiced segments of
the speech such as vowels have harmonic characteristics).
The spectral flux contains information of the magnitudes
for the current frame and the previous frame which provides
the model with the short-term memory.

A. IMAGINARY AND REAL COEFFICIENTS
For the proposed CNN method, the N -point STFT is applied
to every data frame of the time-domain signal, shown as

X ik (m) = σ
i
k (m)+ jτ

i
k (m) (1)

where, X ik (m) stands for the output of N -point STFT of x ik (n)
(from ith microphone for k th frame). σ ik (m) denotes the real
part of the X ik (m), and τ

i
k (m) denotes the imaginary part of

X ik (m).m denotes the frequency bin. In the proposed method,
the real parts σ ik (m) and the imaginary parts τ ik (m) as one
of the features feed the CNNmodels for training, and forming
the following vectors,

τ ik = [τ ik (1) τ
i
k (2) . . . τ

i
k

(
N
2
+ 1

)
]T (2)

σ ik = [σ ik (1) σ
i
k (2) . . . σ

i
k

(
N
2
+ 1

)
]T (3)

Using (2) and (3), the feature 8l
k can be represented by the

following matrices,

8l
k = [τ 1kτ

2
k . . . τ

8
k ]
T , l = 1 (4)

8l
k = [σ 1

kσ
2
k . . . σ

8
k ]
T , l = 2 (5)

where, l is the number of feature channel. Hence, 81
k repre-

sents the imaginary coefficients feature set, and82
k stands for

the real coefficients feature set.

B. SPECTRAL FLUX
The imaginary-real feature can cover the frequency domain
information of the speech. However, it only covers k th signal
frame information excluding any relations between adjacent
frames. This disadvantage can be resolved by adding spectral
flux into the feature set for proposed CNNmodel which offers
the short-time memory. In conventional signal processing
SSL methods, the performance of using spectral flux has
already been utilized and shown by scholars such as [21]. It is
interesting to note that spectral flux works so well without
any phase information. The reason could be that instead of
the absolute values of the captured samples, spectral flux only
contains the relative values (the STFT magnitude difference
between successive frames) which are more robust for the
disunity issue of microphone array introduced by hardware.

In the proposed method, the signals from eight micro-
phones are converted to the frequency domain by STFT,
then processed by the beamforming module. Then they are
converted to eight beams. That is,

BFqk (m) =
1
L

∑L−1

i=0
W q,i(m)X ik (m) (6)

Y qk (m) = Aqk (m) e
jθBFqk (m) (7)

where, BFqk (m) denotes the beamformer output at qth beam
for k th frame. L stands for the total number of the micro-
phones which equals to eight in this work. W q,i(m) denotes
the finite impulse response (FIR) filter weights in frequency
domain at ith microphone for qth beam. In (7), Aqk (m) is the
magnitude of BFqk (m), and θBFqk (m) stands for the phase of
the BFqk (m). Hence, the spectral flux coefficients for two
successive frames can be calculated as follows,

Sqk (m) = |A
q
k (m) | − |A

q
k−1 (m) | (8)

Sqk = [Sqk (1) S
q
k (2) . . . S

q
k

(
N
2
+ 1

)
]T (9)

where, Sqk (m) is the magnitude differences between two
adjacent frames, and Sqk represents the spectral flux for qth

beam and k th frame. Then the spectral flux-based feature
constructed as

8l
k = [S1kS

2
k . . .S

8
k ]
T , l = 3 (10)

As (10) shows, spectral flux as the third feature channel has
been inserted into feature map8l

k . The details of the training
input formats are discussed in Section III.

III. CONVOLUTIONAL NEURAL NETWORK MODEL
In this section, the CNNmodel of the proposedmethod is pre-
sented. The architecture of the proposed CNNmodel contains
one input layer, three convolution layers, one pooling layer,
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two fully-connected layers, and one output layer. The size of
each featuremap isM×K , whereM = 8, since there are eight
microphones/beams, andK = (N

/
2+1)×H , whereN is the

number of the STFT point. In proposed work, H = 3 which
stands for the 81

k , 8
2
k and 8

3
k . The CNN model is shown as

Fig.2.

FIGURE 2. The CNN model of the proposed method. The size of the input
layer is 8× 771. The size of the output layer is 8× 1.

A. DATA LABELING
In order to train the CNN model, the realistic speech signals
have been captured and used to create datasets for training
and testing purposes.

The recorded datawas labeled and reshaped into the feature
set 8l

k . The frame size equals to 30 milliseconds at 16kHz
sampling frequency, resulting in 480 samples for each frame.
Therefore, the STFT size is set to N = 512 points. After
STFT, there are (N

/
2+1)× 3 = 771 coefficients, and the

total size of the input feature is 8× 771. The imaginary-
real coefficients and spectral flux (81

k , 8
2
k and 83

k ) of eight
microphones/beams are put into the eight different rows. Each
row contains the three features of one microphone or beam
pointing at one direction (e.g. the first row contains three
features at the direction of 0◦). The dataset 8̃k can now be
denoted as in (11).

8̃k =

 τ
1T
k σ 1T

k S1Tk
...

...
...

τ 8Tk σ 8T
k S8Tk

 (11)

A ground truth θk (for k th frame) is put at the end of the vector
representing the actual direction. It is interesting that re-
arranging the feature matrix (such as swapping the positions
of τ iTk and SqTk ) creates an insignificant difference for the
final results. It is due to the spatial invariance of the CNN
in classification problems [22].

B. CNN MODEL
Once the pre-processing including labeling and reshaping
has been completed, the input feature maps are fed into the

CNN model for training. A set of filters of size 2× 2 in the
convolution layer is applied to learn the correlations among
all the feature coefficients. Each filter convolves with the
first 2× 2 samples of the input feature map then shifts one
step towards the right-hand side to do the next convolution.
Each convolutional layer contains 64 filters. After three con-
volution layers, a pooling layer is followed to downsample
the data. The size of the fully-connected layer equals to
(M − 3)× (K − 3) = 5 × 768 = 3840. Then the modeled
coefficients are sent to the first fully-connected layer. The
rectified linear units (ReLU) activation function [23] is used
inside the fully-connected layers. After two fully-connected
layers, the coefficients will be mapped to the output layer
with the size of I × 1, which treats the whole system as a
classification problem. In this case, we set the I = 8 which
means the resolution is 45◦. This resolution is used since it
can cover typical situations encountered by a user with people
around, such as in a business meeting, group conversations,
and dining in a restaurant.

The softmax function is applied to generate the probability
for each coefficient θk inside the output layer. The cross-
entropy is used as the lost function. The final SSL - the DOA
estimated azimuth angle is then given by,

θ̂k = argmax
θk

p(θk |8l
k ) (12)

where p(θk |8l
k ) denotes the conditional probability of θk

using 81
k , 8

2
k and 8

3
k . θ̂k is the final estimated direction (the

DOA angle estimate) at k th frame.
In the experiment setup, the feature sets contain 90 minutes

clean speech for each direction with 45◦ resolution. The
CNN models shuffle the feature sets and apply 90 percent
of the data to train the model, and 10 percent of the data to
validation.

After the whole training is completed, a frozen model
is generated as the proposed CNN based SSL estimator.
The proposed method has been implemented on the proto-
typed platform in real-time. Therefore, both of the offline
validation/testing results and the real-time performance of
the proposed method have been measured. The proposed
model is built, trained and implemented based on Tensorflow
(version 2.0) [24].

IV. DATA COLLECTION
The performance of a learning model using a simulating
dataset is unconvincing, especially in the realistic scenarios.
Therefore, a data collection scheme is presented to obtain a
realistic dataset for model training.

A. DATA COLLECTION SCHEME – THE SETUP
Fig.3 shows the setup of the data collection in room A. Mul-
tiple loudspeakers are placed at the edge of a circular table.
The clean speech signals are played via the loudspeakers
while another loudspeaker locating under the table can play
the noise creating diffused background noise. All loudspeak-
ers are connected to an external audio interface which is
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FIGURE 3. The Setup of Data Collection (Room A).

controlled by a script running on a MacBook via a USB3.0
cable. The prototyped platform as the recording device with
eight Micro-Electro-Mechanical System (MEMS) micro-
phones sits in the center of the circular table. The training
speech is made based on HINT database [25]. The total
length of the training speech is 90-minutes long for each
direction/loudspeaker. The data collection was completed in
room A, B, and C. The real-time testing was completed in
roomD. The setup information is presented in Table 1. Details
of the prototyped platform is presented in section VI.

TABLE 1. Collection setup.

B. COLLECTION PROCEDURES
Sound level calibration is required before the collecting ses-
sion. A sound pressure level (SPL) meter is used to calibrate
the output levels of all loudspeakers to 65 dB SPL. The
level of the noise loudspeaker is set at different SNRs for
conducting the experiments.

After the sound level calibration, the speech signal from the
first loudspeaker starts to play while the noise loudspeaker
is playing at the same time. The first loudspeaker plays the

speech for 90 minutes, then the second loudspeaker starts to
play from another location/direction. Using the samemanner,
the rest of the loudspeakers play speech signals from different
directions one after another.

Once the data collection session is done, the recorded
audio data will be dissected into different pieces (one single
piece stands for one loudspeaker direction). Then the azimuth
directions are labeled to corresponding speech pieces as dis-
cussed above. The collected dataset is currently available for
public use in [26].

V. MEASURED RESULTS AND DISCUSSION
In this section, we present several offline test results to
show the performance of the proposed method (denotes
as 8CH-ImagReal-SF-BF) compared with other published
methods to the cases we considered. The comparisons are
trained/tested with the same dataset as the proposed method.
The comparisons include a conventional signal processing
SSL estimator based on the generalized cross-correlation
(GCC) [27] (denotes as 8CH-GCC), an MLP neural network
based eight-microphone SSL estimator using GCC-Phat as
the feature set [28] (denotes as 8CH-GCCPhat-MLP), and a
CNN-based SSL estimator using the phase of the white noise
as the feature set [29] (denotes as 8CH-Phase-WN). We use
8CH-Phase-WN to aim at single speech source localization
since the contributions of our proposed work only focus on
the single source. Another two comparisons use the same
CNN model as the proposed method. One of them uses the
feature of the imaginary-real coefficients (same as the pub-
lished work in [17]) (denotes as 8CH-ImagReal). In order to
measure the improvement by beamforming, another method
using the imaginary-real coefficients and spectral flux with-
out beamforming is included as well (denotes as 8CH-
ImagReal-SF). The experiments include the offline testing
and real-time testing. The offline testing is based on the
collected data in room A, B, and C. The 10 percent of the
collected data is used for testing (90 percent of the collected
data is used for training). The real-time experiments were
completed in room D with the prototyped platform. The
dimension of the rooms is shown in Table 1. The offline mea-
sured results are presented in this section, and the real-time
test results is presented in section VI.

Fig.4. (a) shows the UCA geometric positions. The
MIC-1 is located at 0◦. DAS beamforming has been used
to enhance the SNR for spectral flux feature (DAS mod-
ifies the phase information so that phase-related features
such as imaginary-real is unsuitable). DAS beamforming has
low computation complexity compared to other beamformers
such as MVDR [30] which ensures real-time implementa-
tion. The directivity pattern of the first beam towards 0◦ at
500Hz of the beamformer is shown in Fig.4. (b). Eight linear-
phase fractional-delay filters convolve with their correspond-
ing microphone signals to generate the first beam. All eight
beams point to their own directions from 0◦ to 315◦ and have
45◦ between every two adjacent beams.
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FIGURE 4. (a) The geometric positions of the eight-microphone UCA, and
(b) the directivity pattern of the first beam towards 0◦ at 500Hz.

A. THE PERFORMANCE OF THE PROPOSED METHOD
UNDER QUIET CONDITION
In this section, the measured results under quiet and noisy
conditions are presented. 90-minutes long collected speech
dataset for eight directions are used for training and testing.
90 percent of the collected data is used for training, and the
rest is used for the testing. The accuracy is quantified based
on the root mean square error. The accuracy (ACC) measure
is defined by,

ACC =
NC
NF

(13)

where, NF is the total number of the frames per test case and
NC is the total number of the frames with the correct direction
estimation. NC can be denoted as,

NC =
∑NF

k=1
ck , ck =

{
0, θk 6= θ̂k

1, θk = θ̂k
(14)

where, ck represents the estimated correction of k th frame.
θk is the actual direction and θ̂k is the estimated direction
for the k th frame. ACC can present the performance of the
estimator partly, because the result is correct only if the
estimated direction is same as the actual direction. However,
if the estimated direction is only one class different from the
actual direction, the ACC result will still show the estimation
is failed even it just one class different. To quantify the per-
formance additionally, the ACCw is introduced. It is defined
as,

ACCw =
ÑC
NF

(15)

where, ÑC denotes the number of the correction frame with a
wide angle.

ÑC =
∑NF

k=1
c̃k , c̃k =

{
0, |θk − θ̂k | > 45

◦

1, |θk − θ̂k | ≤ 45
◦ (16)

In the quiet environment, the ACC of the proposed method,
8CH-ImagReal-SF-BF, is measured and compared with
other methods including 8CH-GCCPhatMLP, 8CH-Phase-
WN, 8CH-GCC, 8CH-ImagReal, and 8CH-ImagReal-SF
(Fig.5(a)). The performance of 8CH-GCC, as a conventional
signal-processing based estimator, is worse than most of the

other neural network-based estimators except 8CH-Phase-
WN. 8CH-Phase-WN did not perform well in our experi-
ments under Quiet conditions. Hence it is removed from our
experiments under Noisy condition. The proposed method
reaches the best performance with 93% ACC among all esti-
mators. The proposed method is better than 8CH-ImagReal
which shows the improvement of the combination features
(imaginary-real coefficients plus spectral flux) comparing
to using imaginary-real coefficients alone. Meanwhile the
proposed method is also better than 8CH-ImagReal-SF. This
is the improvement by beamforming which boosts the SNR
of the input for spectral flux. The confusion matrix of the
proposedmethod shows that theACC results from each direc-
tion are stable (Fig.6). It also shows the proposed method has
high ACC , meanwhile, the incorrect estimations mostly stay
within 45

◦

. The ACCw results in Fig.5(b) prove it again by
presenting the accuracy with a wider angle. 8CH-ImagReal
reaches 95% ACCw but still lower than the proposed method
which reaches the best results again at 97%ACCw. According
to both of the ACC and ACCw results, the proposed method
is better than the 8CH-ImagReal. This fact proves that for
the feature set, the combination of the imaginary-real and the
spectral flux with beamforming performs better than using
imaginary-real alone.

B. THE PERFORMANCE OF THE PROPOSED METHOD
UNDER NOISY CONDITIONS
All the results above are only based on the clean speech
signals. In order to test and evaluate the performance of
the proposed SSL method, noisy speech data are collected
as follows. Speech is played by eight loudspeakers one-by-
one circularly placed on a table at 0◦ to 315◦ angles with
45◦ resolution. Meanwhile, noise is played by a loudspeaker
placed under the table simulating diffused noise. The setup
is presented in Section VI. The proposed method is tested
under babble noise or machinery noise both at 5dB SNR.
The test speech signal is 16-second long (every two sec-
onds for one direction) and played by each of the eight
loudspeakers from each angular direction sequentially. The
results are presented in Fig.7. The x-axis denotes the playing
speech in time-domain while a 2-second speech playing from
each direction one from another. The y-axis represents the
directions. The blue stars stand for the estimated directions,
and the ground truth is represented by the red line. The result
shows that the ACC of the proposed method (at 5dB SNR)
is around 90 percent under babble noise (Fig.7(a)), and the
ACC even reaches 93% under machinery noise (Fig.7(b)).

To additionally test the performance of the proposed
method, 90-minutes collected noisy data under different noise
conditions are used. Fig.8 presents the confusion matrix of
the proposed method when training with the babble noise and
machinery noise at 5dB SNR. Both of the performances are
superior under two different types of noises. Fig.9 also shows
the offline ACC results under machinery and babble noise,
and it covers three different SNR levels. To compare the pro-
posed method to other estimators, another three CNN-based
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FIGURE 5. The offline ACC results (%) and the ACCw results (%) of the
proposed method and the comparisons under quiet condition. Both of
the training and testing used the collected data in Room A, B, C.

estimators are measured. 8CH-GCC is included as a con-
ventional signal-processing based estimator. 8CH-GCCPhat-
MLP and 8CH-ImagReal are also included because they
are the best two published estimators besides the proposed
method in the previousmeasurement. The offlineACC results
show that the proposed method is robust to background noise
even in low SNRs under babble noise (as one of the toughest
noisy situations – a non-stationary noise). The ACC of the
proposedmethod at 0dB SNR undermachinery noise is above
85%, and even reaches 92% when the SNR is enhanced to
5dB. Fig.10(a) and (b) show theACCw results of the proposed
method and comparisons. Under machinery noise, the pro-
posed method gets 95% ACCw at 5dB SNR, and still gets
81% ACCw at -5dB SNR. Under babble noise, the ACCw of

FIGURE 6. The Confusion Matrix (normalized) of proposed method using
clean speech. The training/testing data were collected in Room A, B, C.

FIGURE 7. The performance of the proposed method under babble noise
or machinery noise at 5dB SNR using 16-second recorded speech.

the proposed method is slightly lower than the ACCw under
machinery noise, but still more robust to background noise
than other comparisons.

VI. REAL-TIME IMPLEMENTATION AND REAL-TIME
MEASURED RESULTS
Offline results can partially prove and show the performance
of the methods. However, it is always necessary to implement
the method in real-time, capture the realistic data, and test it
on the fly. The proposed method and several other compar-
isons have been implemented in real-time. The algorithms are
written in C/C++ and Python-based on frame-based data. A
single-board computer - the Raspberry Pi 3 (RP3) [31], and
an IoT development board - matrix creator (MC) [32] have
been used as the real-time implementation platform. Such
platform has been used as the recording device as well in
the proposed data collection sessions. Fig.11. shows the hard-
ware platform for real-time implementation. The RP3 and a
mobile power bank are sitting on the bottom. TheMCwith the
microphone array is lifted sixteen centimeters high in order to
reduce the sound reverberation and reflection effects from the
table.
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FIGURE 8. The confusion matrix of the proposed method using speech
under (a) babble (b) machinery noise at 5dB SNR. The training/testing
data were collected in Room A, B, C.

A. HARDWARE PLATFORM
As we discussed above, two hardware modules have been
used as our hardware platform for real-time implementation.
The first one is a single-computer RP3, and another one is
an IoT development board of MC which is an extendable
board for RP3 via the 40 pins general-purpose input/output
(GPIO) connection. In MC, eight-microphone UCA (omni-
directional MEMS microphones) is located at the edge of a
small round board on the backside. 35 RBGW-LED lights
are also located at the edge of the board as a ring covering
360◦ on the front side, see Fig.11(b). Both microphones
and lights are controlled by a Spartan 6 FPGA board. The
details of the hardware of the prototyped platform is shown
in Fig.12.

B. FRAME-BASED ALGORITHM IN C/C++ AND PYTHON
In order to implement the proposed method in real-time, the
pre-trained model is frozen. The proposed CNN model is
put into the RP3 running in Python on a Linux operating

FIGURE 9. The offline ACC results (%) under (a) babble (b) machinery
noise conditions. −5, 0 and 5 represent different SNR (in dB) conditions.
Both of the training and testing used the collected data in Room A, B, C.

system (OS) using Tensorflow. The computations need to be
reduced so that the RP3 is sufficient to handle the real-time
processing. The block diagram of the real-time implementa-
tion is presented in Fig.13. The speech signals are captured
via the eight-microphone array from the MC board. The
microphones on MC are all digital MEMS, which means the
output signals have already been converted to digital data
from analog. Spartan 6 FPGA gathers and buffers the signal
data, then it directly sends them into the RP3 via a serial
port protocol - the serial peripheral interface (SPI). In the
RP3, an executable file takes control to receive the speech
signal data from SPI. The executable file is written in C++
and embedded C and then compiled by GNU [33] compiler
collection. In the executable file, the received speech signals
are pre-processed to generate the feature maps. Then the
feature maps are sent to the pre-trained frozen model, and
themodel will estimate and predict the direction (DOA angle)
based on the input feature maps. Once the estimated direction
angle θ̂k is produced, the executable file will then light up the
corresponding LED in the MC surface (via SPI) to display
the estimated direction of the speech source. Furthermore,
in order to evaluate the real-time performance, the estimated
direction was sent to the server as well via SPI. The server
controls the loudspeakers playing, meanwhile calculating the
real-time estimation results. The video clips of the prototype
running in real-time are presented in [34].
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FIGURE 10. The offline ACCw results (%) under (a)babble (b)machinery
noise conditions. −5, 0 and 5 represent different SNR (in dB) conditions.
Both of the training and testing used the collected data in
Room A, B, C.

C. REAL-TIME PERFORMANCE OF THE PROPOSED
METHOD UNDER NOISY CONDITIONS
The real-time performance of the proposed method was
tested via the prototyped platform. The comparisons includ-
ing 8CH-GCC, 8CH-GCCPhat-MLP and 8CH-ImagReal are
implemented on the same platform as well. The experiments
were completed in room which is different as to the data
collection rooms. The experiments were under babble and
machinery noise with 90-minute speech played from the
loudspeakers. The ACC and ACCw results are presented in
Fig.14 and Fig.15. In our experiments, both of the ACC
and ACCw results of 8CH-GCCPhat-MLP are decreased
extremely comparing to the offline test. The reasons include
(i) the real-time processing may introduce interference and
calculation delay to jeopardize the performance, (ii) the
model of the 8CH-GCCPhat-MLP is overfitted to the training
data. Although the real-time performance of all estimators
is degraded (compared to offline performance), the proposed
estimator still reaches the best results with ACC and ACCw,
even when the SNR is low (equal or lower than 0dB). Such
real-time measured results show that (i) the proposed method
is not overfitted to the training data, (ii) the proposed method
ismore robust to background noise over the comparisons. The
proposed method can be furtherly built as a final/commercial
HI product by including other processing modules such as

FIGURE 11. Hardware of the real-time implementation (a)The entire
hardware connection and setup(b)Matrix Creator(c)Raspberry Pi 3.

FIGURE 12. The details of the hardware of the prototyped platform.

a VAD detector, an auditory processing module, or a speech
enhancement module.

D. THE POWER CONSUMPTION OF THE
PROTOTYPE PLATFORM
To develop a robust SSL estimator in real-time, the power
consumption is therefore important to consider. In our hard-
ware setup, the capacity of the power bank sitting on the
bottom (Fig.11(a)) is 20k milliamps per hour. Our power
consumption measurement has been completed with the fully
charged power bank, the results are presented in Fig.16,
where Y-axis shows the watts consumption per hour, and
X-axis shows the methods. In Fig.16, ‘‘IDLE’’ stands for
the power consumption of the prototype operating system
running without any extra processing or calculation. The
total power consumption of the platform for the proposed
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FIGURE 13. The block diagram of the real-time implementation.

FIGURE 14. The Real-Time ACC results (%) under (a)babble noise
(b)machinery noise conditions. −5, 0 and 5 represent different SNR (in
dB) conditions. The tests were completed at Room D.

method, including all processing stages, is only 1.15 watts
per hour, comparable to the power consumption of 8CH-
GCCPhat-MLP. Since our setup is only a prototype unit
using the development boards, the power consumption shown
here is much more than what is needed for the implemen-
tation of the proposed method. This is so since many other
unnecessary modules unrelated to the proposed method are
also running on the boards. The end-product, as a dedicated
hearing improvement unit, will only need to keep and run
the modules required for the implementation of the proposed
method, hence the power consumption will be very small.

FIGURE 15. The Real-Time ACCw results (%) under (a)babble noise
(b)machinery noise conditions. −5, 0 and 5 represent different SNR
(in dB) conditions. The tests were completed at Room D.

FIGURE 16. Power consumption of the prototype (watt hours).

Additionally, the size of the end-product will be much smaller
and compact compared to the prototype platform.

VII. CONCLUSION
In this article, we proposed a CNN-based SSL estimator using
an eight-microphone UCA. Imaginary-real coefficients and
spectral flux are used as feature set for the CNN model.
Beamforming is used as well to enhance the SNR when com-
puting the spectral flux. The offline and real-time results show
that the proposed SSL method, as an augmentation method
for imaginary-real coefficients CNN based DOA method,
is scalable and robust under different types of noise and
performs better than other neural network based estimators.

197056 VOLUME 8, 2020



Y. Hao et al.: SF-Based CNN Architecture for SSL and Its Real-Time Implementation

A prototype platform for implementing the proposed method
in real-time was also developed using a single-board com-
puter, Raspberry Pi, plus an IoT development board. The
prototype platform not only shows the robustness but
also presents and establishes a real-time platform. The
end-products including HI devices can be built based on the
platform with a VAD (to ‘‘freeze the estimation’’ when no
speech detected). Such products help to improve the hearing
capability of people with hearing loss by identifying the
direction and location of the speakers in noisy environments
and where there maybe several people such as in a group
meeting or a social gathering.
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