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ABSTRACT Although several multi-operator and multi-method approaches for solving optimization prob-
lems have been proposed, their performances are not consistent for a wide range of optimization problems.
Also, the task of ensuring the appropriate selection of algorithms and operators may be inefficient since their
designs are undertaken mainly through trial and error. This research proposes an improved optimization
framework that uses the benefits of multiple algorithms, namely, a multi-operator differential evolution
algorithm and a co-variance matrix adaptation evolution strategy. In the former, reinforcement learning
is used to automatically choose the best differential evolution operator. To judge the performance of the
proposed framework, three benchmark sets of bound-constrained optimization problems (73 problems) with
10, 30 and 50 dimensions are solved. Further, the proposed algorithm has been tested by solving optimization
problems with 100 dimensions taken from CEC2014 and CEC2017 benchmark problems. A real-world
application data set has also been solved. Several experiments are designed to analyze the effects of different
components of the proposed framework, with the best variant compared with a number of state-of-the-art
algorithms. The experimental results show that the proposed algorithm is able to outperform all the others
considered.

INDEX TERMS Adaptive method, bound constrained optimization, differential evolution, evolutionary

algorithms, reinforcement learning.

I. INTRODUCTION

Many real-world decision-making processes in computer sci-
ence, engineering and other domains are concerned with
finding the best solution among a number of candidate ones
that optimizes (maximizes or minimizes) the desired out-
come [1]. These optimization problems can be classified in
many ways based on the numbers and types of their decision
variables, types and numbers of their fitness functions that
needs to be optimized, the existence of constraints, and many
other factors [2]. The main focus in this paper is to solve
bound-constrained optimization problems which incorporate
different mathematical properties that conventional optimiza-
tion solvers cannot handle but evolutionary algorithms (EAs)
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and swarm intelligence (SI) approaches are capable of
solving.

Of the EAs, differential evolution (DE) [3], which is a
simple yet effective algorithm, has been used to solve sev-
eral types of optimization problems. As with all other EAs,
DE uses three main operators (mutation, crossover and selec-
tion) to guide a set of solutions to obtain acceptable results.
DE has attracted the attention of many researchers and practi-
tioners because of its ease of use, its simple structure, and its
robustness [4], [5]. Covariance matrix adaptation evolution
strategy (CMA-ES) [6] has also attracted the attention of
researchers [4], [7]. Both of these algorithms have shown
very good performance in solving the bound-constrained and
real-application optimization problems [1], [2], [8]. However,
there is no single operator (or parameter) and EA that is
considered to be the best for all kinds of optimization test
functions [2], [4], [9], this is in line with the no free lunch
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theory [10]. This has motivated and encouraged practition-
ers and researchers to propose algorithmic frameworks that
utilize the benefits and strengths of various parameters, oper-
ators and algorithms. Even though these frameworks com-
monly boost the performance of the evolutionary task, they
still do not guarantee consistent outcomes for a wide variety
of problems [1] reflecting the need for improved designs.

One possible way of designing efficient optimization
algorithms is to use the power of machine learning, i.e., rein-
forcement learning (RL) [11], [12]. RL is a very popular
machine-learning mechanism which takes a suitable action
that maximizes the reward in a particular situation [13].
It has shown its effectiveness in many domains including, but
not limited to, engineering and computer science. Although
some recent studies adopted RL with DE [14]-[17], there
are some limitations in their approaches. They used offline
training (neural network (NN) training) to build a knowledge
base about the DE’s states and reward values. This NN was
then used to predict the future action to be implemented.
As a consequence, the considerable amount of computational
resources required may have affected the algorithm’s capa-
bility to converge to high-quality solutions. Also, due to its
offline training, the algorithm may not have been capable of
dealing with new problems not covered in the training phase.
Cao et al. [16] used RL with a cuckoo search algorithm to
solve scheduling problems but reported that their algorithm
was computationally expensive. In addition, the states they
considered to describe the current situations of the evolution-
ary process did not represent the algorithm’s capability to
improve solutions over generations. Furthermore, measuring
diversity in the objective rather than decision space might
have been inappropriate.

Motivated by the above-mentioned issues, the main aim of
this paper is to propose an improved optimization algorithm
by using the benefits of (1) RL to automatically emphasize
the best-performing DE mutation operator and (2) the search
capability of multiple algorithms. When using RL with DE,
a few important points to consider are how to: (a) represent
the possible states of continuous problems; (b) determine a
list of possible actions; and (c) calculate the reward function
of each action. For (a), we consider both the diversity and
quality of solutions which are then partitioned to form some
discrete segments. The possible actions are choosing the DE
operators to use, with the average improvement rate in the
fitness value obtained by each operator considered a reward
function. In line with this, Reinforcement learning-based
mutation adaptation (MARL with CMA (MARLwCMA)),
which starts with a randomly generated population with a
default Q-table initialized, is introduced. Then, at each gener-
ation, based on the maximum Q-value, the best action is cho-
sen and used to evolve the whole population with the quality
of solutions and population diversity recorded, the immediate
reward calculated, and the Q-table updated. This process con-
tinues until the maximum number of fitness evaluations (FEs)
is reached. We believe that this way of adapting ML in the
proposed framework is the core novelty of this work, in which
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the framework is able to do learning during the optimization
process as well as the representation of states and actions
on the context of automatic-configuration of algorithms for
real-valued optimization problems.

To use the strengths of multiple algorithms, MARL and
CMA-ES guide two different sub-populations to obtain better
solutions for a number of epochs (CS generations). Then,
based on their effectiveness, one algorithm is chosen to
evolve its sub-population for the next number of epochs
(CS epochs = cycle). After two cycles (2CS), an information-
sharing procedure is used and then both algorithms work
in parallel for a certain number of epochs. These steps are
repeatedly executed until a stopping criterion is met. A local
search is also used to boost the exploitation capability of the
proposed algorithm.

This framework was tested on 73 benchmark optimiza-
tion problems with 10, 30 and 50 dimensions, 28 from the
CEC2013 [18], 30 from the CEC2014 [19] and 15 from the
CEC2015 [20]) competitions for single-objective optimiza-
tion. The results demonstrate that, in terms of the quality
of solutions and statistical comparisons, this algorithm can
outperform 16 others. The proposed algorithm components
are also evaluated to provide further insight into the proposed
framework.

The main contributions of this paper are:

o A multi-method evolutionary algorithm is proposed
which utilizes the benefits of multi-operator DE algo-
rithm and the CMA-ES.

« A reinforcement learning is used to choose the best
performing algorithm (MODE or CMA-ES) during the
optimization process.

o The performance of MARLWCMA has been assessed by
solving 73 problems with 10D, 30D, 50D collected from
CEC2013, CEC2014 and CEC2015. Its performance has
been also tested for solving test problems with higher
dimensions (100D) from CEC2014 and CEC2017.

o The performance of the proposed algorithm is further
tested by solving real-world application problems taken
from CEC2011 benchmark problems.

The rest of this paper is organized as follows: a brief literature
review on related research studies and RL is presented in
Section II; the proposed approach and details of its compo-
nents are provided in Section III; the experimental results
and analyses are in Section IV; and, finally, conclusions and
future work are in V.

II. LITERATURE REVIEW

This section introduces literature review and related work
for single operator DE-based algorithms, multi-operator
DE-based algorithms and the use of RL with an EA.

A. DE AND ITS VARIANTS

Storn and Price [3] proposed a DE which is one of the most
powerful EA variants, due to its simplicity, fast convergence,
and the same values of the parameter can be used for dealing
with a range of problems. It has been also widely used and
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successfully utilized to solve real-world application problems
in many engineering and scientific fields [7], [9]. Initially,
the algorithm begins with a population of individuals and
then a mutant solution is created for each individual (target
solution) in the entire population, by summing the weighted
difference vector between two individuals to another individ-
ual. A new offspring is produced by joining the mutant and
target solutions and, finally, a selection operator is carried out
to decide which of the parent and offspring vectors will enter
the next population.

In the literature, many variants of the DE algorithm have
been proposed. In this section we will review the most recent
DE variants. Liu and Lampinen [21] proposed fuzzy adap-
tive DE algorithm (FADE) to solve optimization problems.
It used fuzzy logic controllers to manage the values of F
and Cr parameters. Zhang et al. [22] proposed an adaptive
DE algorithm that used an external archive (JADE). JADE
automatically adapts Cr and F based on previously successful
experience. It also uses the “DE/current-to-pbest” mutation
strategy to generate new solutions. Recently, Tanabe and
Fukunaga [23] introduced an improved version of JADE,
called SHADE, in which F and Cr values are tuned by a
history-based parameter adaptation method. Later the same
authors improved the SHADE algorithm by using a linear
population size reduction technique (LPSR), that linearly
reduces the population during the optimization process [24].
Their new proposed algorithm is called LSHADE, which won
the CEC2014 competition.

Since the proposal of LSHADE algorithm, many improve-
ments have been proposed to the original LSHADE.
Brest et al. [25] proposed an improved version of LSHADE,
called iLSHADE, with the modifications mainly to the mem-
ory update technique. This algorithm was further improved
by the same author and they introduced jSO [26] that used
a new weighted version of mutation operator. To maintain
an effective balance between exploitation and exploration,
Awad et al. [27] proposed a new way to adapt LSHADE
control parameters (i.e., F and Cr). This is done by using
a new ensemble sinusoidal mechanism that automatically
tunes F' and Cr values. Their proposed algorithm was called
LSHADE-EpSin, which it was later enhanced by using a
mixture of a Cauchy distribution and two sinusoidal for-
mulas, a restart mechanism that is used at the later gen-
erations and a new way to adapt the population size [28].
Mohamed et al. [29] proposed a new adaptation technique,
semi-parameter adaptation approach, to tune the values of F'
and Cr in LSHADE algorithm. Their proposed algorithm was
called, LSHADE-SPA. A new modified LSHADE algorithm,
called LSHADE-RSP, that uses a rank-based selective strat-
egy was proposed by Stanovov et al. [30].

Meng et al. [31] proposed a novel parameter adap-
tive DE (PaDE) algorithm to solve optimization problems.
PaDE uses a novel adaptation mechanism to tune F and
Cr values, a novel parabolic population size reduction mecha-
nism to update the population size, and an enhanced mutation
operator. A novel DE variant, called DE-NPC, was proposed
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by Meng et al. [32] that used a novel way to tune the F
and Cr parameters based on the position information of the
population. As previously mentioned, no single DE operator
or algorithm was able to solve a wide range of optimiza-
tion problems [7], [33]-[35]. As a result, researchers have
developed many other algorithms that used more than one
operators or algorithm. These algorithms are reviewed in the
next sections.

1) MULTI-OPERATOR DE VARIANTS

The efficiency and performance of DE algorithms is greatly
influenced by its mutation operators, which encourages many
practitioners and researchers to try to find the most effective
one [36]. Despite the numerous DE variants that exist in the
literature, multiple research papers have shown that a single
operator may not work well for a wide range of optimization
problems. Moreover, given the weakness of single-operator
DE algorithms (i.e., the variants that used a single muta-
tion operator) to solve all forms of test problems, research
on multi-operator DE variants have recently gained much
more interest [4]. Fan et al. [37] introduced an auto-selection
mechanism (ASM) to choose an appropriate DE variant to
solve combinatorial optimization problems. They also inte-
grated a learning strategy and selection probability to rein-
force the probability of a particular DE variant being chosen
and their results for selective data sets demonstrated the
efficacy of their ASM method. In a similar analysis con-
ducted in [4], an adaptive operator selection (AOS) technique
was proposed. This AOS used the information of the prob-
lem’s landscape and performance histories to automatically
select the most appropriate strategy from a set of many.
Because of their unstable performances during the optimiza-
tion process, all the potential mutation strategies were used
in each stage to evolve all the solutions in the entire popu-
lation. The effectiveness of this methodology was revealed
by solving 45 bound-constrained problems presented in the
CEC2014 and CEC2015 competitions. Elsayed et al. [1]
proposed a multi-method evolutionary framework that used
CMA-ES and multi-operator DE in a single framework. Their
proposed framework uses a fuzzy rule-based heuristic to
emphasize the appropriate algorithm during the optimization
task. It was demonstrated to be superior to many other algo-
rithms through the solution of a number of bound-constrained
optimization problems.

Instead of being limited to only bound constrained prob-
lems, the authors in [5] developed a new mechanism for auto-
matically choosing the best combinations of DE parameters
to solve constrained optimization problems. In addition, their
proposed approach was also shown to be successful for select-
ing the search operators and handling multiple constraints.
In the search to design high-quality DE algorithms, both low-
and high-level ensembles of mutation strategies have also
been gaining wide attention recently [38], [39]; an ensemble
of DE algorithms has been proposed by Elsayed et al. [40]
that used 16 different combinations of crossover and mutation
operators, and a constraint-handling technique. An ensemble
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of multiple DE variants (EDEV) has been recently proposed
by Wu et al. [38], in which three popular DE algorithms,
namely JADE [22], CoDE [41] and EPSDE [42] are used.
Their proposed approach inherits the merits from its con-
stituents.

Zhang et al. [43] introduced a multi-layer competitive-
cooperative (MLCC) framework to boost the performance
of DE algorithm. In contrast to many other multi-method
DE approaches, it could simultaneously implement a multi-
population-based parallel structure to evolve an entire pop-
ulation. By integrating a scheme for selecting individual
preference-based layers, they showed that their method could
outperform many state-of-the-art DE algorithms. To boost the
exploitation and exploration capabilities of the DE algorithm,
an improved variant that uses three mutation operators with
their corresponding self-adaptive strategy to tune the param-
eters was developed in [44]. In order to generate a new candi-
date solution, only one mutation operator was automatically
chosen to produce that new solution.

Recently Sallam et al. [34] proposed an algorithmic frame-
work that uses a number of mutation strategies is proposed
to solve constrained optimization problems (COPs). In their
proposed algorithm, the problem landscape information is
used to select the best-performing DE mutation strategies dur-
ing the optimization process. The computational experimen-
tal revealed the effectiveness of their proposed methodology
in solving COPs. An improved variant of a multi-operator
DE algorithm was also proposed by Sallam et al. [35],
in which three mutation strategies and two crossover oper-
ators have been used, with two indicators, the diversity of
population and quality of solutions, are used to automatically
select the better-performing operator during the evolutionary
task, which has been adapted to solve real-world constrained
optimization problems [45]. A two-stage MODE, called
TS-MODE, was recently proposed to solve combinatorial
optimization problems [46], in which the first stage is respon-
sible for exploration while the second one is responsible for
exploitation.

In addition to choosing the best mutation mechanism, using
an appropriate adaptive selection of DE operators method
is also important as it can enhance the performance of DE
for a constrained optimization problem [47]. Without such a
scheme, a DE algorithm may be trapped in a local optimum
which could also lead to premature convergence when solving
hard constraints. To overcome such premature convergence,
Lin et al. [48] proposed an adaptive immune-inspired multi-
objective algorithm which was shown to be competitive in
terms of improving its population diversity and exploration
capabilities. In 2019, a multi-operator DE algorithm is pro-
posed by Chen et al. [49], with an interior-point technique
used as a local search.

B. MULTI-METHODS ALGORITHMS (MMA)

Fundamentally, in the case of low-level ensembles, differ-
ent search strategies, operators or constraint handling tech-
niques are combined, while amalgamating multi-operators
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or algorithms to solve optimization problems is referred
to as a multi-methods algorithm (MMA) [50]. Although,
multi-methods are more pertinent to low-level ensembles,
they are also sometimes attributed as a special case of
high-level ensembles [39]. To investigate different MMA:s,
Grobler et al. [51] adapted three alternative multi-methods
approaches from the literature. After rigorous analyses with
the same set of constituent algorithms, they showed that the
heterogeneous meta-hyper-heuristic (HMHH) [52] algorithm
was the most competitive. Strategically, the HMHH deals
with selecting population-based meta-heuristic approaches,
which can run in parallel, merely based on algorithmic
logic [52]. Later on, Grobler et al. [53] integrated four
meta-heuristic algorithms with HMHH to control heuristic
space diversity, showing that their algorithm was compete-
tive with a few state-of-the-art approaches. Vrugt et al. [54]
proposed a co-variance matrix adaptation strategy, while they
coalesced genetic algorithm and particle swarm optimization.
They attempted to introduce a self-adaptive MMA which can
control the generated number of offspring at each genera-
tion. After executing a good number of experiments with
benchmark problems, they demonstrated the efficacy of their
self-adaptive approach, particularly when the optimization
problem is complex and high-dimensional.

Similar kind of study can be obtained from the work
of Elsayed et al. [40], in which they developed a united
multi-operator EA (UMOEA). UMOEA begins by splitting
the initial population into a number of sub-populations with
equal sizes. UMOEA consists of a number of multi-operators
algorithms and based on the improvement rate, the best-
performing one was chosen. UMOEA used an information
sharing mechanism, which further facilitated superior search-
ing. Later, Elsayed e al. [55] proposed an improved variant
UMOEA, called UMOEASII. For more information about
multi-operator and multi-method frameworks, readers are
requested to read research articles [39], [56], [57].

C. RLIN EAs

There has been an increasing trend to use RL concepts in
optimization approaches. Although RL and EAs seem very
different, they are both optimization techniques as RL seeks
to maximize an agent’s reward and EA aims to optimize a
fitness function [58]. To boost the performance of a gray
wolf optimization (GWO), Emary et al. [14] proposed a
combination of a RL principle that could select the best
combination of parameters for the GWO to obtain better
exploitation and exploration rates, and a NN. An experience
repository built to map each agent’s state was later updated
during the evolutionary process. Similarly, Sadhu et al. [15]
used a Q-learning technique to adapt the firefly algorithm’s
parameters to ensure a balance between its exploration and
exploitation rates. In it, the Q- learning strategy set the opti-
mal parameter values for each firefly in a population dur-
ing the learning phase and then applied it during execution.
Based on numerous analyses, this strategy was shown to be
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competitive for solving real-world constrained optimization
problems.

The literature includes research studies that combined
Q-learning and EAs to boost the performance of RL for
solving real-world application problems [59]. A Q-learning-
based improved particle swarm optimization (PSO) algorithm
for reducing the computational complexities of the classic
RL technique was proposed by Daset al. [60]. Similarly
Zhou [61] developed a fuzzy RL-based genetic algo-
rithm (GA) which, with the global optimization capability of
the GA, was capable of solving the local minimum problem in
an actor-critic structure. Later, Liu and Zeng [62] options for
reinforcement mutation to solve the traveling salesman prob-
lem (TSP). By integrating a RL mutation strategy, the con-
vergence rate of their GA was shown to be faster than,
and competitive with, many existing algorithms. Similarly,
Alipour et al. [63] proposed a framework in which a com-
bination of multi-agent RL and GAs was used to solve TSPs.
Recently, Juang and Bui [64] introduced a reinforcement
neural fuzzy surrogate-assisted multi-objective evolutionary
optimization approach for a robot-learning control applica-
tion. It was applied to an ant colony optimization algorithm
to improve its learning efficiency.

To control the mutation strategies of DE, Sharma et al. [65]
developed a double-deep Q-learning method as an AOS
process. They used NN to predict which mutation oper-
ator should be used with DE at each generation for
each parent. Later, Bora er al. [66] considered solving a
multi-objective optimization problem using RL integrated
with a Non-dominated sorting genetic algorithm (NSGA-II)
algorithm which was implemented parameter-free self-tuning
during the evaluation process. Also, Ning et al. [67] intro-
duced a multi-objective EA in which RL was a generic param-
eter controller. More possible directions for RL-integrated
EAs are highlighted in the review papers of Drugan [58],
Cunha et al. [68] and Barto [69].

In [70], RL was used to choose one of the lower heuristics
from 30 actions, with three non-overlapping ranges as the
number of states. In its process, the given computational time
is divided into a number of equal epochs (|E|), which was
determined by applying the algorithm on the instances taken
from CHeSC 2011. At each epoch, the process iteratively
employed a selected action (heuristic selection - move accep-
tance combination) in an ILS framework and then applied
Variable Neighborhood Descent. Although the algorithm
showed good performance in three of the six CHeSC problem
domains (SAT, FS, TSP), its performance was poor for the
remaining three domains.

The above literature survey illustrates the considerable
amount of research undertaken on DE and RL. How-
ever, little attention has been paid to integrating RL con-
cepts in DE. Moreover, research on obtaining better DE
mutation strategies for solving continuous optimization
problems is still an open area. Therefore, as introduc-
ing RL (i.e., Q-learning) for selecting optimal DE muta-
tion operators will certainly be a valuable addition to the
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existing knowledge base, it acts as a motivation for this
research.

Ill. PROPOSED ALGORITHM (MARLwWCMA)

In this section, details of the proposed algorithm
(MARLWCMA) are presented. It should be noted that the
proposed algorithm is generic and can be adopted with other
evolutionary operators and/or algorithms.

The main steps of the proposed MARLwWCMA are shown
in Algorithm 1 in the flowchart in Figure 1, where NS and
K are the number of states and actions, respectively. FES and
MAXFpgs are the number and maximum number of function
evaluations, respectively. o and y are the learning rate and
discount factors.

MARLwWCMA starts with defining the values of the param-
eters, and then an initial population of size NP is randomly
generated and then evaluated with the probability of each
algorithm being performed set to 1, i.e., Prob; = 1,Vi= 1,2
and Q-table elements to zeros. Then, the whole population
is divided into ngj, sub-population, (Xi, X7) which have
NP1, NP, solutions, respectively. In each epoch, n,e ran-
dom numbers between O and 1, i.e., rand; € [0,1]Vi =
1,2 are generated. If rand; < Prob;, then X; is evolved
by alg;. Subsequently, the diversity and quality of solu-
tions of X; are calculated and recorded, based on which
the state of the population is determined as described in
Section III-A1l. Note that, each algorithm is used based on
its assigned probability with the Q-table in MARL updated
as discussed in Section III-A3

MARL and CMA-ES are applied in parallel to evolve their
assigned sub-populations for CS epochs (cycle). Once a cycle
is completed, their probabilities Prob,, are dynamically
updated considering both their levels of diversity and perfor-
mances, as discussed in Subsection III-D. Subsequently, for
the next cycle and in each epoch (¢), two random numbers
are generated, i.e., rand,, € [0, 1], Yalg = 1,2, based on
which each algorithm is re-applied., i.e., if rand; < Prob,
X1 is evolved using MARL (see Section III-A). Similarly,
if rand> < Prob;, X3 is evolved using CMA-ES. Note rand
and rand, are generated in a way that assures that at least
one of them is less than one of the two probabilities, in order
to make sure that at least one of algorithm is used in each
epoch.

At the end of every second cycle, an information shar-
ing scheme is conducted, in which the best solution from
the superior sub-population replaces the worst one from the
inferior sub-population. Also, as the performance of one
algorithm is good at the early stages of the evolutionary
process and bad at latter generations, both probabilities are
re-set to 1; hence, the poor-performing algorithm may get a
chance for improvement. This is done to give equal chance
for both algorithms to rerun again. Therefore, both MARL
and CMA-ES are executed for another CS generation and the
whole process repeated.

An SQP is employed in the last generations of the opti-
mization process in order to boost the convergence of the
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Algorithm 1 MARLWCMA Algorithm

1: Define NS, K, «, v, nop, Prob;; < 0.1, MAXrgs < 10, 000D, proby < 1, proby <— 1, NP <— NP1 + NP>, ¢ <— 0 and

FES <« 0;
2: Generate random initial population (X) of size NP;
3: Compute the objective function value of each solution in the initial population, f (X);
4: Compute the number of fitness evaluations, FES < FES + NP;
5: Randomly assign NP and NP» individuals from X to X;, Vi = 1, 2, respectively;
6: Calculate diversity and quality of X; and then determine its state, as described in Section III-A1;
7: Define Q(sy, a;) < 0 for every state (s;) and action (a;) and randomly select one of the states from the set of states S;
8: while FES < MAXrgs do
9: c<c+1;
10.  if c == CS then
11: Update prob; and prob; as discussed in Section III-D;
12:  endif
13:  ifc == 2 x CS then
14: Apply information sharing between both algorithms as in Section III-E and reset proby, prob; and c;
15 end if
16:  if rand € [0, 1] < Prob; then
17: Select best action (a,) for current state (s;) from the Q-table;
18: Apply MARL to evolve entire X as described in Section III-A
19: Update FES, FES = FES + NPy;
20: Calculate immediate reward r; using Equation 8;
21: Obtain maximum Q value for next state s;1;
22: Update Q-table using Equation 10 and update current state s; <— S;41;
23:  end if
24:  if rand € [0, 1] < Prob; then
25: Evolve X; using CMA-ES;
26: update FES, (FES = FES + NP5);
27:  end if
28: if FES > 0.75 x MAXrgs and FES < MAXrgs then
29: Run SQP as discussed in Section III-F;
30: Update FES
31:  end if

32: end while

proposed MARLwWCMA, as discussed in Subsection III-F.
MARLWCMA'’s steps are carried out until the maximum
number of fitness evaluations are exhausted.

The main components of the proposed MARLwWCMA are
discussed in detail in the following sub-sections.

A. MARL

As previously stated, MARL is applied to evolve the first
sub-population (X;) with NPp individuals. It uses two
mutation operators (DE/current-to-¢best with archive/1/bin
and DE/current-to-¢best without archive/1/bin), which are
selected because of their highly ranked performances for
solving bound constrained optimization problems, as stated
in [4]. They are used to construct three actions, as described
in Section III-A2. Then, the RL is used to choose the
best action from the list of actions to evolve the entire
sub-population (X1). To do this, the main points are: (1) how
to represent the possible states of continuous problems;
(2) which possible actions to consider; and (3) how to cal-
culate the reward function of each action.

194050

1) STATE REPRESENTATION

The two criteria used to determine the states of RL are the

population diversity and improvement in the fitness function.
Let Div' denote the population diversity in generation t

calculated as

1 NP
Div' = | =5y (xf; = i) e
i=1

where NP is the population size, ¢ the generation number and
%;; the mean of the solutions’ variables in the j* dimension
in generation ¢ calculated by

1 NP
Xij= P Z:xi{ ; )
=
The quality (Qual) of solutions is expressed as the absolute
difference between optimal value and the best fitness value,

computed as:
Qualy, = |fit* — fitl"|, Vk=1,2,--- K (3)

VOLUME 8, 2020



K. M. Sallam et al.: Evolutionary Framework With Reinforcement Learning-Based Mutation Adaptation

IEEE Access

Define the following parameters, nop, NS, N_Actions, a, y, Probs, MAX¢ex,
probs, prob,, NP, NP1, NP,, c& 0, FES¢ 0, Q(s,a:)¢ 0

!

Generate random initial population (X) of size (NP), Compute F(X) and
Update FES

¥

‘ Randomly assign NP; and NP, individuals from X to X; and X, respectively. ‘

v

described in Section III-A1

‘ Calculate diversity and quality of X; and then determine its state, as ‘

v

FESSMAXees

NO

‘ Update ¢, cé-c+1

Update prob; and prob; as discussed in Section IlI-D ‘

Apply information sharing between both algorithms as in
Section IlI-E, and reset prob;, prob, and ¢

No 4{

Generate random number rand in [0,1]

Apply MARL algorithm, steps 17 to 22 in Algorithm 1, and update
FES

YES rands<prob,? NO

Apply MARL algorithm, steps 25 to 26 in Algorithm 1, and
update FES

—{ Run SQP as discussed in Section IlI-F and update FES}%YES

FES20.75*MAXges &8 FESSMAXres

( STOP

FIGURE 1. The general structure of the proposed MARLWCMA Algorithm.

where fit* is the function value of the optimal solution or best
known solution, fitffif’ the best fitness function value obtained
by action k and K is the number of used actions.
Simultaneously, the improvement criteria (/C) is computed
by:
t
icp = 24l
ﬁtt—l,k
where ﬁttbfsl” « 18 the best fitness function value obtained by
action k at generation ¢ — 1.
Subsequently, based on the above two criteria, the state of
the population (s) can be defined by:

Div' IC!
= | D0’ 1c0 ©)

Vk=1,2,...,K 4
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where Di? is the initial population’s diversity and IC? its
quality of the solutions.

As the state variables are continuous, it is crucial to par-
tition the space to form some discrete spaces. It should
be noted that the intervals of(Div'/Div’) e [0, 1] and
(IC'/ICY) are [0, 1] and it is possible to divide them into
Np and N; sub-intervals. Therefore, the population’s states
can be classified into the Np x N;. The performance of the
RL method is highly dependent on the number of Np
and Ny, i.e, although the larger of their values may obtain a
better control scheme, the number of state spaces will also
be very large. Therefore, it is necessary to maintain a balance
between the model’s computational complexity and its per-
formance. The analysis of the number of states is explained
in Section IV-B2.
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2) ACTIONS AND REWARD FUNCTION

In the proposed MARLwWCMA algorithm, the DE mutation
strategies represent the actions in the RL technique. As pre-
viously stated, in this paper, DE/current-to-¢best/1/bin with
archive (equation 6) and DE/current-to-¢best/1/bin without
archive (equation 7), are used as they perform well in solv-
ing bound constrained optimization problems [4]. Note that
MARLwWCMA algorithm is salable for the use of more DE
mutation strategies (actions), with Section IV-B1) summa-
rizes the effect of the number of operators in the performance
of MARLWCMA.

« DEFE/current-to-¢best/1/bin with archive

Xij+ Fi(xpj — Xij +Xr1j — Xr2,f)
if (rand < Cr; or j = jrana) (6)
Xij otherwise

Ujj =

o DE/current-to-¢best/1/bin without archive

Xij+ Fi(xpj — Xij + X1 — Xr3,)
if (rand < Cr; ot j = jrana) )
Xij otherwise

uij =

where F' and Cr are the scaling factor and crossover rate.
r1, 12, r3, are mutual random numbers and not equal to i.
X +1 and X 3 are two solutions randomly chosen from the
entire population, while x, ; are selected from the best 10%
of individuals in the entire populations and x,2 ; from the
union of the archive and the entire population. In the proposed
MARLwWCMA, an archive is used to maintain the diversity of
the population, with new individuals worse than their parents
inserted into the archive [22]. To make a space for newly
produced individuals, if the archive size is greater than its
predefined size, the worst individuals are deleted from it.

Therefore, the number of actions will be three, and are
represented by:

o the first uses the DE/current-to-¢best/1/bin with archive

to evolve the entire population;

« the second applies the DE/current-to-¢best/1/bin with-
out archive to produce new individuals from existing
ones; and

o the third action uses the two DE mutation strate-
gies to guide the whole population towards the opti-
mal by splitting the whole population into two equal
sub-populations each of them is evolved bu one the
DE’s operators.

Although a simple way of selecting a reward function
R(s, a) is based on the fitness function value, this may initially
cause the RL algorithm to be trapped in a local solution.
Therefore, R(s, a) is calculated according to the improvement
rate, that is the number of improved solutions in the current
generation ¢, by:

L
R(s, a) = NP Z((Ni,a =1 —WNNi,a=0) )
i=1
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where N,, the number of solutions evolved when applying
action a, is computed as:

Nia = I, fxi,a)—f(x) <0 ©)

0 fxi,a)—f(x)=0

where f (x;, a) is the fitness function value of the i”* solution
using action a.

3) Q-LEARNING ALGORITHM

Q-learning is a model-free technique which considers the
most efficient and productive RL method. Its main working
principle depends on the reward or penalty fed back from
the environment based on a state transition. In this study,
Q-learning is adopted as representative of RL in a state-action
table (Q-table) which is an NS x K matrix used as a reference
when facing a similar situation in the future [15]. Table 1
shows its structure.

TABLE 1. The structure of Q-table.

State Action

a1 as S ar
s1 Q(s1,a1) Q(s1,0a2) Q(s1,aK)
52 Q(s2,a1) Q(s2,a2) Q(s2,aK)
81\.15 Q(SN.Syal) Q(SN.S:CQ) Q(SN:S‘yaK)

Let A = [aj,ay,...,ak] represent the set of actions a
learning agent can execute, S = [sy, 52, . . ., sSns] the learning
agent’s set of states and 7, the immediate reward obtained
from performing action a. Then, the total cumulative reward
value (Q(s;, a;)) the learning agent gains at time ¢ is computed
by:

Or41(s1, ar) = O(sy, ar)
+ o [rep1 + ymax,0(siy1, a) — O(st, a)] - (10)

where @ € [0, 1] is the learning rate and y € [0, 1] the
discount factor, with the aim of y to penalize future rewards.
If y = 0, the Q-learning algorithm considers only the current
reward, but if y = 1, it looks for a higher long-term one. Full
statistical analyses of « and y are presented in Sections IV-B4
and IV-B5, respectively.

The main steps in the MARL algorithm are presented in
Algorithm 2.

B. CMA-ES

Over time, CMA-ES has verified its aptitude for dealing with
different kinds of optimization problems [6], [71]. Following
the concept of the self-adaptation of an evolutionary strategy,
the CMA adopts the co-variance matrix of a multi-variable
normal distribution. In CMA-ES, a Gaussian distribution is
used to generate new solutions taking into account the path
they take over as an alternative to using a single mutation step.
Algorithm 3 presents the main steps in CMA-ES.
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Algorithm 2 MARL Algorithm
1: Define state s; € S = s1,52,..., NS5, actiona € A =
ai, az, - ., AN_actions and Q(sy, a;) < 0;

2: Randomly select an initial state s;;

3: while FES < MAXFpgs do
Choose best action (a;) (the one with maximum Q
value), for state (s;) from Q-table;
Evolve population using selected action(a;);
Compute the fitness function value;
Calculate immediate reward (r;11) using Equation (8);

. Update FES < FES + NPq;

9:  Update population X7 using Equation (12);
10:  Update Q-table elements by Equation (10);
11:  Update state (s; <— s;41)-

12: end while

Algorithm 3 CMA-ES

1: Generate initial individuals (X3) of size NP and evaluate
the objective function;

2: Calculate weighted mean of population (¥, =
ZNwa,le) Wherez _{wi=1landw; = Vi =
1,2,...,NPy;

3: Generate new solutions by sampling from Gaussian dis-
tribution as: 7i,t+1 = N(?m,,, UIZC,) = 7,” +
oN(, C;), Vi=1:NP»;

4: Compute the objective function values of new solutions;

5: Sort new solutions with respect to their objective function
values;

6: Select best (u) solutions as a parental solutions, and
compute their mean as 7m,,+1 = Z,‘::l wk?k,, where
Z;le =landwi > w2 > - > wy;

7: Update evolution path (p;_ ;) and (py );

8: Adapt co-variance matrix (Cy41);

9: Update global step size (07+1);

10: Continue steps 3 to 7 until a stopping condition met.

1
NP>’

C. POPULATION INITIALIZATION AND UPDATING
TECHNIQUE

MARLwWCMA starts with an initial population that is ran-
domly generated by:

mm

max min
Xij = X;; — xmmy

+ rand x (x

z_1,2,...,NPandj=1,2,...,D (11)

where rand is a function used to produce random numbers in
the range [0, 1], D the problem dimensions, x”;’” and xm“" the
lower and upper bounds of each decision variable.

During the optimization process, a linear population reduc-
tion size mechanism is used to dynamically decrement the
population size of MARL (NP) as in Equation . This is done
to maintain the diversity at the early stage of the optimization
process and a fast convergence rate at latter stages [24].

NPrlnin o Nszt

—— ) X FES NP’"” 12
MAXrgs ) X + I Ad2)

NP1 141 = round|(
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where NP is the least number of solutions MARL can
use, FES the current number of fitness evaluations (FES),
MAXFgs the largest number of FES and NP™it s the size of
the initial population.

D. UPDATING PROBABILITIES (Prob, AND Prob,)
At the end of each cycle, the proposed MARLWCMA auto-
matically selects which algorithm (MARL or CMA-ES) will
be applied in the next cycle based on the values of two
probabilities (Prob; and Prob;). To update values of these
probabilities, two indicator are used, the sub-population’s
diversity and the solutions’ quality.

Concerning sub-population’s diversity (D) (Xag), which is
the average deviation of each individual in it from the best
individual, i.e.,

NP g
e d —> bes,
Dcs,aig = > dis(F cs.aigi — Xc5™) |
NPjq .
Valg =1,2 (13)
where dis(X cs alg,i — xcsbe!) is the Euclidean distance

between best solution (Xxcs?%") and the i solution (¥ ¢ alg,i)
in Xy, at cycle (CS). Also the normalized diversity (DRgq)
for each sub-population is calculated by

Dcs,aig

DRcsalg = 57— >

Valg=1,2 (14
alg=1 DCS,alg

For the solutions’ quality, at the end of each cycle (CS),
the best solution in each sub-population is employed, based
on which the normalized value is calculated as:

best
f (xcs,azg)
2 best '
Zalg:l f(xCS,alg)

where f (xg?falg) is the objective value of the best solution
obtained by algorithm alg at the end of the cycle (Cs).

The improvement rate value (IRV,,) is computed using the
above-mentioned equations as:

QRalg) + DRalg s

QR = Valg=1,2  (15)

IRV = (1 — Valg=1,2 (16)

Note: the value of QR is subtracted from one in order to
meet the goal maximizing the IRV .

Finally, the probability of using each algorithm is updated
by:

) IRV
Probgjg = max | 0.1, min { 0.9, ———— ,
Zulg—l IRValg

ag=1,2 (17

Probgje are changed dynamically based on both diversity
and quality of the solutions, with a minimum value (0.1) used
to prevent any of them to be zero, so that the algorithm may
have get improved in latter generations. Also, to ensure that
at least one algorithm is running in each epoch, if the total
sum of IRV,, = 0, the value of both probabilities are set
to 1.0 [2].
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E. INFORMATION SHARING

Asreported in [], sharing information among sub-populations
improves the algorithm’s performance. So, in this paper,
a simple information sharing mechanism is used in which the
best solution from the superior sub-population replaces the
worst one from the inferior sub-population after every two
cycles (c = 2 x CS) in order to to encourage more effective
searching [1], [2]. The values of the CMA-ES parameters are
set to their default values, excluding o which is computed by:

FES
o=0x|1- (18)
FESax

F. LOCAL SEARCH

In order to accelerate the proposed MARLWCMA conver-
gence, sequential quadratic programming (SQP) is applied
with a probability of P;; = 0.1 to the best solution. SQP
runs for up to CFEj; fitness evaluations, in order to reduce the
maximum number of fitness evaluations (CFE},) consumed.
Therefore, it is applied in each epoch in the last 25% of the
evolutionary task with a small probability (0.1) and, if there
is no improvement in the objective function value, the prob-
ability of applying local search was set to a very small value,
as discussed in steps 5-9 in Algorithm 4.

Algorithm 4 Local Search (SQP) Algorithm
1: Required: the best obtained individual from the entire
population 7bm;
2: Generate a number randomly between 0 and 1 (rnd €
[0, 1D);
3: if rnd < Pj; then
4:  Run SQP to ?bes, for CFEj; objective function eval-
uations;
5 iff(7sqp) <f(7best) then
6 Update the value of Py, (P;; <— 0.1);
7 ?best <~ ?sqp andf(?best) &f(?sqp);
8
9

else

Update the value of Py, (Pj; < 0.0001);
10:  end if
11:  Update FES, (FES < FES + CEFy);
12: end if

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In order to assess the effectiveness and performance of
MARLWCMA, several experiments were carried out on
73 optimization functions (28 from the CEC2013 [18],
30 from the CEC2014 [19] and 15 from the CEC2015 [20])
competitions for single-objective optimization) with 10,
30 and 50 dimensions and a search space of [—100, 10072,
MARLWCMA is also used to find the optimal solutions
to problems with higher (100) dimensions taken from
CEC2014 and CEC2017. Its performance is further tested
by solving 22 real-application test problems taken from
CEC2011.
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The results obtained from the proposed algorithm
(MARLwWCMA) for the test problems from the CEC2014 and
CEC2015 competitions were compared with those from the
following existing-algorithms.

1) DE-based single-operators algorithms: the proposed
MARLWMA is compared with Success History based
DE with linear population size reduction (LSHADE)
[24], Success History based DE (SHADE) [23], Adap-
tive DE with optional external archive (JADE) [22].

2) multi-operator-based algorithms: MARLwWCMA is
compared against DE with composite trial vector
generation strategies (CoDE) [41], DE algorithm
with an adaptation strategy (SaDE) [72], DE with
an ensemble of parameters and mutation strate-
gies (EPSDE) [42], multi-population ensemble DE
(MPEDE) [57] and Landscape adaptive operator selec-
tion DE (LSAOSDE) [4].

3) multi-method-based  algorithms: the  proposed
algorithm is compared with United multi-operator
evolutionary algorithm (UMOEAs) [40], and A Mul-
tialgorithm Genetically Adaptive Method for Single
Objective Optimization (AMALGAM-SO) [54];

Note that the results of other algorithms are obtained
from [4].

Also for CEC2013 test problems, the results obtained from
MARLwWCMA were compared with those from the following
existing algorithms.

1) single algorithms and operators: the proposed algo-
rithm is compared with Self-adaptive of DE con-
trol parameters (jJDE) [73], A sinusoidal differen-
tial evolution algorithm (SinDE) [74], Co-variance
matrix adaptation evolution strategy with re-sampled
Inheritance Search ( CMA-ES-RIS) [75], DE with an
individual-dependent mechanism (IDE) [76], DE with
automatic parameter configuration (DE-APC) [77],
A self-adaptive differential evolution with PBX
crossover (MDE-pBX) [78] and SHADE [23].

2) multi-operator-based algorithms: the proposed algo-
rithm is compared with CoDE [41], EPSDE [42] and
SaDE [72].

Note that existing approaches which employed RL have
been used to solve a different set of problems with different
mechanisms used for defining the actions and states. Conse-
quently, it was hard to compare them against our approach.

The proposed MARLwWCMA algorithm was developed
using Matlab R2018b and run on a computer with
Windows 10 that has a core 17 processor with 3.4 GHz
processor and 16 GB RAM. To ensure fair comparisons,
the proposed algorithm and all other competing algorithms
used the same stopping condition as stated in the competition
guidelines. Based on the competition rules, the evaluation
process of each generated solution is summarized as follows:

1) for each generated solution (x), the objective func-
tion f(x) value should be calculated at the generated
solution (x).

VOLUME 8, 2020



K. M. Sallam et al.: Evolutionary Framework With Reinforcement Learning-Based Mutation Adaptation

IEEE Access

2) the error, which measures how far the fitness of each
solution from the known optimal value, is calculated
using the following equation error:[f(?) — f(x™),
where f(x*) is the known optimal value.

Also, all the algorithms were run 51 times with stopping
condition equal to 10, 000 x D fitness function evaluations or
[f(?bm) — f(x™)| < 1E — 08, where xps the best solution
achieved by the algorithm and x* is the known optimal solu-
tion. For each single run, the difference between the obtained
solution and the known optimal solution is set to zero, if its
value is less than or equal to 1E — 08.

To statistically compare between algorithms test, Two
non-parametric tests (Friedman ranking tests and the
Wilcoxon signed-rank [79]) are used. Also, the performance
of the proposed algorithm were also graphically assessed
by plotting the performance profiles graph [80]. The per-
formance profiles graph is a tool used to compare many
algorithms (M) performance using set of test problems (P)
and a comparison objective (i.e., the average number of FES
or computational time) to achieve specific level of the perfor-
mance condition (i.e., optimal objective function value). For
an algorithm (A), the value of the performance profile Rhog
is computed by:

1
Rhop(t) = — x|peP:rpa <1 (19)
n
p
where Rhos(7) is the ratio of A € M that the performance
ratio rp , is within a factor t € R for the best possible
probability. Rhoy is a function that returns the cumulative
distribution for the 7, 4.

A. PARAMETER SETTING AND ANALYSIS

Regarding the algorithms’ parameters: for MODE NP"I”” was
set to 18D individuals, NP"*" to 4 individuals, the memory
size (H) to 5 and archive rate (A) to 1.4 [4]; for CMA-ES, o =
0.3, w = NP3 /2 and NP, = 4+ | (3log(D))] [6]; for MARL,
CS was set to 50, 100 and 150 epochs for test problems
with 10, 30 and 50 dimensions [55], respectively. Regarding
the local search, the maximum number of fitness evaluation
that the SQP can run (FESzg) was set to 0.2FES, . [1]. The
technique proposed in [24] is used to manage the values of F’
and Cr.

B. ANALYSES OF ALGORITHM’'s COMPONENTS AND
PARAMETERS

Variants of the proposed MARLwWCMA using different values
of its components and parameters were analyzed to determine
the algorithm’s final version. These analyses were carried
out on 30D CEC2014 benchmark problems classified in four
groups: F01 — Fy3 are unimodal, Fos — F¢ simple multi-
modal, F'17 — F; hybrid and F»3 — F39 composite.

1) EFFECT OF NUMBER OF DE OPERATORS (nop)
This effect was analyzed by conducting different experiments
using variants with nop = 2,3 and 4. Detailed results are
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presented in Table 1 in the supplementary material and the
results of statistical comparisons obtained from a Wilcoxon
test in Table 2. As there were no significant differences
among all the variants, those with the fewest operators were
preferred. The results obtained from a Friedman test shown
in Table 3 demonstrated that the variant with nop = 2
obtained the best rank. Therefore, the number of actions was
three (i.e., A1 = DE1, A2 = DE2 and A3 a combination of
DE1 and DE2).

TABLE 2. Summary of comparisons of MARLWCMA variants with different
nop values obtained from Wilcoxon test.

Algorithms Better | Similar | Worse | Dec.
nop = 2 vs.nop =3 11 10 9 =~
nop = 2 vsnop = 4 13 9 8 ~
nop = 3 vs nop = 4 11 9 10 =~

TABLE 3. Average rankings of MARLWCMA variants with different nop
values for all functions obtained by Friedman test.

nop=2 | nop=3 | nop=4
1.88 2.02 2.10

Finally, one unimodal function (£2), two simple multi-
modal functions (F06 and F'12), one hybrid function (¥19)
and one composition function (F25) are randomly selected
to demonstrate the effectiveness of each operators (A, Aa
and A3) as represented in Figure 2. As an example, for
F2 Al and A3 are selected many times during the evo-
lutionary process, while A2 is selected less number of
times.

2) EFFECT OF NUMBER OF STATES (NS)

This effect was checked by conducting different experi-
ments with NS = 4,9, 16,25 and 36 for solving the 30D
CEC2014 problems, with the values of the other parameters
the same as those in Subsection IV-B 1. Details of the obtained
results are presented in Table 2 in the supplementary material
and a summary is given in Table 4.

Finally, to rank these four different variants, the Friedman
test was conducted, with the mean rankings shown in Table 5.
It can be concluded from Tables 4 and 5 that the variant with
NS = 25 was slightly better than that with NS = 36 and also
better than all the others.

3) EFFECT OF PER

This effect was analyzed by running the proposed MARL-
wCMA with different Per values (i.e., 0.15, 0.25 and 0.5)
to solve 30D problems. Detailed obtained results provided
in Table 3 in the supplementary material. Subsequently,
the Wilcoxon and Friedman tests were conducted, the results
from which are summarized in Tables 6 and 7, respec-
tively. Based on them, it was concluded that the variant with
Per = 0.25 was the best.
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FIGURE 2. Effect of each action on the performance of the optimization process for (a) F2; (b) F06; (c) F12; (d) F19; and (e) F25.
4) EFFECT OF LEARNING RATE («) other parameters to their values stated in Section IV-B3.
This effect was analyzed by Conducting several experi_ Table 4 in the Supplementary material provides detailed

ments with « = 0.15, 0.25 and 0.5, and setting the results.
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TABLE 4. Summary of comparisons of MARLWCMA variants with different
NS values.

Algorithms Better | Similar | Worse | Dec
NS =4vs. NS =9 12 11 7 =
NS =4vs. NS =16 12 11 7 =
NS =4vs. NS =25 10 11 9 =
NS =4vs. NS =36 9 11 10 =
NS =9vs. NS =16 12 11 7 =
NS =9vs. NS =25 6 11 13 =
NS =9vs. NS =36 6 11 13 +
NS =16vs. NS =25 5 11 14 =
NS =16vs. NS = 36 6 11 13 =
NS =25vs. NS = 36 10 11 9 =

TABLE 5. Average rankings of MARLWCMA with different NS values for all
functions obtained by Friedman test.

NS=4| NS=9 | NS=16 | NS=25 | NS=36
2.83 3.23 3.43 2.73 2.77

The Wilcoxon test results presented in Table 8 demonstrate
that the variant with « = 0.25 was better than all the others,
a conclusion confirmed by the results obtained from the
Friedman test shown in Table 9.

5) EFFECT OF DISCOUNT FACTOR (y)

This effect was analyzed by conducting several experiments
with y = 0.80,0.85,0.90 and 0.95, with detailed results
presented in Table 5 in the supplementary material. The
Wilcoxon test was conducted to compare the variants and the
results provided in Table 10 demonstrate that the one with
y = 0.85 was the best, as do the average rankings obtained
from the Friedman test presented 11.

C. COMPARISONS OF RESULTS OBTAINED FROM
MARLwWCMA AND ITS CONSTITUENT ALGORITHMS

(MARL AND CMA-ES)

The comparison of the obtained results from the proposed
MARLwCMA and its constituents (MARL and CMA-ES) is
conducted in this section. The best parameter values deter-
mined, that is, nop = 2, NS = 25, Per = 0.25, « = 0.25
and y = 0.85 and those of the other parameters presented
in Section IV-A were considered, with details of the best,
average and standard deviation results reported in the sup-
plementary material.

1) 10D RESULTS

Details of the average fitness errors ([f(? best) — f (;k)))
and their standard deviations (Std.) achieved by running
MARLwWCMA are provided in Table 6 in the supplementary
material.

For the unimodal test functions (FO1-F03), MARLwWCMA
worked very well for all of them, obtaining the optimal
optimal best and mean results. Considering the simple multi-
modal test functions (FO4-F16), MARLwWCMA able to obtain
optimal solutions for 7 test functions, and very close results
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TABLE 6. Summary of comparisons of MARLWCMA variants with different
Per values.

Algorithms Better | Similar | Worse | Dec.
Per = 0.15vs. Per = 0.25 5 13 12 ~
Per =0.15vs Per = 0.5 10 12 8 ~
Per =0.25 vs Per = 0.5 12 13 5 +

TABLE 7. Average rankings of MARLWCMA variants with different Per
values for all functions obtained by Friedman test.

Per =0.15 | Per =0.25 | Per =0.5
2.08 1.77 2.15

TABLE 8. Summary of comparisons of MARLWCMA variants with different
« values.

Algorithms Better | Similar | Worse | Dec.
a=0.15vs.a =0.25 6 13 11 RS
a=0.15vsa=0.5 12 12 6 ~
a=025vsa=0.5 14 13 3 +

TABLE 9. Average rankings of MARLWCMA variants with different «
values for all functions obtained by Friedman test.

a=0.15 | =025 | a=0.5
1.98 1.73 2.28

TABLE 10. Summary of comparisons of MARLWCMA variants with
different y values.

Algorithms Better | Similar | Worse | Dec

v =0.80vs.y=0.85 6 13 11 =~
v =0.80vsy =90 10 13 7 ~
v=080vsy =95 8 14 8 ~
v=0.85vsy =90 9 13 8 =~
v=085vsy =95 10 13 7 =~
v=090vsy =95 7 13 10 =~

TABLE 11. Average rankings of MARLWCMA variants with different
values for all functions obtained by Friedman test.

7 =080 | y=085 | =090 | v=005
253 235 2.62 2.50

to optimal for the remaining test functions. It also performed
very well for the hybrid functions but converged to local
solutions for the composite ones.

In terms of quality of solutions presented in Table 12,
MARLwCMA obtained better results than was CMA-ES and
MARL and, regarding the average results, was better than
CMA-ES and MARL for 23 and 18 test functions, respec-
tively, but was worse to them for 2 and 7 test functions,
respectively.

From the Wilcoxon test results, MARLWCMA was sta-
tistically significantly superior to CMA-ES but there was
no significant differences among the best results obtained.
As a further analysis, the Friedman test was carried out to
rank all the algorithms based on the obtained mean results,
with the rank values depicted in Table 13, which show that
MARLwWCMA was ranked first.

194057



IEEE Access

K. M. Sallam et al.: Evolutionary Framework With Reinforcement Learning-Based Mutation Adaptation

TABLE 12. Summary of comparisons of MARLWCMA against CMA-ES and MARL for 10D, 30D and 50D test functions taken from CEC2014 competition

based on Wilcoxon test results.

TABLE 13. Average rankings of MARLWCMA, CMA-ES and MARL for all
dimensions of CEC2014 benchmark problems obtained by Friedman test.

Algorithm 10D 30D 50D
Best | Mean | Best | Mean | Best | Mean
CMA-ES 2.62 2.63 243 2.57 2.32 2.48
MARL 1.72 1.90 2.03 2.02 2.05 2.02
MARLwWCMA | 1.67 1.47 1.53 1.42 1.63 1.50

2) 30D RESULTS

Details of the results obtained from MARL-wCMA are pre-
sented in Table 7 in the supplementary material. For unimodal
functions, MARLwWCMA obtains the optimal solutions for all
them for both best and mean results. For simple simple mul-
timodal test functions, it obtains optimal solutions five test
functions (F04, FO6, FO7, FO8 and F10), very close solutions
to optima for F12 to F15, but its performance decreased for
F5 and F11. For the hybrid test functions functions, although
MARLwWCMA achieved very close results to the optimal for
F18 and F22, its result for F17 were slightly worse. Similar
to the 10D test functions, MARLwWCMA became trapped in
local solutions when solving composite test functions.

The quality of the solutions obtained are shown in Table 12.
Considering the best results, MARLWCMA was superior,
similar and inferior to CMA-ES for 21, 6 and 3 test problems,
respectively and to MARL for 17, 6 and 7, respectively.
In terms of the average results, it was better and worse than
CMA-ES for 21 and 4, respectively, and than MARL for
20 and 7, respectively.

Also to check the statistical differences among the com-
peting algorithms, the Wilcoxon test was carried out, with
the results recorded in Table 12 showing that MARLwCMA
is statistically better than its constituent parts. As a further
analysis, the Friedman test is conducted to rank all algo-
rithms with the obtained results presented in Table 13. From
Table 13, it can be concluded that thr proposed MARLWCMA
was ranked first.

Furthermore, the performance profiles graph was plotted
to compare MARLWCMA, CMA-ES and MARL, with the
results presented in Figure 3. It is obvious that MARLWCMA
was better than its constituent algorithms as it first reached a
probability of 1.0 at T =~ 37.

3) 50D RESULTS

Table 8 in the supplementary material presents the details
results obtained by the proposed algorithm. For the unimodal
test functions, MARLwWCMA obtained the optimal solutions
for FO2 and FO3 and very close to an optimal one for FO1.

194058

Algorithms Criteria 10D 30D 50D
Better | Similar | Worse [ (P-value, Dec.) | Better | Similar [ Worse [ (P-value, Dec.) | Better [| Similar | Worse | (P-value, Dec.)
MARLwWCMA vs. CMA-ES Best 21 8 1 (0.000,4) 21 6 3 (0.001, +) 17 9 4 (0.009, +)
Average 23 5 2 (0.000, +) 23 5 2 (0.000, +) 21 5 4 (0.004, +)
MARLwWCMA vs. MARL Best 10 10 10 (0.263,~) 17 6 7 (0.024 +) 17 5 8 (0.021, +)
Average 18 5 7 (0.009, +) 20 4 6 (0.007, +) 20 3 7 (0.003, +)

Considering the simple multimodal test problems, it achieved
optimal results and very close results for 3 and 6 test func-
tions, respectively, of them, close to optimal for F16 and
poor for only F11 and F17 while its performances for the
hybrid functions were reasonable. For the composite test
functions, similar to the 10D and 30D problems, it became
trapped in local minima close to the optimal solutions but its
mean results for F29 and F30 deviated more from the global
solutions.

Regarding the quality of solutions achieved, MARL-
wCMA obtained significantly better results than CMA-ES
and MARL, as confirmed by the results presented in Table 12.
In terms of the best results, it was superior, inferior and
similar to CMA-ES for 17, 4 and 9 problems, respectively,
and to MARL for 17, 5 and 8, respectively. Its average results
were better, worse and similar to those of CMA-ES for 21,
4 and 5 test problems, respectively, and to those of MARL
for 20, 7 and 3 test functions, respectively.

Considering the Wilcoxon results, MARLWCMA was sta-
tistically superior to other algorithms. Also, it was ranked first
according to the Friedman test results presented in Table 13.
As a further comparison, a graph of the performance profiles
was plotted to compare the algorithms (Figure 3). It is clear
that MARLwWCMA reached a probability of 1 first at T & 95.

D. COMPARISONS OF MARL AND ITS DE VARIANTS

To test the effectiveness of using RL to select the best DE
operators, the computational results obtained by MARL were
compared. The 30D CEC2014 test problems were solved
using the three different actions described in Section I1I-A2,
with Varl, Var2 and Var3 denoting the first, second and third
actions, respectively.

The summary of the results obtained from MARL and
its different variants is presented in Table 14, from which
MARL was superior, equal and inferior to Varl for 12, 10 and
8 test functions, respectively, to Var2 for 13, 10 and 7, respec-
tively, and to Var3 for 12, 10 and 8, respectively. For the
mean obtained results, MARLWCMA was superior to Varl,
Var2 and Var3 for 17, 15 and 16, respectively, similar for 5,
7 and 6, respectively, and worse for 8, 8 and 8 test problems,
respectively.

Regarding the obtained average results, MARL per-
formed significantly better than all its variants, based on
the Wilcoxon test as shown in Table 14. Further analysis
was conducted using the Friedman rank test, with the results
presented in Table 15 showing that MARL performed the best
for both best and mean results.
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FIGURE 3. Performance profiles of MARLWCMA, CMA-ES and MARL based
on CEC2014 unconstrained problems for (a)10D problems; (b) 30D
problems; and (c) 50D problems.

Also, the graphs plotted to show the convergences of the
proposed MARL and its constituent DE algorithms are shown
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FIGURE 4. Convergence graphs for MARL, Var1, Var2 and Var3 on
CEC2014 with 30D problems; (b) F04; and (c) F06.

TABLE 14. Summary of comparisons of performances of MARL and its DE
variants for 30D CEC2014 test problems.

Algorithms Criteria | Better | Similar | Worse | Dec.
MARL vs. Varl Best 12 10 8 ~
Average 17 5 8 +
MARL vs. Var2 Best 13 10 7 =
Average 15 7 8 +
MARL vs. Var3 Best 12 10 8 z
Average 16 6 8 +

in Figure 4, from which it is clear that MARL converges faster
than other algorithms.

The results confirmed that MARL is statistically superior
to its constituent DE algorithms which demonstrated the
capability of RL to select the appropriate action during the
optimization process, with another reason maybe the use of
good DE operators.
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TABLE 15. Average rankings of MARL, Var1, Var2 and Var3 for 30D
CEC2014 problems obtained by Friedman test.

Algorithms | Varl | Var2 | Var3 | MARL
Best 2.55 2.70 2.50 2.25
Mean 2.60 2.75 2.53 2.12

E. COMPARISONS OF PERFORMANCES OF MARLWCMA
AND STATE-OF-THE-ART ALGORITHMS FOR

CEC2014 PROBLEMS

The performance of the proposed MARLCMA was compared
with those of several rival algorithms, with detailed results for
the best, average and standard deviation values reported in the
supplementary material.

1) 10D RESULTS

The average fitness errors [f(7 best) —f (;’i ) and the standard
deviations obtained from the proposed MARLWCMA and
the competing algorithms are provided in Table 9 in the
supplementary material. As it is clear from that table the
proposed MARLwWCMA, LSHADE, SHADE, JADE, CoDE,
SaDE, EPSDE, MPEDE, UMOEAs, AMALGAM-SO and
LSAOSDE are able to obtain better results for 17, 8, 5, 6, 8, 6,
5,5, 4, 4 and 10 test functions, respectively. MARLWCMA
obtains the optimal solutions for all the unimodal functions
(F1 to F3). For the simple multimodal functions (F04 to
F16), the proposed algorithm achieves better results for 6 test
functions. It obtains the optimal solution to three functions
(F06, FO7 and FO08) and a very close value to the optimal
for FO4, F12, F15 and F16. For the hybrid functions (F'17
to F22), the performance of the proposed MARLwWCMA is
not good in comparison to CoDE, and LSAOSDE. CoDE
is better than the MARLWCMA in 5 test functions, while
it is worse than it in 1 test functions. LSAOSDE is supe-
rior to MARLWCMA in 4 test functions and inferior to it
in 2 test functions. Considering the composition functions
(F23 to F30), the proposed MARLWCMA obtains better
results than other algorithms in 6 test functions. To sum up,
the proposed algorithm is suitable for unimodal, multimodal
and composition functions, while its performance deterio-
rates when solving hybrid functions.

In terms of the solutions’ quality presented in Table 16,
MARLwCMA was better than LSHADE, SHADE, JADE,

CoDE, SaDE, EPSDE, MPEDE, UMOEAs, AMALGAM-SO
and LSAOSDE for 16, 22, 21, 18, 20, 23, 18, 24, 25 and
14 test functions, respectively, and worse to them for 8, 3,
3,7,5,2,6,2,3 and 10 test functions, respectively. In terms
of the Wilcoxon test, the proposed MARLWCMA algorithm
is statistically better than all the other algorithms except
LSAOSDE for which there was no significant difference
but there was a bias towards MARLWCMA in terms of
its number of better results. Considering the Friedman test
results in Table 17.MARLwWCMA is ranked first followed
by LSAOSDE.

Plots of the performance profiles are depicted in Figure 5,
in which it can be seen that MARLwWCMA was better than all
the competing algorithms because it able to attain a probabil-
ity of 1.0 at T = 500.

2) 30D RESULTS

Table 10 in the supplementary material presents details
of the results obtained from MARLwWCMA and othe
competing algorithms. It is clear from that table that
the proposed MARLwWCMA obtains the best results for
16 test functions, while LSHADE, SHADE, JADE, CoDE,
SaDE, EPSDE, MPEDE, UMOEAs, AMALGAM-SO, and
LSAOSDE achieve the best results for 8, 5, 6, 8, 6, 6, 6, 4,
5 and 10 test functions, respectively. The proposed MARL-
wCMA obtains the optimal solutions for the unimodal test
functions (F01to F03). Considering the simple multimodal
functions (F04 to F'16), MARLWCMA achieves the optimal
solutions for F06, FO7 and F08 and a very close results
to the optimal for F04, F10, F12, F13, F14, and F15.
It can be observed that, MARLwWCMA attains the best results
in 6 test functions. For the hybrid functions (F17 to F22),
similar to 10D, the proposed MARLwWCMA is performing
poorly in comparison to CoDE and LSAOSDE. In regards
to the composition functions (F23 to F30), MARLwWCMA
achieves the best for 6 test functions, while the number of
best results obtained from LSHADE, SHADE, JADE, CoDE,
SaDE, EPSDE, MPEDE, UMOEAs, AMALGAM-SO, and
LSAOSDE are 1, 1,1, 1, 1, 1, 1, 1, 2 and 2 test functions,
respectively. Obviously, for the 30D test problems, MARL-
wCMA demonstrates more superiority on unimodal, simple
multimodal and hybrid functions.

TABLE 16. Summary of comparisons of MARLWCMA against LSHADE, SHADE, JADE, CoDE, SaDE, EPSDE, MPEDE, UMOEAs, AMALGAM-SO and LSAOSDE for

10D, 30D and 50D test problems taken from CEC2014 competition.

Algorithms 10D 30D 50D

Better | Similar | Worse | P-value, Dec. | Better | Similar | Worse | P-value, Dec. | Better | Similar | Worse | P-value, Dec.
MARLwWCMA vs. LSHADE 16 6 8 (0.026,+) 17 6 7 (0.045,+) 18 5 7 (0.009,+)
MARLwWCMA vs. SHADE 22 5 3 (0.001,+) 23 4 3 (0.000,+) 24 4 2 (0.000,+)
MARLwWCMA vs. JADE 21 6 3 (0.001,+) 23 5 2 (0.000,+) 24 3 3 (0.000,+)
MARLwWCMA vs. CoDE 18 5 7 (0.021,+) 24 5 1 (0.000,+) 25 2 3 (0.000,+)
MARLWCMA vs. SaDE 20 5 5 (0.009,+) 26 2 2 (0.000,+) 28 1 1 (0.000,+)
MARLwWCMA vs. EPSDE 23 5 2 (0.000,+) 23 5 2 (0.000,+) 26 1 3 (0.001,+)
MARLwWCMA vs. MPEDE 18 6 6 (0.027,+) 21 4 5 (0.000,+) 24 3 3 (0.000,+)
MARLwWCMA vs UMOEAs 24 4 2 (0.000,+) 21 4 5 (0.000,+) 21 4 5 (0.000,+)
MARLwWCMA vs. AMALGAM-SO 25 2 3 (0.000,+) 23 2 5 (0.003,+) 27 1 2 (0.000,+)
MARLwWCMA vs. LSAOSDE 14 6 10 (0.265,~) 16 5 9 (0.412,~) 23 4 3 (0.002,+)
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TABLE 17. Average rankings of all algorithms for all dimensions of
CEC2014 benchmark problems obtained by Friedman test.

Algorithms Rank for 10D | Rank for 30D | Rank for 50D
LSHADE 4.78 4.37 4.42
SHADE 6.45 6.55 6.27
JADE 6.35 6.83 6.68
CoDE 5.40 6.97 6.98
SaDE 6.97 8.43 8.43
EPSDE 7.82 7.85 7.78
MPEDE 5.72 4.92 5.03
UMOEAs 7.38 7.02 5.92
AMALGAM-SO 7.50 6.38 7.98
LSAOSDE 4.12 3.62 3.97
MARLwCMA 3.52 3.07 2.53

Regarding the quality of solutions, as shown in Table 16,
MARLwWCMA was superior to LSHADE, SHADE, JADE,
CoDE, SaDE, EPSDE, MPEDE, UMOEAs, AMALGAM-SO
and LSAOSDE for 17, 23, 23, 24, 26, 23, 21, 21, 23 and
16 test problems, respectively, similar for 6, 4, 5, 5, 2, 5, 4,
4,2 and 3 and inferior for 7, 3,2, 1,2,2,5,5,5 and 9 test
functions, respectively.

In terms of The Wilcoxon test, as presented in Table 16,
the proposed MARLWCMA algorithm is statistically better
than all other competing algorithms, except LSAOSDE for
which there was no statistically significant difference but
a bias towards MARLwWCMA in terms of the number of
better functions. The Friedman test was also carried out
with the mean rank results presented in Table 17 revealed
that MARLwWCMA is ranked first and LSAOSDE second.
Finally, the performance profiles graph is plotted in Figure 5,
from which it can be seen that the proposed MARLwWCMA
algorithm is better than other algorithm, because it reaches a
probability of 1.0 first at T ~ 32.

3) 50D RESULTS

Table 11 in the supplementary material presents the detailed
results obtained by MARLWCMA and the other algorithms.
The last row of that table indicates the number of best solu-
tions obtained by eavery algorithm in comparison to other
algorithms. MARLwWCMA attains the best results for 19 test
functions, while the number of best solutions achieved by
LSHADE, SHADE, JADE, CoDE, SaDE, EPSDE, MPEDE,
UMOEAs, AMALGAM-SO, and LSAOSDE are 9, 4, 4, 1,
0,3,4,7, 1 and 4 test functions, respectively. For unimodal
functions, MARL obtains the optimal solutions for 02 and
F03 and obtains a very close solution to the optimal for FO1.
UMOEAS obtains the optimal solutions for all the unimodal
functions. Considering the simple multimodal test functions,
the proposed MARLWCMA achieves the best results for
7 test functions, while LSHADE, SHADE, JADE, CoDE,
SaDE, EPSDE, MPEDE, UMOEAs, AMALGAM-SO, and
LSAOSDE obtain the best for 5, 1, 1, 0, 0, 0, 2, 3, 1 and
1 test functions respectively. Considering the hybrid func-
tions, MARLwWCMA is able to obtain the best results for 4 test
functions, while the number of best solutions obtained by
LSHADE, SHADE, JADE, CoDE, SaDE, EPSDE, MPEDE,
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FIGURE 5. Performance profiles of MARLWCMA and the rival algorithms
algorithms based on CEC2014 unconstrained problems for (a)10D
problems; (b) 30D problems; and (c) 50D problems.

UMOEAs, AMALGAM-SO, and LSAOSDE are 2, 0, 0, 0,
0, 0, 0, 0, 0, and O test functions, respectively. Obviously,
the superiority of the proposed MARLwWCMA increased with
the increase of problem dimensions when solving hybrid
functions. Finally, for the composition functions, MARL-
wCMA achieves the optimal solutions for 6 test functions.
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TABLE 18. Summary of comparisons of MARLWCMA against SinDE, CMA-ES-RIS, IDE, CoDE, EPSDE, jDE, SaDE, DE- APC, SHADE and MDE-pBX for 10D, 30D

and 50D test problems taken from CEC2013 competition.

Algorithms 10D 30D 50D

Better | Similar | Worse | P-value, Dec. | Better | Similar | Worse | P-value, Dec. | Better | Similar | Worse | P-value, Dec.
MARLWCMA vs. SinDE 18 6 4 (0.003,+) 24 3 1 (0.000,+) 21 5 2 (0.001,4)
MARLwWCMA vs. CMA-ES-RIS 19 5 4 (0.026,4) 20 3 5 (0.000,+) 20 1 7 (0.002,4)
MARLwWCMA vs. IDE 18 6 4 (0.011,4) 21 5 2 (0.001,+) 21 5 2 (0.000,4)
MARLwWCMA vs. CoDE 25 2 1 (0.000,4) 23 3 2 (0.000,+) 23 3 2 (0.000,4-)
MARLwWCMA vs. EPSDE 19 5 4 (0.002,+) 22 5 1 (0.000,+) 20 5 3 (0.000,+)
MARLwWCMA vs. jDE 19 4 5 (0.011,4) 21 5 2 (0.000,+) 22 5 1 (0.000,+)
MARLWCMA vs. SaDE 18 7 3 (0.006,4) 22 4 2 (0.000,+) 22 3 3 (0.000,+)
MARLwWCMA vs DE-APC 19 6 3 (0.001,4) 24 3 1 (0.000,4) 24 2 2 (0.000,4)
MARLwCMA vs. SHADE 18 8 2 (0.001,4) 21 4 3 (0.000,4) 21 3 4 (0.001,+)
MARLwWCMA vs. MDE-pBX 25 2 1 (0.000,4-) 25 2 1 (0.000,4) 25 2 1 (0.000,+)

Regarding the quality of solutions achieved, MARL-
wCMA was the best of all the algorithms, as confirmed by
the results provided in Table 16. It was superior, inferior and
similar to LSHADE for 18, 7 and 5 test problems, respec-
tively, to JADE for 24, 3 and 3, respectively, to SHADE for 24,
2 and 4, respectively, to CoDE for 25, 3 and 2, respectively,
to SaDE for 28, 1 and 1, respectively, to EPSDE for 26,
3 and 1, respectively, to MPEDE for 24, 3 and 3, respectively,
to UMOEAs for 21, 5 and 4, respectively, to AMALGAM-SO
for 27,2 and 1, respectively, and to LSAOSDE for 23, 3 and 4,
respectively.

Also, to identify the statistical differences among the algo-
rithms, the Wilcoxon test was conducted, with the results
recorded in Table 16 indicating that MARLWCMA was sta-
tistically better than all the others. Moreover, it was ranked
first based on the results obtained from the Friedman test pre-
sented in Table 17. As a further comparison of the algorithms,
a graph of their performance profiles is shown in Figure 5 in
which it is clear that MARLwWCMA attained aratio of 1.0 first
att ~ 91.

F. TESTING MARLwCMA ON ADDITIONAL BENCHMARK
PROBLEMS

This section presents the solutions obtained by MARL-
wCMA for two other sets of 10D, 30D and 50D benchmark
problems taken from the CEC2013 and CEC2015 competi-
tions. Its performances were judged against those of many
well-known algorithms, as previously stated in Section IV.
The comparisons were conducted based on the quality of
the obtained solutions, Friedman test, Wilcoxon test and the
performance profiles graphs.

1) TESTING MARLwWCMA ON CEC2013 PROBLEMS
This benchmark data set has 28 problems in the following
three categories: Fp; — Fps5 are unimodal functions; Foe —
F>o basic multimodal ones; andF,; — F3 composite ones.
Tables 12, 13 and 14 in the supplementary material present
the average and standard deviation values obtained from
MARLwWCMA and the other algorithms for 10D, 30D and
50D problems, respectively. Note that the results of the com-
pared algorithms are taken from their original sources.

For 10D test functions, it can be seen that the proposed
MARLwWCMA obtains the best results in 18 test functions,

194062

while SinDE, CMA-ES-RIS, IDE, CoDE, EPSDE, jDE,
SaDE, DE-APC, SHADE, and MDE-pBX obtain the best
results for 7,9, 4, 2, 5, 5, 3, 6, 6 and 2 test functions, respec-
tively. Considering 30D test problems, the proposed MARL-
wCMA achieves the best results in 22 test functions, while
the best number of solutions obtained by SinDE, CMA-ES-
RIS, IDE, CoDE, EPSDE, jDE, SaDE, DE-APC, SHADE,
and MDE-pBX are 2, 6, 3, 3, 4, 4, 3,2, 5 and 2 test functions,
respectively. Considering the 50D test functions, MARL-
wCMA obtains the best results for 18 test functions. While
SinDE, CMA-ES-RIS, IDE, CoDE, EPSDE, jDE, SaDE, DE-
APC, SHADE, and MDE-pBX attain the best results for 5, 6,
5,3,4,4,2,2,5 and 2 test functions, respectively.

As for 10D unimodal test problems (F01 and FO05),
SinDE, CMA-ES-RIS, IDE, CoDE, EPSDE, jDE, SaDE,
DE-APC, SHADE, MDE-pBX and MARLwWCMA obtain
the best results on 2, 4, 2, 2, 3, 2, 2, 5, 4, 2 and 4 test
functions respectively. For the 10D basic multimodal test
functions (F'06 to F20), SinDE, CMA-ES-RIS, IDE, CoDE,
EPSDE, jDE, SaDE, DE-APC, SHADE, MDE-pBX and
MARLwWCMA achieve the best results on 3, 1, 2, 0, 2, 3,
1, 1,2, 0 and 11 test functions, respectively. Considering
the composition functions (F21 to F28), SinDE, CMA-ES-
RIS, IDE, CoDE, EPSDE, jDE, SaDE, DE-APC, SHADE,
MDE-pBX and MARLwWCMA are able to achieve the best
results on 2, 4, 0, 0, 0, 0, 0, 0, 0, O and 3 test functions,
respectively.

Concerning 30D unimodal test functions (FO1 to FO05),
SinDE, CMA-ES-RIS, IDE, CoDE, EPSDE, jDE, SaDE, DE-
APC, SHADE, MDE-pBX and MARLwWCMA obtain the best
results on 2, 4, 2, 2, 2, 2,2, 2, 2, 2 and 3 test functions,
respectively. For 30D basic multimodal test functions (F06
to F20), SinDE, CMA-ES-RIS, IDE, CoDE, EPSDE, jDE,
SaDE, DE-APC, SHADE, MDE-pBX and MARLwWCMA are
able to attain the best results on 0, 0, 1, 1, 2, 2, 1, 0, 3,
0 and 13 test functions, respectively. Regarding 30D compo-
sition functions (F21 to F28), SinDE, CMA-ES-RIS, IDE,
CoDE, EPSDE, jDE, SaDE, DE-APC, SHADE, MDE-pBX
and MARLwCMA achieve the best results on 0, 2, 0, 0, 0, O,
0, 0, 0, 0 and 6 test functions, respectively.

Regarding to 50D unimodal test functions (FOI to F05),
SinDE, CMA-ES-RIS, IDE, CoDE, EPSDE, jDE, SaDE, DE-
APC, SHADE, MDE-pBX and MARLWCMA are able to
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TABLE 19. Average rankings of all algorithms for all dimensions of
CEC2013 benchmark problems obtained by Friedman test.

Algorithms Rank for 10D | Rank for 30D | Rank for 50D
SinDE 5.68 5.52 4.93
CMA-ES-RIS 6.23 6.68 6.21
IDE 4.16 4.63 4.55
. CoDE 8.77 5.38 6.14
EPSDE 5.71 6.84 7.00
.jDE 6.30 6.68 6.84
SaDE 5.43 6.71 7.02
DE-APC 8.20 8.13 7.89
SHADE 4.48 4.29 4.45
MDE-pBX 8.02 8.79 8.39
MARLwCMA 3.02 2.38 2.57

attain the best results on 2, 3,2, 2,2, 2,2, 2,2, 2,2 and 3 test
functions, respectively. Concerning 30D basic multimodal
test functions (F06 to F20), SinDE, CMA-ES-RIS, IDE,
CoDE, EPSDE, jDE, SaDE, DE-APC, SHADE, MDE-pBX
and MARLwWCMA obtain the best resultson 1, 1, 2, 0, 1, 1,
0, 0, 3, 0 and 10 test functions, respectively. For 30D compo-
sition functions (F21 to F28), SinDE, CMA-ES-RIS, IDE,
CoDE, EPSDE, jDE, SaDE, DE-APC, SHADE, MDE-pBX
and MARLwWCMA achieve the best results on 2, 2, 1, 1, 1,
1, 0,0, 1, 0 and 5 test functions, respectively. Obviously,
it can be concluded from the above analysis, the proposed
algorithm is Superior to other algorithms on basic multimodal
and composition functions, while it comes in the second
position when it used to solve unimodal test functions.

A summary of the comparisons based on the Wilcoxon
test is presented in Table 18 from which it can be concluded
that MARLWCMA achieved the best results for most of
those problems and was also statistically better than all the
other algorithms for all dimensions. Further analysis was
conducted using the Friedman test, with the algorithms’ mean
rankings presented in Table 19. It is evident that the proposed
MARLwWCMA ranked first for all dimensions.

Considering the performance profiles tool, it is clear
that MARLWCMA was better than all the rival algorithms,
as depicted in Figure 6. It was confirmed that it reached
the maximum probability at the beginning and attained
probability values of 1.0 at T &~ 190, 85 and 325 for the 10D,
30D and 50D test problems, respectively.

2) TESTING MARLwWCMA ON CEC2015 PROBLEMS

Similar to the CEC2014 problems, the CEC2015 ones could
be classified in four categories: 1) FO1 — F, are unimodal;
2) Fo3 — Fo5 simple multimodal; 3) Foe — Fog hybrid; and
4) Fo9 — F15 composite.

Tables 15, 16 and 17 in the supplementary material present
the average and standard deviation results obtained from the
proposed MARLwWCMA for the 10D, 30D and 50D test func-
tions, respectively. For 10D test functions, it can be seen that
LSHADE, SHADE, JADE, CoDE, SaDE, EPSDE, MPEDE,
UMOEAs, AMALGAM-SO, LSAOSDE and MARLWCMA
are able to obtain the best results for 8, 6, 6, 7, 4, 4, 6, 6,
4, 6 and 7 test functions, respectively. In regards to 30D test
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FIGURE 6. Performance profiles of MARLWCMA and the rival algorithms
algorithms based on CEC2013 unconstrained problems for (a)10D
problems; (b) 30D problems; and (c) 50D problems.

problems MARLwWCMA is able to obtain the best results for
8 test functions, while LSHADE, SHADE, JADE, CoDE,
SaDE, EPSDE, MPEDE, UMOEAs, AMALGAM-SO and
LSAOSDE are able to obtain the best results for 4, 2, 2, 2, 2,
2,4,4,5, 6 and 8 test functions, respectively. Concerning the
50D test functions, LSHADE, SHADE, JADE, CoDE, SaDE,
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TABLE 20. Summary of comparisons of MARLWCMA against LSHADE, SHADE, JADE, CoDE, SaDE, EPSDE, MPEDE, UMOEAs, AMALGAM-SO and LSAOSDE for

10D, 30D and 50D test problems taken from CEC2015 competition.

Algorithms 10D 30D 50D

Better | Similar | Worse | P-value, Dec. | Better | Similar | Worse | P-value, Dec. | Better | Similar | Worse | P-value, Dec.
MARLwWCMA vs. LSHADE 5 4 6 (0.594,~) 8 2 5 (0.196,~) 10 2 3 (0.013,+)
MARLwWCMA vs. SHADE 7 6 2 (0.110,~) 12 2 1 (0.002,+) 12 2 1 (0.002,+)
MARLwWCMA vs. JADE 7 6 2 (0.038,+) 12 2 1 (0.002,+) 12 2 1 (0.002,+)
MARLwWCMA vs. CoDE 6 6 3 (0.139,~) 11 2 2 (0.004,+) 11 3 1 (0.004,+)
MARLwWCMA vs. SaDE 7 5 3 (0.285,~) 13 1 1 (0.004,+) 14 1 0 (0.001,+)
MARLwWCMA vs. EPSDE 9 4 2 (0.026,+) 11 2 2 (0.023,+) 10 2 3 (0.039,+)
MARLwWCMA vs. MPEDE 4 7 4 (0.889,~x) 8 2 5 (0.294,~) 12 2 1 (0.002,+)
MARLwWCMA vs UMOEAs 8 7 0 (0.012,+) 10 3 2 (0.009,+) 10 3 2 (0.008,+)
MARLwWCMA vs. AMALGAM-SO 11 3 1 (0.008,+) 10 2 3 (0.032,+) 10 2 3 (0.028,+)
MARLwWCMA vs. LSAOSDE 4 7 4 (1.000,~) 6 4 5 (0.695,~) 9 4 2 (0.043,+)

EPSDE, MPEDE, UMOEAs, AMALGAM-SO, LSAOSDE
and MARLwCMA achieve the best results for 3, 2,2, 1, 1, 4,
2,3, 3, 4 and 8 test functions, respectively.

Based on the number of best results, it can be concluded
that, MARLWCMA performs well in all dimensions, espe-
cially for problems with 30D and 50D. While LSHADE,
SHADE, JADE, CoDE, MPEDE, UMOEAs and LSAOSDE
perform well in problems with 10D, but their performance
deteriorate for the higher dimensions.

Regarding the quality of solutions, Table 20 provides
a summary of the results obtained by the proposed
MARLwWCMA which shows that it outperformed all the other
algorithms considered with respect to the number of better
solutions. Based on the Wilcoxon test results, it was better
than most of the other algorithms for the 10D and 30D test
problems and superior to all of them for the 50D ones.

Regarding the attained solutions’ quality, Table 20 presents
the summary of the results obtained by the proposed
MARLwWCMA. The results showed that MARLwWCMA out-
performed all other algorithms considered in the compari-
son with respect to the number of better solutions obtained.
Considering the Wilcoxon test, the proposed MARLWCMA
was statistically better than most of the other algorithms
in 10D and 30D, while it is superior to all other algorithms
for 50D test problems.

Considering the Friedman test results, MARLWCMA was
ranked first for the 30D and 50D test problems and second
for the 10D ones, slightly behind the first-ranked algorithm
(LSAOSDE).

Finally, it is clear from from the performance profiles
graphs that MARLwWCMA was better than all the other algo-
rithms, as depicted in Figure 7. It was confirmed that it
achieved the maximum probability at the start and reached
probability values of 1.0 at T & 17, 4.5 and 7.5 for the 10D,
30D and 50D test functions, respectively.

G. TESTING MARLwCMA ON HIGHER DIMENSIONS
In this section, the performance of the proposed
MARLwWCMA is tested by solving optimization problems
100D including, CEC2014 and CEC2017.

For the CEC2014 test problems, the proposed MARL-
wCMA is compared with the following algorithms:

« Self-adaptive of DE control parameters (jDE) [73];

« Success History based DE (SHADE) [23];
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o Success History based DE with linear population size
reduction (LSHADE) [24];

« DE with composite trial vector generation strategies
(CoDE) [41];

« DE with an ensemble of parameters and mutation strate-
gies (EPSDE) [42];

o Improved variant
(jSO) [26];

« Adap-tive DE with optional external archive with Auto
Enhanced Population Diversity (AEPD-JADE) [81];

o Self-adaptive Differential Evolution with crossover
neighborhood (DE-VNS) [82];

of the iL-SHADE algorithm

« A sinusoidal differential evolution algorithm
(SinDE) [74];
« DE with an individual-dependent mechanism
(IDE) [76];

o Enhanced fitness-adaptive differential evolution algo-
rithm with novel mutation with elites regeneration
(ERG-EFADE) [83];

o Improved L-SHADE algorithm (iL-SHADE) [25];

o L-SHADE with Competing Strategies (LSHADE44)
[84];

« Multi-population ensemble DE (MPEDE) [57]; and

« Ensemble of multiple DE variants (EDEV) [38].

The mean of the error obtained by MARLwWCMA,
DE-VNS, APED-JADE, sinDE, MPEDE, EDEYV, iLSHADE,
LSHADE44, and LSHADE is presented in Tables 18 and
19 in the supplementary material file. From this table,
it can be seen that, DE-VNS, APED-JADE, sinDE, MPEDE,
EDEYV, iLSHADE, LSHADE44, LSHADE and MARL-
wCMA obtain the best results for 0, 5, 4, 4, 4, 5, 1, 7 and
12 test functions, respectively. Concerning the unimodal
functions (F01 to F03), MARLwWCMA, DE-VNS, APED-
JADE, sinDE, MPEDE, EDEYV, iLSHADE, LSHADE44, and
LSHADE obtain the best results for 0, 0, 0, 1, 1, 2, 0, 1 and
2 test functions, respectively. This confirms the superiority
of the proposed algorithm for solving unimodal functions.
For the simple multimodal functions (¥04 to F16), the pro-
posed MARLwWCMA achieves the best results for 2 test
functions, while DE-VNS, APED-JADE, sinDE, MPEDE,
EDEYV, iLSHADE, LSHADE44, and LSHADE obtain the
best results for 0, 4, 2, 2, 1, 2, 1 and 6. It can be concluded
that, LSHADE and APED-JADE are better than MARL-
wCMA when solving multimodal functions. In regards to
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FIGURE 7. Performance profiles of MARLWCMA and the rival algorithms
algorithms based on CEC2015 unconstrained problems for (a)10D
problems; (b) 30D problems; and (c) 50D problems.

hybrid functions (F17 and F22) and composition func-
tions (F23 to F30), the proposed MARLWCMA attains the
best results for 8 test function, while DE-VNS, APED-
JADE, sinDE, MPEDE, EDEYV, iLSHADE, LSHADE44, and
LSHADE achieve the best results for 0, 1, 2, 1, 2, 1, 0,
and 0. Obviously, from the above analysis, the proposed
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TABLE 21. Average rankings of all algorithms for all dimensions of
CEC2015 benchmark problems obtained by Friedman.

Algorithms Rank for 10D | Rank for 30D | Rank for 50D
LSHADE 5.00 5.37 4.03
SHADE 5.80 6.70 6.83
JADE 7.00 7.70 7.50
CoDE 5.70 6.33 7.23
SaDE 6.90 7.60 7.73
EPSDE 7.20 8.07 7.83
MPEDE 5.10 4.67 5.67
UMOEAs 6.90 6.33 6.40
AMALGAM-SO 7.53 5.70 5.30
LSAOSDE 4.23 4.00 4.53
MARLwCMA 4.63 3.53 2.93

MARLwWCMA is suitable to solve unimodal, hybrid and com-
position functions, while it performs poorly for the multi-
modal test functions.

Considering the quality of solutions, Table 22 presents a
summary of the results produced by the proposed MARL-
wCMA and the rival algorithms. It is clear from that table
that the proposed algorithm outperformed all the compet-
ing algorithms. The proposed MARLWCMA is better than
DE-VNS, AEPD-JADE, sinDE, MPEDE, EDEV, ILSHADE,
LSHADE44, LSHADE, CoDE, EPSDE, jSO, jDE, IDE
ERG-EFADE and SHADE for 24, 19, 18, 19, 17, 17, 21,
19, 29, 28, 18, 21, 22, 26 and 20 test problems, respectively,
worse than them in 6, 10, 11, 8, 8,9, 8, 10, 1, 1, 10, 9, 7, 4,
and 9 test functions respectively.

In regards to the Wilcoxon test, the proposed algorithm is
statistically better than DE-VNS, sinDE, MPEDE, LSHADE,
LSHADE44, CoDE, EPSDE, jDE, IDE, ERG-EFADE and
SHADE, while there is no siginicance difference with AEPD-
JADE, EDEV, iL-SHADE and jSO. However, there is a bias
toward the proposed algorithm (MARLwCMA) as it obtains
better results than them in most of the test problems. As a
further analysis, the Friedman test is conducted to rank all
algorithms with the obtained results presented in Table 23.
From Table 23, it is clear that the proposed MARLwWCMA
is ranked first followed by ILSHADE while CoDE comes on
the last position.

For CEC2017 test problems, the performance of the pro-
posed MARLwWCMA has been tested and compared with the
performance of the following algorithms:

« Effective butterfly optimizer with co-variance matrix
adapted restart phase (EBOwWCMAR) winner of
CEC2017 competition [85];

o Improved DE with population size adaptation (IDEw-
PSA) [86];

« Ensemble sinusoidal differential covariance matrix
adaptation with euclidean neighborhood (LSHADE-
cnEpSin) [27];

« LSHADE with rank-based selective pressure algorithm
(LSHADE-RSP) [30];

o« LSHADE algorithm with an alternative adaptation
approach for the selection of control parameters
(LSHADE-SPA) [29];
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TABLE 22. Summary of comparisons of MARLWCMA against DE-VNS,
AEPD-JADE, sinDE, MPEDE, EDEV, ILSHADE, LSHADE44, LSHADE, CoDE,
EPSDE, jSO, jDE, IDE, ERG-EFADE, and SHADE for 100D test problems
taken from CEC2014 competition.

Algorithms Better | Equal | Worse | P-value, Dec.
MARLwWCMA vs. DE-VNS 24 0 6 0.003, +
MARLwWCMA vs. AEPD-JADE 19 1 10 0.098, ~
MARLWCMA vs. sinDE 18 1 11 0.045, +
MARLwWCMA vs. MPEDE 19 3 8 0.024, +
MARLwWCMA vs. EDEV 17 5 8 0.166, ~
MARLwWCMA vs. ILSHADE 17 4 9 0.112, =~
MARLwWCMA vs. LSHADE44 21 1 8 0.006, +
MARLwWCMA vs. LSHADE 19 1 10 0.011, +
MARLWCMA vs. CoDE 29 0 1 0.000, +
MARLwWCMA vs. EPSDE 28 1 1 0.000, +
MARLWCMA vs. jSO 18 2 10 0.339, =~
MARLwWCMA vs. jDE 21 0 9 0.004, +
MARLwWCMA vs. IDE 22 1 7 0.001, +
MARLwWCMA vs. ERG-EFADE 26 0 4 0.000, +
MARLwWCMA vs. SHADE 20 1 9 0.012, +

TABLE 23. Average ranking of all algorithms for 100D of
CEC2014 benchmark problems obtained by Friedman Test.

Algorithm Rank
MARLwWCMA | 5.05

DE-VNS 9.32
AEPD-JADE 6.75
sinDE 7.38
MPEDE 7.77
EDEV 6.25

ILSHADE 5.93
LSHADE44 7.85
LSHADE 7.00

CoDE 14.95
EPSDE 1248
iSO 6.28
iDE 9.17
IDE 942
ERG-EFADE | 10.85
SHADE 955

o Multi-method based orthogonal experimental design
algorithm (MM-OED) [9];

« SHADE with Distance based parameter adaptation
(DISH) [87];

o Improved variant
(GSO) [26];

e An enhanced version of IPOP-CMA-ES (RB-IPOP-
CMA-ES) [88];

o Parameter Adaptive Differential Evolution With Novel
Parameter Control (PaDE-NPC) [89];

« Tow phase DE (TPDE) [90];

In CEC2017, there are 29 test problems, which they
used to test the performance of the proposed algorithm.
The average of the error and the standard deviations
are presented in Table 20 in the supplementary material
file. From this table, EBOWCMAR, IDEwPSA, LSHADE-
cnEpSin, LSHADE-RSP, LSHADE-SPA, MM-OED, DISH,
jSO, RB-IPOP-CMA-ES, PaDE-NPC, TPDE and MARL-
wCMA achieve the best results on 2, 0, 7, 4, 4, 5, 3, 1,
3, 2, 6 and 10 test problems, respectively. Considering the
unimodal (FO1 and F03) and simple multimodal functions

of the iL-SHADE algorithm
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(F04 to F10), MARLWCMA achieves the best results for
6 test functions, while EBOWCMAR, IDEwPSA, LSHADE-
cnEpSin, LSHADE-RSP, LSHADE-SPA, MM-OED, DISH,
jSO, RB-IPOP-CMA-ES, PaDE-NPC, TPDE obtain the best
results on 1, 3,4, 3,2, 1, 1, 2 and 1 test functions, respec-
tively. Considering the hybrid functions (F'11 to F20) and
composition functions (F21 to F30), the proposed MARL-
wCMA algorithm achieve the best results for 4 test func-
tions, while EBOWCMAR, IDEwPSA, LSHADE-cnEpSin,
LSHADE-RSP, LSHADE-SPA, MM-OED, DISH, jSO, RB-
IPOP-CMA-ES, PaDE-NPC, TPDE attain the best results
for 1,0,4,0, 1, 3, 1, 0, 1, 0, 4 test functions, respectively.
It is obvious that, MARLWCMA, LSHADE-cnEpSin and
TPDE have the same performance when solving the hybrid
and composition functions, as the number of best solutions
obtained from each of these algorithms are equal.

Table 24 presents the summary of the results obtained
from MARLWCMA, EBOwWCMAR, IDEwPSA, LSHADE-
cnEpSin, LSHADE-RSP, LSHADE-SPA, MM-OED, DISH,
jSO, RB-IPOP-CMA-ES, PaDE-NPC, and TPDE. Consid-
ering the quality of solutions, it is clear from that table
that the proposed algorithm outperformed all the compet-
ing algorithms. The proposed MARLWCMA is better than
EBOwWCMAR, IDEwPSA, LSHADE-cnEpSin, LSHADE-
RSP, LSHADE-SPA, MM-OED, DISH, jSO, RB-IPOP-
CMA-ES, PaDE-NPC, and TPDE for 21, 29, 15, 15, 16,
22, 16, 18, 19, 22 and 17 test problems, respectively. While
it is worse than them in 7, 0, 12, 13, 12, 7, 13, 11, 8§,
7 and 12 test functions respectively. The proposed MARL-
wCMA obtains similar results to EBOwCMAR, IDEw-
PSA, LSHADE-cnEpSin, LSHADE-RSP, LSHADE-SPA,
MM-OED, DISH, jSO, RB-IPOP-CMA-ES, PaDE-NPC, and
TPDE for 1, 0, 2, 1, 1, 0, 0, 0, 1, 0 and O test problems,
respectively.

Considering the Wilcoxon test, the proposed MARL-
wCMA algorithm is statistically better than EBOwC-
MAR, IDEwPSA, MM-OED, jSO, RB-IPOP-CMA-ES and
PaDE-NPC, while there is no significance difference with
LSHADE-cnEpSin, LSHADE-RSP, LSHADE-SPA, DISH
and TPDE. However, there is a bias toward the proposed
algorithm (MARLwWCMA) as it obtains better results than
them in most of the test problems.

As afurther analysis, the Friedman test is conducted to rank
all algorithms with the obtained results presented in Table 25.
From Table 25, it is clear that the proposed MARLWCMA is
ranked first followed by DISH while IDEwPSA comes on the
last position.

H. TESTING PERFORMANCE OF MARLwCMA ON
REAL-WORLD APPLICATIONS

In this section, the performance of the proposed MARL-
wCMA is further examined by solving a benchmark test set
that has 22 real-application problems taken from CEC2011.
The proposed algorithm was run following the guideline of
the competition that required 25 independent runs for each
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TABLE 24. Summary of comparisons of MARLWCMA against EBOWCMAR,
IDEwWPSA, LSHADE-cnEpSin, LSHADE-RSP, LSHADE-SPA, MM-OED, DISH,
jSO, RB-IPOP-CMA-ES, PaDE-NPC, and TPDE for 100D test problems taken
from CEC2017 competition.

Algorithms Better | Equal | Worse | P-value, Dec.
MARLwWCMA vs. EBOWCMAR 21 1 7 0.036, +
MARLWCMA vs. IDEwPSA 29 0 0 0.000, +
MARLWCMA vs. LSHADE-cnEpSin 15 2 12 0.337, ~
MARLwWCMA vs. LSHADE-RSP 15 1 13 0.345, ~
MARLWCMA vs. LSHADE-SPA 16 1 12 0.255, ~
MARLwWCMA vs. MM-OED 22 0 7 0.015, +
MARLwWCMA vs. DISH 16 0 13 0.325, ~
MARLWCMA vs. jSO 18 0 11 0.042, +
MARLwWCMA vs. RB-IPOP-CMA-ES 19 1 8 0.005, +
MARLWCMA vs. PaDE-NPC 22 0 7 0.009, +
MARLwWCMA vs. TPDE 17 0 12 0.304, =

TABLE 25. Average ranking of all algorithms for 100D of
CEC2017 benchmark problems obtained by Friedman Test.

Algorithm Rank
MARLwCMA 4.71
EBOwWCMAR 6.30
IDEwPSA 11.43

LSHADE-cnEpSin 5.64
LSHADE-RSP 5.66
LSHADE-SPA 5.86

MM-OED 6.27
DISH 5.14

iSO 6.96
RB-IPOP-CMA-ES 6.95
PaDE-NPC 7.59
TPDE 5.48

problem with a maximum number of fitness evaluations equal
to 150000.

The performance of the proposed MARLwWCMA algorithm
is compared with the following algorithms:

« ADDE: An adaptive distributed DE algorithm [91];

o CDASA: A continuous DE ant-stigmergy algorithm [];

o CloudeDE: A distributed Cloude DE [92];

o AsAMP-dDE: An asynchronous adaptive multi-population

model for distributed DE [93];

« DDE-SD: A (distributed DE with space driven
topology [94];

« DDEM-RCA: A distributed DE with migration
strategy [95];

o CoDE: DE with composite trial vector generation
strategies [41];

« SaDE: DE algorithm with an adaptation strategy [72];

« jDE: A self-adaptive of DE control parameters [73];

« DE-DPS: DE with dynamic parameters selection [96];

o JADE: An adaptive DE with optional external
archive [22].

o JADE-sort: An adaptive DE with sorting crossover
rate [97];

o SHADE: A success History based DE [23]

« EPSDE: DE with an ensemble of parameters and muta-
tion strategies [42];

« IDE: DE with an individual-dependent mechanism [76];
and
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FIGURE 8. Performance profiles of MARLWCMA and the rival algorithms
algorithms for 100D problems for (a) CEC2014 and (b) CEC2017.

e jSO: an improved variant of the iL-SHADE
algorithm [26];

Tables 21 and 22 in the supplementary file presents the
results obtained from the proposed MARLWCMA and the
competing algorithms. Concerning the quality of the results,
Table 26 presents the summary of the results. It is clear from
Table 26 that the proposed MARLwWCMA obtain better results
than ADDE, IBDDE, CloudeDE, AsAMP-bDE, DDE-SD,
DDEM-RCA, CoDE, SaDE, jDE, DE-DPS, JADE, JADE-
sort, SHADE, EPSDE, IDE and jSO for 13, 19, 18, 18, 15,
18, 16, 17, 17, 18, 15, 15, 14, 15, 16 and 15 test problems,
respectively, it obtains worse results than them for 5, 1, 2, 2,
3,2,4,3,3,2,5,5,5. 4,4, and 4 test problems, respectively.
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TABLE 26. Summary of comparisons of MARLWCMA against ADDE,
IBDDE, CloudeDE, AsSAMP-BDE,DDE-SD, DDEM-RCA, CoDE, SaDE, jDE.
DE-DPS, JADE, JADE-sort, SHADE, EPSDE, IDE and jSO for test problems

TABLE 28. Algorithm complexity.

taken from the CEC2011 competition. Benchmark D To T Ts @
CEC2013 D =10 | 0.14379 | 041211 | 1.43070 | 7.08398
Algorithms Better | Equal | Worse | P-value, Dec. D =30 1.32658 3.33580 13.97350
MARLWCMA vs. ADDE 13 4 5 0.078, ~ D =150 2.23885 | 5.07180 | 19.70228
MARLWCMA vs. IBDDE 19 3 1 0.000, + D =100 4.38432 | 9.24170 | 33.78151
MARLWCMA vs. CloudDE 18 2 2 0.001, + CEC2014 D =10 | 0.14379 | 0.13433 | 2.86090 | 18.96246
MARLWCMA vs. AsAMP-bDE 18 2 2 0.001, + D =30 0.42763 | 3.74530 [ 23.07332
MARLwCMA vs. DDE-SD 15 4 3 0.004, + D =50 0.99038 5.15310 28.95041
MARLwWCMA vs. DDEM-RCA 18 2 2 0.001, + D =100 371774 9.39430 39.47868
MARLwWCMA vs. CoDE 16 2 4 0.004, + CEC2015 D =10 | 0.14379 | 0.22904 | 0.25491 0.17995
MARLwWCMA vs. SaDE 17 2 3 0.001, + D =30 0.95557 1.47280 3.59716
MARLwWCMA vs. jDE 17 2 3 0.002, + D =50 1.93863 | 3.62640 | 11.73793
MARLwCMA vs. DE-DPS 18 2 2 0.001, + D =100 5.81775 | 8.96860 | 21.91320
MARLwWCMA vs. JADE 15 2 5 0.008, +
MARLwWCMA vs. JADE-sort 15 2 5 0.021, +
MARLwWCMA vs. SHADE 14 3 5 0.024, +
MARLwWCMA vs. EPSDE 15 3 4 0.008, + CEC2017. As defined in [18]-[20], Ty is the time calculated
MARLwWCMA vs. IDE 16 2 4 0.011, + . . .
MARLWCMA vs. jSO 5 3 7 0.008 + when running the code in Algorithm 5.

TABLE 27. Average ranking of all algorithms for of CEC2011 benchmark
problems obtained by Friedman Test.

Algorithm Rank
MARLwWCMA | 3.95
ADDE 4.43
IBDDE 15.00
CloudDE 10.77
AsAMP-bDE | 12.43
DDE-SD 8.64
DDEM-RCA 13.73
CoDE 7.25
SaDE 9.68
JDE 9.91
DE-DPS 12.68
JADE 9.80
JADE-sort 6.80
SHADE 6.55
EPSDE 9.14
IDE 6.82

SO 4.93

It can be concluded that the proposed MARLWCMA is supe-
rior to the competing algorithms.

From the Wilcoxon test, as it is clear from Table 26,
the proposed MARLwWCMAA is statistically superior to all the
competing algorithms. While there is no statistical difference
between the proposed algorithm MARLWCMA and ADDE
for significance level=0.05, however, there is a significance
difference when the significance level=0.10.

As a further analysis, the Friedman test is conducted in
order to rank all the competing algorithms, with the results
depicted in Table 27. From this table, the proposed MARL-
wCMA is ranked first, followed by ADDE. While DE-DPS
performs the worst.

I. ALGORITHM COMPLEXITY

In this section, the complexity of the proposed MARLWCMA
algorithm was computed following the competitions guide-
line in [18]—[20]. Table 28 presents the time complexity of the
proposed MARLwWCMA calculated for 10D, 30D, 50D and
100D in CEC2013 [18], CEC2014 [19], CEC2015 [20] and
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Algorithm 5 Algorithm Complexity
1: for i =1:1000000 do

2 x=x+x;x =)
3 x =log(x);

4 x =expkx);

50 x=x/(x+2)

6: end for

Ty is the time of executing 200,000 evaluations of the
benchmark functions F 14, F18, F'1 and F'18 for CEC2013,
CEC2014, CEC2015 and CEC2017, respectively. T is the
time to run the proposed MARLwWCMA for 200000 function
evaluations for the selected functions in D dimensions, fz is
the average of 7> values of 5 runs. It can be concluded from
Table 28 that, the computational time is reasonably small and
linearly increases as the problem dimensions increase.

V. CONCLUSION AND FUTURE WORK

While several EAs have been developed to solve optimization
problems, the literature reveals that no single search operator
and/or algorithm can successfully solve all forms of opti-
mization problems. As a consequence, several multi-operator
and/or multi-method-based algorithms have been introduced.
Their structures were largely based on trial and error tech-
niques and, furthermore, their efficiency could be statisti-
cally surpassed by single-operator algorithms. As a result,
we proposed a new multi-method framework including a
multi-operator DE and CMA-ES, with the SQP local search
algorithm applied in the later generations of the optimization
process. In the multi-operator DE, a RL technique was used to
select the most suitable mutation operator based on the diver-
sity and quality of solutions. The performance of the proposed
algorithm was judged by solving 73 bound-constrained opti-
mization problems with 10, 30 and 50 variables. It also used to
solve optimization problems with higher dimensions (100D)
taken from CEC2014 and CEC2017. The performance of the
proposed algorithm is further tested by solving real-world
application problems taken from CEC2011 benchmark
problems.
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The computational results and statistical analysis revealed
that MARLWCMA was statistically superior to its constituent
algorithms for the 10D, 30D and 50D problems considered.
It was also compared with state-of-the-art algorithms and
demonstrated its superiority.

Itis concluded that the proposed MARLWCMA was able to
produce better results than other algorithms, as it was able to
effectively place emphasis on the well-performing operator
during the optimization process. This effective selection of
operators (refer to Figure 2) was due to the proper utilization
of reinforcement learning. Further, the right selection of oper-
ators and algorithms to be involved in the framework provided
complementary search capabilities. This, in turn, increased
MARLwWCMA's ability to obtain better solutions for different
problem types.

On the other hand, one limitation of the proposed approach
was the number of parameters that required tuning. This,
in fact, opens a new future research direction; that is,
how to propose an adaptive mechanism that adapts these
parameters during the optimization process. Other possi-
ble future research directions could be: (1) adapting RL to
select the best-performing algorithm among several under a
single-algorithm framework; (2) adopting the algorithm to
solve other types of test problems, i.e., constrained and/or
integer; and (3) evaluation the scalability of the proposed
approach.
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