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ABSTRACT In this study, a vehicle localization techniquewas employed to determine the required quantities
in the identification of battery models by considering the behavior of multiple batteries instead of data
from a single battery. In previous studies, a plant (e.g., a battery, motor, super-capacitor, or fuel cell) was
identified based on a single piece of data. However, such an approach is disadvantageous in that it neglects
the effect of process and measurement noise and assumes that the parameters obtained using data from
a single plant are identical for all plants of the same type. First, deterministic parameter estimation (DPE),
particle swarm optimization (PSO), and teaching-learning-based optimization (TLBO) were initially applied
to estimate the battery model parameters using data from a single battery. Second, a fusion-based approach
was used to address the process and measurement noise problems through an adaptive unscented Kalman
filter algorithm. With this approach, maximum likelihood estimation was employed to fuse multiple-battery
data streams to enable the DPE, PSO, and TLBO to recalculate the model parameters based on filtered
and fused quantities. A comparison between the experimental results and model outputs obtained using the
aforementioned methods for parameter estimation indicated that the proposed multiple-battery approach
enhances the accuracy of several identification methods. In contrast, it requires a high computational effort.

INDEX TERMS Universal adaptive stabilizer (UAS), particle swarm optimization (PSO), teaching-learning-
based optimization (TLBO), unscented Kalman filter (UKF), maximum likelihood estimation (MLE).

I. INTRODUCTION
Lithium batteries are widely used in various fields. Accord-
ingly, their price is anticipated to decrease over time as the
market for this type of batteries further grows [1]. According
to [2], lithium batteries are preferred over conventional batter-
ies because they are lightweight, have a high energy density,
and can operate within a wide temperature range. However,
according to [3], over-discharging these batteries can result in
thermal runaway. Therefore, to protect lithium batteries from
damage [4], techniques for the accurate estimation of battery
capacity are extensively discussed in the literature. In these
techniques, battery models are useful tools. In [5], a Luen-
berger observer was employed to estimate model parameters
and capacity in real time, in which the effect of noise was
compensated using adaptive forgetting recursive total least
squares. In [6], the battery capacity was accurately estimated
in real time using an extended Kalman filter (EKF). In addi-

The associate editor coordinating the review of this manuscript and

approving it for publication was Yue Zhang .

tion, the process and measurement noise covariances were
identified using the maximum likelihood estimation (MLE).
Note that the EKF requires model linearization by computing
the Jacobian matrices, which degrades the ability of this
technique to determine the optimal estimate [7]. As reported
in [8], some studies assumed linearity of the battery models.
In [9], the linearization problem was solved using an adaptive
unscented Kalman filter (UKF) algorithm. In [10], a parti-
cle filter (PF) was applied to estimate the battery capacity.
The battery model was utilized without linearization in the
UKF and PF algorithms. Battery models have a key function
in battery management systems (BMSs) to ensure safe and
reliable performance, as reported in [11] and [12]. Unlike
BMSs, a battery model is also required in algorithms for
charging control [13]. In addition, different battery models
perform important functions in power management algo-
rithms to extend the battery lifetime. In the example presented
in [14], a model predictive control was employed to enable
fast super-capacitor discharge; however, the battery response
was retarded.
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Generally, a model is formulated via two main approaches,
namely complex and simplistic approaches [15]. In a com-
plex model, nonlinear differential equations are formu-
lated from a physical perspective. In contrast, a simplistic
model is expressed as a linear time-invariant representation.
In the field of battery modeling, complex representations
are preferred over simplistic approaches. The electrochem-
ical models reported in [16] constituted the first type of
battery model formed using numerous partial differential
equations. The second type includes mathematical models
whose main disadvantage is the high computational time
required when used with PF algorithms, as reported in [17].
Finally, the third type comprises equivalent circuit models,
which are considered simple in terms of model implemen-
tation. In [18], the Chen–Mora model is an example of an
equivalent circuit representation. The present study aimed
to estimate the parameters of this model accurately. In [19]
and [20], the Chen–Mora model parameters for a lithium-ion
battery pack were estimated using deterministic parameter
estimation (DPE) in the form of a universal adaptive stabi-
lizer (UAS) and a constrained optimization technique. The
estimated parameters of a single battery were assumed to be
identical for all batteries of the same type; however, this is not
entirely the case. Moreover, greater parameter accuracy may
be achieved when the noise effects and behavior of multiple
batteries are considered.

In previous studies, single-battery data were frequently
used to estimate the parameters of battery models. An exam-
ple is described in [21], in which an adaptive observer was
employed to estimate the electrochemical model parameters
of a lithium-ion battery. Although this method requires large
battery packs with a highly varying current profile, its main
advantage is that it can reduce the computational time by
splitting a complex model into four subsystems. In [22],
the authors employed the forgetting factor, recursive least-
squares estimation (RLSE), and the time-variant transfer
function of the single RC-model to obtain the parameters of
a battery. However, the RLSE algorithm used in that study
neglected the effects of measurement noise on the results,
whereas some forms of RLSE discussed in [7] considered
the effects of noise, given that no measurement is perfect.
In [23], a genetic algorithm was applied to determine the
battery model parameters based on data from a single bat-
tery. Similarly, the EKF approach was proposed in [24] and
[25] to estimate the battery capacity and model parameters.
In this approach, the Jacobian evaluation remains the main
problem. In [26], an artificial neural networkwas employed to
model a lithium-polymer battery cell, in which the extremely
large training data were the main difficulty. In [27], the bat-
tery model parameters were estimated in real time; how-
ever, the proposed technique required proper initialization for
faster convergence.

Practically, identification tests of similar batteries yield
parameter sets that are not identical but are relatively close.
Accordingly, the following question arises: Which param-
eter set should be selected to run the model? In view of

this question, a fusion technique is necessary to average the
required quantities in the identification process. Signal fusion
techniques are extensively applied in localization problems
by averaging two or more data streams to delimit a vehicle.
An EKFwas applied to fuse an inertial measurement unit with
a pipeline inspection gauge in [28]. In [29], the data obtained
using two global positioning system (GPS) sensors were aver-
aged using MLE with the assumption that the measurement
noise covariances were known. In the present study, the MLE
fusion technique discussed in [29] was employed to average
the estimated terminal voltages according to their associ-
ated measurement noise covariances. Similarly, the estimated
capacities yielded by the adaptive UKF algorithm were fused
using the MLE approach. Based on the merged quantities,
the parameters were recalculated. Therefore, such a method,
which combines data from multiple batteries, is meaningful
for modeling battery units.

The procedure developed in this study can be summa-
rized as follows. First, the parameters of the open-circuit
voltage equation were estimated using voltage relaxation
tests and curve fitting. Subsequently, DPE, particle swarm
optimization (PSO), and teaching-learning-based optimiza-
tion (TLBO) were used to estimate the remaining model
parameters from single-battery data. Second, an adaptive
UKFwas applied to estimate the battery model output, capac-
ity, and dynamic process and measurement noise covariances
for the data of each battery. Note that the initial process
and measurement noise covariances were identified using an
optimization routine to initiate the adaptive noise estimator
equations in the UKF algorithm. Third, the estimated battery
terminal voltages were fused according to their measurement
noise covariances using the MLE method. In contrast, each
capacity state estimated by the adaptive UKF was fused with
related quantities from other battery data based on their asso-
ciated process noise covariances using the MLE technique.
Consequently, DPE, PSO, and TLBO were employed again
to estimate the model parameters using the filtered and fused
quantities instead of the directly measured quantities of a
single battery. In a future study, the effects of temperature and
aging on battery modeling will be considered. Nevertheless,
even if these effects are neglected, battery modeling remains
problematic.

To the best of the author’s knowledge, no results simi-
lar to those presented in this paper have been previously
reported. The remainder of this paper is organized as fol-
lows. Section II introduces the background of the Chen–Mora
battery equivalent circuit model. Section III illustrates the
standard deterministic and stochastic parameter estimation
techniques. Section IV demonstrates the fusion-based param-
eter estimation approach. SectionV presents the experimental
results. Section VI concludes this study.

II. DISCRETE BATTERY MODEL
In this section, the background of the Chen–Mora equivalent
circuit battery model [18], shown in Fig. 1, is discussed. The
continuous form found in [19] and [20] is discretized using
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FIGURE 1. Chen–Mora equivalent circuit model.

the Euler method [30] because the UKF algorithm requires a
discrete model. The resulting discrete model is expressed by
Eqs.(1)–(4).

ρk+1 = ρk −
1

Cc
ik , Cc = 3600Cf1f2f3 (1)

In Eq.(1), the battery capacity (ρ) ∈ [0, 1] is obtained
using the Coulomb-counting technique described in [31],
where the battery current and time step are denoted by i and
1, respectively. The total battery storage is represented by
Cc in Ampere-hours (A-hr). Moreover, the effects of tem-
perature, charging/discharging cycles, and self-discharge are
modeled by f1, f2, and f3 in the [0, 1] range, respectively. The
aforementioned quantities are assumed to be 1 under normal
conditions.

θk+1 =
(

−1
Rts(ρk )Cts(ρk )

+ 1
)
θk +

1

Cts(ρk )
ik (2)

λk+1 =
(

−1
Rtl (ρk )Ctl (ρk )

+ 1
)
λk +

1

Ctl(ρk )
ik (3)

yk = E0(ρk )− θk − λk − Rs(ρk )ik (4)

In Eqs. (2) and (3), the voltages across Rts||Cts and Rtl ||Ctl
are represented by θ and λ, respectively. Both states are
positive real quantities with the following initial conditions:
θ0 = 0 and λ0 = 0. Note that themodel elements (i.e.,Rts,Rtl ,
Cts, Ctl , and Rs) are described by Eqs.(6)–(10). As discussed
in [20], each model element is a ρ-dependent quantity, and it
has stable or unstable values when the calculated value of ρ
is high or low, respectively. The model output (y) is described
by Eq.(4), where the battery open-circuit voltage (E0) and
the internal resistance (Rs) are given by Eqs.(5) and (10),
respectively. As reported in [32], the model parameters α1–
α21 are constants that satisfy α14 < α17 < α15 < α13 <

α18 < α16. The stability of this battery model was discussed
in [19] and [33], where the stability was determined using
two real thresholds, α1–α21, and ρ. Accordingly, the model is
declared in stable, asymptotically stable, or unstable regions.

E0(ρk ) = −α1e(−α2ρk ) + α3 + α4ρk − α5ρ2k + α6ρ
3
k (5)

Rts(ρk ) = α7e(−α8ρk ) + α9 (6)

Rtl(ρk ) = α10e(−α11ρk ) + α12 (7)

Cts(ρk ) = −α13e(−α14ρk ) + α15 (8)

Ctl(ρk ) = −α16e(−α17ρk ) + α18 (9)

Rs(ρk ) = α19e(−α20ρk ) + α21 (10)

A battery model can be lumped into the simple repre-
sentation given by Eq.(11), for which the process function,
denoted by f (·), and measurement function, denoted by h(·),
are described by the state andmeasurement equations, respec-
tively. The process noise (w) and measurement noise (v) are
assumed to be independent normal Gaussian distributions
with zero mean and covariance, Q and R, respectively. Fur-
thermore, x denotes the model state.

xk+1 = f (xk , ik )+ wk , w ∼ N (0,Q)
yk = h(xk , ik )+ vk , v ∼ N (0,R)

}
(11)

III. PARAMETER ESTIMATION METHODS
In this section, deterministic and stochastic approaches for
battery model parameter estimation are briefly explained.
A method is considered ‘‘deterministic’’ when it exhibits
mathematical convergence analyses that demonstrate its abil-
ity to drive the error to zero as time approaches infinity.
In contrast, a method is considered ‘‘stochastic’’ when it uses
a set of empirical procedures to determine the minimum cost.
Note that stochastic methods exhibit no mathematical conver-
gence analyses; alternatively, they are proven via benchmark
functions. Note also that the process and measurement noises
are neglected within the standard structure of deterministic
and stochastic methods, i.e., w = 0 and v = 0.

A. DETERMINISTIC PARAMETER ESTIMATION
The DPE technique was proposed in [19] and further adopted
in [20]. This technique can be summarized as follows. First,
open-circuit voltage parameters (α̂1–α̂6) extracted from the
voltage relaxation tests are required. In addition, the actual
battery terminal voltage (y) and current (i) should be sampled
at each time step until the battery is fully discharged. To deter-
mine the estimated battery model states and output, the UAS
is used within the DPE structure. The error between the actual
and estimated terminal voltages is used in an adaptation law to
adjust the model parameters at each time step. Thus, the bat-
tery model parameters (α̂7–α̂21) are obtained according to the
earlier steps. The method is conducted under a significantly
low battery current. Unlike battery model identification, DPE
was employed to estimate the model parameters of a fuel cell,
permanent magnet DC motor, and super-capacitor in [34],
[35], and [36], respectively.

Ea,b(z) =
∞∑
k=0

zk

0(ka+ b)
(12)

TheMittag–Leffler (ML) function, in the form of the Nuss-
baum function in the UAS layout described in [19] and [20],
was selected because it affords fast error handling between
the actual battery terminal voltage and estimated output. The
ML function depends on two positive real constants, a and b.
According to [37], the ML function behaves as a Nussbaum
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function if a ∈ (2, 3] and b = 1. Hence, the ML function
is represented by Eq.(12), where 0(z + 1) = z0(z), z >
0 is the standard gamma function. In [38], the Mittag–
Leffler function was constructed in the MATLAB/Simulink
environment.

R̂ts(ρk ) = α̂7(uk )e(−α̂8(uk )ρk ) + α̂9(uk ) (13)

R̂tl(ρk ) = α̂10(uk )e(−α̂11(uk )ρk ) + α̂12(uk ) (14)

Ĉts(ρk ) = −α̂13(uk )e(−α̂14(uk )ρk ) + α̂15(uk ) (15)

Ĉtl(ρk ) = −α̂16(uk )e(−α̂17(uk )ρk ) + α̂18(uk ) (16)

R̂s(ρk ) = −α̂19(uk )e(−α̂20(uk )ρk ) + α̂21(uk ) (17)

At each time step, equivalent circuit model elements (i.e.,
Rts, Rtl , Cts, Ctl , and Rs) are estimated using Eqs.(13)–(17)
using the DPE technique. Each αm parameter is a positive
real value tuned via the discrete adaptation law described by
Eq.(18), where m ∈ [7 · · · 21]. The adaptation law produces
a bounded solution using the upper and lower limits (i.e.,
αmu and αml , respectively) around the steady-state value.
In addition, the confidence levels of the lower and upper
limits are represented by ηxm and ηym, respectively.

α̂m(uk+1) = α̂m(uk )+ (ỹ2k + ηxm(αmu − α̂m(uk ))

+ηym(αml − α̂m(uk )))1 (18)

where ỹ denotes the error between the actual and esti-
mated battery terminal voltages at time k , as expressed in
Eq.(22). The proposed continuous observer reported in [19]
is discretized using the Euler approach and introduced to
observe the model states with the aid of an adaptive high-gain
observer (u), as described by Eqs.(19) and (20), where θ̂ and
λ̂ are positive real values during the identification process.

θ̂k+1 =

(
−1

R̂ts(ρk )Ĉts(ρk )
+ 1

)
θ̂k + uk1 (19)

λ̂k+1 =

(
−1

R̂tl(ρk )Ĉtl(ρk )
+ 1

)
λ̂k + uk1 (20)

ŷk = Ê0(ρk )− θ̂k − λ̂k (21)

By applying Eqs.(23) and (24), the adaptive high-gain
observer receives the integrated value of the squared ỹ in
the form of feedback to control the increase in gain. Note
that the initial φ value is zero. Thus, according to Eq.(25),
the output of the adaptive high-gain observer tunes the model
states (i.e., θ̂ and λ̂) to drive ŷ to approximate the actual value
of y. Accordingly, the model parameters α̂7–α̂21 are updated
at each time step. The mean value of each parameter array is
obtained as shown in Algorithm 1. For further information on
the DPE initialization, the reader is referred to [19] and [20].

ỹk = yk − ŷk (22)

φk+1 = ỹ2k1+ φk (23)

N (φk ) = Ea,b(bφak ) (24)

uk = −N (φk )ỹk (25)

Algorithm 1 Deterministic Parameter Estimation [19]
Requirements: Battery terminal voltage (y), capacity (ρ),
and open-circuit voltage parameters (α̂1–α̂6).
Initialization: Initial parameters values α̂m0 > 0 where
m ∈ [7 · · · 21], upper bounds (αmu), lower bounds (αml), and
confidence levels (i.e., ηxm and ηym).
Output: Estimated battery model parameters (α̂7–α̂21)

1: for k = 1, 2, · · · ,N do F N : last data point.
2: Read yk and ρk . F ρ found based on Eq.(1).
3: Find ỹk using Eq.(22).
4: Evaluated each parameter value through Eq.(18).
5: Determine the model elements from Eqs.(13)–(17).
6: Estimate the states using Eqs.(19) and (20).
7: Estimate the model output ŷk based on Eq.(21).
8: if |ỹk | ≤ ε then F ε: a small positive real number.
9: Store each estimated parameter value in its array.
10: else
11: Continue
12: end if
13: end for
14: Determine the mean value of each parameter array to

obtain the estimated model parameters (α̂7–α̂21).

B. STOCHASTIC PARAMETER ESTIMATION
As reported in [39], optimization techniques are applied to
obtain the best possible solution under certain conditions.
The main objective of such techniques is to either minimize
the required cost or maximize the benefit. The majority
of optimization problems in the literature are minimization
problems. Some of the published methods do not require
a cost function. This study was restricted to minimization
techniques that satisfy a cost function. The cost of a practical
problem can be expressed as a function of specific decision
variables (i.e., model parameters). An optimization problem
begins by defining a cost function structure to enable the
optimization technique to tune the decision variables such
that the overall cost is driven toward the global minimum
value. The problem can be solved using either free-derivative
or derivative-based approaches. Well-known meta-heuristic
(i.e., free-derivative) methods such as PSO [40] and TLBO
[41] were employed. In contrast, the derivative-based
approach that assisted the MATLAB fmincon optimization
routine used in [20] to estimate the model parameters of a
single battery was avoided in this study because it requires
a high computational effort compared with meta-heuristic
methods.

X =


α̂7,j=1 α̂8,j=1 · · · α̂21,j=1
α̂7,j=2 α̂8,j=2 · · · α̂21,j=2
...

...
...

...

α̂7,j=Np α̂8,j=Np · · · α̂21,j=Np

 (26)
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FIGURE 2. Generalized scheme for meta-heuristic techniques.

1) POPULATION AND COST FUNCTION EVALUATIONS
As shown in Fig. 2, predefined constants, namely the total
number of iterations (Tmax) and population size (Np), are
required by the user. The initial population in Eq.(26) is
randomly generated between the specified upper and lower
bounds for each decision variable. In addition, the costs of the
initial population are determined by inputting each jth solu-
tion along with the open-circuit voltage parameters and the
recorded battery current into the model equations described
by Eq.(11) to estimate the output (ŷj). To determine the cost of
a particular solution, themean squared error (MSE) expressed
in Eq.(27) is evaluated by inputting the actual terminal volt-
age and battery model output of a particular solution.

After generating a random population and calculating its
costs, a meta-heuristic algorithm selects each jth solution that
contains the decision variables, varies their values, computes
the new cost of the varied solution, and accepts the varied
solution if its cost is less than the previous cost before the
variation. Note that the population before and after the update
is denoted by X− and X+, respectively. As shown in Fig. 2,
the process of solution selection, variation, cost evaluation,
and greedy criterion are performed Tmax times. Note also that
a survivor strategy in the form of a greedy criterion is used to
update a jth solution of the population.

min
ỹ

f =
1
N

N∑
k=1

(
ỹk
)2 (27)

2) PARTICLE SWARM OPTIMIZATION
PSO, proposed in [40], is one of the popular free-derivative
optimization approaches in the literature. The technique was
used in [20] to estimate the Chen–Mora model parameters
based on data from a single battery. Therefore, studying the
accuracy of PSO in determining the parameters from data of
a single battery and data from multiple batteries is a good
opportunity. In the PSO algorithm, the population (X ) is

known as the ‘‘position’’. The change in position values per
unit time is known as the velocity (V ). In this study, physical
terminologies (e.g., position and velocity) were different from
their actual meanings to avoid confusion. Given that the
PSO algorithm is still in its initialization phase, no historical
information has been generated yet. Accordingly, the initial
position (X−) and velocity (V−) valueswere generatedwithin
the domain of the decision variables, and the initial costs
(f−) of individual solutions were evaluated as discussed in
Section III-B1. Note that the size of X and V matrices is
Np × D, where D is the total number of decision variables
(i.e., α̂7–α̂21). Subsequently, the initial population is assigned
as the personal best (pbest ). In addition, one solution from the
population is selected as the global best (gbest ); this solution
has the lowest cost. User predefined constants in the form of
inertia (W ) and acceleration coefficients (i.e., c1 and c2) are
required to begin the algorithm.

To update the population (i.e., position), PSO utilizes the
velocity expressed by Eq. (28), in which two sets of random
vectors (i.e., r1 and r2 ∈ [0, 1]) with a size of 1×D are gener-
ated in each iteration in addition to the previous initialization.
As a result, the velocity is updated according to Eq.(28).
As illustrated in Algorithm 2, for Tmax iterations, each jth

Algorithm 2 Particle Swarm Optimization [40]
Requirements: Battery terminal voltage and current (i.e., y
and i, respectively), open-circuit voltage parameters (α̂1–α̂6),
cost function (f), upper and lower bounds (i.e., αlb and αub),
population size (Np), maximum number of iterations (Tmax),
and defined constants (i.e.,W , c1, and c2).
Initialization: Initialize the random position (X−) and veloc-
ity (V−) within the bounds.
Output: Estimated battery model parameters (α̂7–α̂21).

1: Evaluate f− values using X−.
2: Assign X− as personal best (pbest ).
3: Calculate the costs of pbest and assign the solution with

the lowest cost as the global best (gbest ).
4: for t = 1, 2, · · · ,Tmax do
5: for j = 1, 2, · · · ,Np do
6: Update the velocity, V+j , using Eq.(28).
7: Determine the new position, X+j , using Eq.(29).
8: Bound X+j .
9: Determine f+j value using Eq.(27).
10: if f+j < personal best cost then
11: Accept X+j as personal best (pbestj ).
12: if personal best cost < global best cost then
13: Assign pbestj as gbest .
14: end if
15: end if
16: end for
17: end for
18: Collect the estimated parameters (α̂7–α̂21) from gbest .
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solution is varied using Eqs.(28) and (29), then bounded
within the specified domain. Thereafter, the new cost of the
jth varied position solution, denoted by f+j , is evaluated using
the method discussed in Section III-B1. Following the greedy
criterion,X+j replacesX−j if f+j is less than f−j . In addition,X

+

j
is assigned as personal best (pbestj ) and global best (gbest ) if its
cost is less than the stored personal best and global best costs
from previous iterations, respectively. Finally, the battery
model parameters (α̂7–α̂21) estimated via the PSO algorithm
are collected from gbest .

V+j = WV−j + c1r1
(
pbestj −X

−

j

)
+c2r2

(
gbest−X−j

)
(28)

X+j = X−j + V
+

j (29)

3) TEACHING-LEARNING-BASED OPTIMIZATION
TLBOwas recently introduced in [41] and further justified in
[42]. The method mimics a classroom environment in which
the process occurs in two phases: the teacher and learner
phases. In the teacher phase, students learn from a teacher.
In the learner phase, the students interact among themselves
and attempt to increase their knowledge. In contrast with
PSO, TLBO does not require predefined constants such as
inertia and acceleration coefficients, which affect the PSO
accuracy, as reported in [43]. However, TLBO requires other
common predefined constants such as population size and
maximum number of iterations. Accordingly, the algorithm
begins by declaring the aforementioned constants and gener-
ating a random population within the domain of the decision
variables, as discussed in Section III-B1. Thereafter, the cost
(i.e., MSE) of each jth generated solution is evaluated using
Eq.(27), and the solution corresponding to the lowest cost is
selected as the teacher (Xbest ). In the teacher phase, each jth

solution in X− is modified according to Eq.(30), where Tf is
a scalar teaching factor (i.e., either 1 or 2) during the update
of all X− solutions, r is a vector with a random number in
the range [0, 1], and Xmean is a vector containing the mean
of each decision variable. Note that the size of both r and
Xmean is 1 × D. Furthermore, the cost function (f+) is eval-
uated using the new bounded solution (X+j ). Subsequently,
a greedy selection is performed to update the population
solution if the cost of the new solution is less than the previous
cost before the variation; otherwise, the population solution
remains unchanged.

X+j = X−j + r
(
Xbest − Tf Xmean

)
(30)

In the learner phase, initially, a partner solution (Xp) is
randomly selected from X−, and the solution produced by
the teacher phase is further modified using Eq.(31), through
which a selection is applied based on the cost of the partner
and teacher solutions. Finally, the newly generated solution
from the learner phase is bounded between the upper and
lower limits, and a greedy search is used to update the popula-
tion if required, as described in Algorithm 3. To consolidate,
a population has Np random bounded solutions; therefore,
the first solution (i.e., j = 1) will undergo the teacher

Algorithm 3 Teaching–Learning-Based Optimization [41]
Requirements: Battery terminal voltage and current (i.e., y
and i, respectively), open-circuit voltage parameters (α̂1–α̂6),
cost function (f), upper and lower bounds (i.e., αlb and αub),
population size (Np), and maximum number of iterations
(Tmax).
Initialization: Initialize the random position (X−) within the
bounds.
Output: Estimated battery model parameters (α̂7–α̂21).

1: Evaluate f− using the X− solutions.
2: for t = 1, 2, · · · ,Tmax do
3: for j = 1, 2, · · · ,Np do
4: Choose Xbest .
5: Determine Xmean.
6: Calculate X+j from Eq.(30).
7: Bound X+j and evaluate its cost (f+j ).
8: Accept X+j if its cost is less than the cost of X−j .
9: Choose any solution randomly (Tp).
10: Determine X++j as given in Eq.(31).
11: Bound X++j and evaluate its cost.
12: Accept X++j if its cost is less than X+j cost.
13: end for
14: end for
15: Collect the solution (i.e., α̂7–α̂21) from the population

with the lowest cost.

phase, and the resulting solution will be used within the
learner phase. Similarly, the remaining individual solutions
(i.e., j = 2, · · · ,Np) are sequentially performed through the
teacher and learner phases. When all the solutions are pro-
cessed, a single iteration is accomplished using TLBO, and
this iteration must be repeated Tmax times. To date, battery
model identification is performed according to data from a
single battery. However, in the following section, multiple
batteries are considered by fusing the required quantities for
identification. The aim is to enhance the accuracy of the
estimated parameters.

X++j = X+j + r
(
X+j − Xp

)
, if f+ < fp

X++j = X+j − r
(
X+j − Xp

)
, if f+ ≥ fp

 (31)

IV. FUSION-BASED PARAMETER ESTIMATION
In this section, the effects of process and measurement noises
are considered (i.e., w 6= 0 and v 6= 0). The uncertainty
of a nonlinear system is handled using filtering approaches,
such as the EKF, UKF, and PF. According to [7] and [44],
the UKF exhibits a better performance than the EKF because
it overcomes model linearization around a single point by
testing the nonlinear model at several points (called sigma-
points), which are inputted into the nonlinear model to obtain
the transformed states. Subsequently, the desired states and
covariances are utilized. Moreover, the UKF exhibits a better
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computational performance than PF algorithms; however, its
output is expected to be less accurate. Therefore, the UKF
was used in this study to estimate the model output and
state based on the battery data and parameters obtained by
the DPE technique. The dynamic process and measurement
noise covariances were determined at each time step using the
Sage–Husa approach discussed in [9] and [45].

To combine two or more sources of information, weighting
factors are required. These factors allow more precise data
to exert more influence on the outcome. Let us consider the
problem of averaging two GPS sensors using MLE based on
the associated measurement noise discussed in [29]. The goal
is to find the most probable position that maximizes the like-
lihood function given by Eq.(53). Based on this, the estimated
terminal voltages and battery capacities from the adaptive
UKFs were averaged according to their measurement and
process noise covariances, respectively. Thereafter, the aver-
aged quantities were used for DPE, PSO, and TLBO. The
mathematical justification of the estimated terminal voltage
fusion is presented next; with appropriate changes, the same
steps were followed to fuse the capacities.

A. ESTIMATION OF DYNAMIC PROCESS AND
MEASUREMENT NOISE COVARIANCES
Inadequate process andmeasurement noise covariances cause
filter divergence and insufficient fused quantities. To resolve
this, various methods have been devised, including the Sage–
Husa approach. This technique uses adaptive noise estimation
equations within the Kalman filter, as described in [45].
It is also employed with the UKF algorithm, as reported in
[9]. The ability to address nonlinear systems without lin-
earization is one of the main advantages of the Sage–Husa
approach. In contrast, other methods require model lineariza-
tion when the system is nonlinear, which is similar to the
scenarios reported in [46] and [47]. Next, an optimization
technique is proposed to initiate the Sage–Husa approach
using a reliable estimate of the initial covariances instead of
using empirical quantities. Note that Q̂ and R̂ are the esti-
mated process and measurement noise covariance matrices,
respectively.

 yτ
yτ+1
...

 ≈
 vτ
vτ+1
...

+

H0F

τ−1
0 · · · H0 0 · · · 0
0 H0F

τ−1
0 · · · H0 · · · 0

...
. . .

...

0 · · · 0 H0F
τ−1
0 · · · H0


︸ ︷︷ ︸

O

w0
w1
...



(32)

1) ESTIMATION OF INITIAL PROCESS AND MEASUREMENT
NOISE COVARIANCES
In this study, covariance values of process and measurement
noises were obtained using a technique that uses the maxi-
mum likelihood and discrete disturbance state space of the
battery model, as reported in [46]. Initially, the Jacobian
values of the transition (F) and measurement (H ) matri-
ces from the battery model were determined by taking the

partial derivatives of the process function, (∂f /∂x)|x=x0 , and
measurement function, (∂h/∂x)|x=x0 , with respect to each
state and were evaluated at the initial state values, x0. Given
several ymeasurements and system matrices (F0 andH0) that
were evaluated at x0, the unknown Q0 and R0 matrices can
be obtained as follows. Let N denote the total number of
samples, and assume that the battery model is operated in
a stable region. Thereafter, select τ such that det(Fτ0 ) 6 δ

for all samples greater than or equal to τ , where δ is a small
scalar threshold set to be less than 10−6. This implies that
the measurement values from time τ and beyond can be
assumed to be independent of past noises. Accordingly, y
can be approximated using Eq.(32); for further information,
please refer to [46].

P = O

Q0
. . .

Q0

OT
+

R0 . . .
R0

 (33)

Based on Eq.(33), the covariance matrix (P) is obtained,
and y is normally distributed with a zeromean. Themaximum
likelihood is calculated by taking the negative log-likelihood
of the multivariate normal distribution vector (y) in Eq.(34),
whose solution is subjected to Q0,R0 > 0. Note that the con-
strained MATLAB optimization routine fmincon is applied to
solve the minimization problem expressed by Eq.(34).

min
Q0,R0

J = log(det(P))+ yTP−1y (34)

B. ADAPTIVE UKF ALGORITHM
Among the various techniques discussed above, this study
employed the UKF algorithm because it is not burdened with
the problem of linearization, and the necessary computa-
tional effort is reasonable. The standard UKF algorithm was
extensively discussed in [7], although it utilizes an empirical
process and measurement covariances. In [9], an adaptive
UKF algorithm was employed to estimate the battery model
states. From [7] and [9], this study combined the standard
UKF algorithm and dynamic process and measurement noise
covariance equations. The adaptive UKF algorithm proceeds
as follows:

1) It is initialized by the expected value of the model state
and covariance, as expressed in Eq.(35); this algorithm
sets n = 3 because the model has three states.

x̂+k−1 = E(x̂0)
P+k−1 = E

[
(x̂0 − x̂

+

0 )(x̂0 − x̂
+

0 )
T
] (35)

2) The process and measurement noise covariances are
initialized according to the procedure described in
Section IV-A1.

3) A finite loop is used to iterate the UKF equations,
starting from the initial time (k − 1) to the end

VOLUME 8, 2020 193011



A. Q. Tameemi: Fusion-Based Deterministic and Stochastic Parameters Estimation for a Lithium-Polymer Battery Model

of the data N .

x̂(j)k−1 = x̂+k−1 + x̃
(j), j = 1, 2, . . . , 2n

x̃(j) =
(√

nP+k−1

)T
j
, j = 1, 2, . . . , n

x̃(n+j) = −
(√

nP+k−1

)T
j
, j = 1, 2, . . . , n

 (36)

4) Using Eq.(36), the model states and covariances are
propagated from time (k − 1) to k using sigma points,
ensuring that

√
nP does not exceed the matrix square

root of nP calculated as
(√

nP
)T (√

nP
)
= nP. How-

ever, Cholesky factorization is required to calculate the
matrix square root. The procedure in [48] is used to
evaluate

√
nP at each time step;

(√
nP
)
j is the j

th row

of the
√
nP matrix. The reader is referred to [7], which

provides a calculation example.

x̂(j)k = f (x̂(j)k−1, ik ) (37)

5) Using Eq.(37), the obtained sigma points, denoted by
x̂(j)k−1, are inputted into f (·) equations in addition to the
input i at time k to obtain the transformed states.

x̂−k =
1
2n

2n∑
j=1

x̂(j)k + qk−1 (38)

6) Themean of each transformed state is determined using
Eq.(38).

P−k =
1
2n

2n∑
j=1

(
x̂(j)k − x̂

−

k

) (
x̂(j)k − x̂

−

k

)T
+ Qk−1 (39)

7) A priori error covariance (P−k ) is obtained using
Eq.(39), in which the Q matrix is included to con-
sider the process noise effect. At this stage, the update
through the process equations, f (·), is accomplished.

x̂(j)k = x̂−k + x̃
(j), j = 1, 2, . . . , 2n

x̃(j) =
(√

nP−k

)T
j
, j = 1, 2, . . . , n

x̃(n+j) = −
(√

nP−k

)T
j
, j = 1, 2, . . . , n

 (40)

8) The new sigma points, x̂(j)k , are derived using Eq.(40),
in which the obtained a priori mean, x̂−, and covari-
ance, P−, are inserted.

ŷ(j)k = h(x̂(j)k , ik ) (41)

9) The predicted measurements, ŷ(j)k , are induced by
inputting the new sigma points, x̂(j)k , to the nonlinear
measurement function, h(·), given by Eq.(41).

Ŷk =
1
2n

2n∑
j=1

ŷ(j)k + rk (42)

10) Similarly, the mean of ŷ(j)k in Eq.(42) is used to obtain
the estimated model output (Ŷ ) at time k .

Py =
1
2n

2n∑
j=1

(
ŷ(j)k − Ŷk

) (
ŷ(j)k − Ŷk

)T
+ Rk (43)

Pxy =
1
2n

2n∑
j=1

(
x̂(j)k − x̂

−

k

) (
ŷ(j)k − Ŷk

)T
(44)

11) The output error covariance (Py) in Eq.(43) is obtained
by considering the measurement noise covariance (R).
The cross-error covariance (Pxy) in Eq.(44) is also eval-
uated.

Kk = PxyP−1y (45)

x+k = x−k + Kk (yk − Ŷk ) (46)

P+k = P−k + KkPyK
T
k (47)

12) At time k , the Kalman gain (Kk ), a posteriori estimated
state (x+k ), and a posteriori error covariance (P+k ) are
determined using Eqs.(45)–(47), respectively.

q̂k = (1− ck )q̂k−1 + ck (x
+

k −
1
2n

2n∑
j=1

x̂(j)k ) (48)

Q̂k = (1− ck )Q̂k−1 + ck (Kk Ỹk Ỹ Tk K
T
k + P

+

k ) (49)

r̂k+1 = (1− ck )r̂k + ck (yk −
1
2n

2n∑
j=1

ŷ(j)k ) (50)

R̂k+1 = (1− ck )R̂k + ck Ỹk Ỹ Tk (51)

13) In Eqs.(48)–(51), the Sage–Husa estimator is incorpo-
rated to update the Q̂ and R̂ matrices at each time step,
where ck = (1 − d)/(1 − dk ), and d is the forgetting
factor in the range (0 < d < 1). Note that Ỹ is the error
between y and Ŷ .

C. FUSION OF ESTIMATED TERMINAL VOLTAGES
The UKF approach is useful in addressing the effects of
noise on the final model parameters. However, the method
intrinsically has the disadvantage of obtaining battery model
parameters based on the behavior of a single battery. This
introduces a problem because batteries of the same type will
not have an identical response even if they are operated under
the same conditions. In this section, the maximum likelihood
method is applied to obtain the average behavior of sev-
eral batteries according to their associated noises. Thereafter,
the model parameters are recalculated according to the fused
quantities.

As discussed in [29], a measurement model, represented
by Eq.(52), is required to relate the estimated battery termi-
nal voltage (Y) to a certain hidden state (X ) that the MLE
method aims to estimate, where Y =

(
ŶB1 · · · ŶBtot

)
and

R = diag
(
R̂B1 · · · R̂tot

)
. Both Y andR contain the estimated

terminal voltages and measurement noise covariances of the
used batteries, and the first and last batteries are denoted by
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FIGURE 3. General flowchart of the multiple-battery data approach.

B1 and Btot , respectively. Note that the subscript k is dropped
for simplicity; however, Y and R are updated at each time
step. The model given by Eq.(52) represents the relationship
between data streams and the hidden state (X ), assuming that
the measurements are unbiased. Moreover, the measurement
noise (v) is assumed to be an independent normal Gaussian
distribution with zero mean and covarianceR.

Y = CX + v
v ∼ N

(
0,R

) } (52)

According to [29], the probability distribution of Y is
described by Eq.(53) on the condition that the measurement
updates continue. It expresses the probability distribution of
Y for the hidden state (X ) that the MLE method aims to
determine at a specific value. Accordingly, the value ofX that
maximizes the likelihood function is obtained by applying
the log-likelihood to Eq.(53) for convenience. The derivative
with respect to X is also obtained from the log(p(Y|X ))
function; subsequently, it is equated to zero. As a result,
the value of X that maximizes the log-likelihood function is
determined, and the fused quantityX is expressed by Eq.(54).

p(Y|X ) =
1

√
(2π )tot |R|

e(−
1
2 (Y−CX )TR−1(Y−CX )) (53)

X = (CTR−1C)−1CTR−1Y (54)

For a detailed fusion form, Eq.(55) results from substi-
tuting Y =

(
ŶB1 · · · Ŷtot

)
, C =

(
IB1 · · · Itot

)T , R−1 =
diag

(
R̂−1B1 · · · R̂

−1
tot

)
, and CTR−1 =

(
R̂−1B1 · · · R̂

−1
tot

)
into

Eq.(54). Each I is a 1×1 identitymatrix, and themeasurement
noise covariance matrix (R̂) of each battery also has a 1 × 1
size.

X = (R̂−1B1 + · · · + R̂
−1
tot )
−1(R̂−1B1 ŶB1 + · · · + R̂

−1
Btot ŶBtot ) (55)

Each estimated battery terminal voltage in Eq.(55) is
divided by its corresponding measurement noise covariance
at each time step. Thereafter, the resulting quantity is nor-
malized by the sum of the measurement noise covariances.

In other words, higher noise covariance values allow the
estimated battery terminal voltage to contribute less to the
final quantity (X ) and vice versa. Note that, with appropriate
changes, the same procedures are applied to fuse the esti-
mated capacities.

D. FUSION OF ESTIMATED CAPACITIES
Previously, the estimated terminal voltages of several bat-
teries were fused using the maximum likelihood method to
obtain the average quantityX . Similarly, the estimated capac-
ities are fused according to their associated noise covariances.
To adapt the individual battery capacity state fusion, the esti-
mated voltage fusion formula given by Eq.(55) is further
modified and expressed as Eq.(56), where the fused battery
capacity is denoted by ρ̄. Moreover, the estimated capacity-
state noise covariances from the first battery to the last battery
are represented by q̂B1 · · · q̂Btot , respectively.

ρ̄ = (q̂−1B1 + · · · + q̂
−1
Btot )
−1(q̂−1B1 ρ̂B1 + · · · + q̂

−1
Btot ρ̂Btot ) (56)

E. PROPOSED APPROACH
1) ESTIMATION OF α̂1–α̂6
Voltage relaxation tests were applied for each battery, and
the averaged open-circuit voltage (E0) curve was deter-
mined. The resulting E0 curves of all batteries were also
averaged, that is, (E0B1 + · · · + E0Btot )/tot . Parameters α̂1–
α̂6, which represented all the batteries, were obtained by
shifting the averaged curve to the MATLAB curve fitting
toolbox and determining the parameters that represented all
batteries.

2) ESTIMATION OF α̂7–α̂21
To estimate α̂7–α̂21 for multiple batteries, several identical
batteries (i.e., B1, · · · ,Btot ) were continuously discharged
with the same load. The initial noise estimation discussed
in Section IV-A1 was applied to the data of each battery.
As shown in Fig. 3, the actual terminal voltage, current,
and initial noise covariances of all batteries were individu-
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Algorithm 4 Proposed Fusion-Based Parameter Estimation Algorithm
Requirements: Actual terminal voltage and current of all batteries (i.e., for each battery, a single continuous discharge test,
in addition to several pulse discharge tests.)
Initialization: Define the expected value of model states (x+0 ) and error covariance (P+0 ) according to Eq.(35), n sigma-points
(n = number of states), initial parameters values α̂m0 > 0 where m ∈ [7 · · · 21], upper bounds (αmu), lower bounds (αml), and
confidence levels (i.e., ηxm and ηym).
Output: Estimated model parameters (α̂7–α̂21) based on data from multiple batteries.

1: for B = 1, · · · , tot do F tot: total number of batteries, (i.e., tot=9).
2: Obtain the open-circuit voltage parameters (α̂1–α̂6) of the Bth battery according to Section V-A.
3: Run DPE (i.e., Algorithm 1) to estimate α̂7–α̂21 of the Bth battery.
4: According to Section IV-A1, determine the initial process and measurement noise covariances by optimizing Eq.(34).
5: for k = 1, · · · ,N do F N : last data point of the Bth battery.
6: Use the UKF algorithm (Steps 4–12) to estimate the model output and state using the parameters of a single battery.
7: Update the process and measurement covariances based on Step 13.
8: end for
9: Store the estimated model output (ŶBth ), measurement noise covariance (R̂Bth), battery capacity (ρ̂Bth ), and process noise

covariance of the battery capacity state (q̂Bth ).
10: end for
11: timethreshold = min

(
last time point of the B1 · · · last time point of the Btot

)
12: Set loop counter (k) to 1.
13: Initiate the unified interpolation time (tq) by zero. F tq: unified interpolation time array.
14: while tqk < (timethreshold − 1) do F Create the unified interpolation time array from time 0 to (timethreshold − 1)s.
15: tqk+1 = tqk +1 F 1: time-step (i.e., 1 = 0.1s).
16: k = k + 1
17: end while
18: Interpolate ŶB1···Btot , ρ̂B1···Btot , q̂B1···Btot , and R̂B1···Btot with respect to tq array.
19: Find the fused battery terminal voltage (X ) given by Eq.(55) based on the interpolated ŶB1···Btot and R̂B1···Btot .
20: Determine the fused capacity (ρ̄) by inputting the interpolated ρ̂B1···Btot and q̂B1···Btot to Eq.(56).
21: Run DPE (Algorithm 1), PSO (Algorithm 2), and TLBO (Algorithm 3) based on the fused terminal voltage (X ), fused

capacity (ρ̄), and open-circuit voltage parameters (α̂1–α̂6) of multiple batteries to estimate model parameters (α̂7–α̂21) for
each identification method.

ally inputted into the adaptive UKF algorithm (Section IV-B)
to estimate the battery model state and output. Interpola-
tion was used to generate equal data points because the
samples of battery data differed slightly. This problem was
solved by determining the lowest time space and gener-
ating the unified interpolation time (tq) with respect to a
smaller time span, as described in Algorithm 4, to obtain
an equal number of points for each array. Subsequently,
all interpolated ŶB1 , · · · , ŶBtot were fused according to their
interpolated measurement noise covariances using the max-
imum likelihood approach (Section IV-C). Similarly, inter-
polated capacities were fused according to their associated
noises, as expressed in Eq.(56). Subsequently, both fused
battery terminal voltage (X ) and fused battery capacity (ρ̄)
were used for the identification algorithms. As described
in Algorithms 2 and 3, the measured battery current was
required; therefore, the mean value of the measured cur-
rents was inputted into the PSO and TLBO as well as
X and ρ̄ because the batteries were discharged using the
same load.

V. EXPERIMENTAL RESULTS
In this section, the standard identification approach (i.e.,
DPE, PSO, and TLBO) and the proposed fusion approach
are verified and compared with the experimental results. Note
that both methods were implemented as offline algorithms by
recording the terminal voltage and current of the batteries,
and then individually processing the battery data using each
algorithm. The sampling time (1) was set to 0.1s. The experi-
mental setup is shown in Fig. 11. A power supply, a discharg-
ing board, a charger (SKYRC-IMAXB6MIN), nine batteries,
and a laptop were used. This experiment was performed on
an Intel Core i5-32230M at a 2.6-GHz processing speed. The
power supply was employed to calibrate the voltage and cur-
rent sensors; it also powered a cooling fan. In the discharging
board, readings from an Arduino voltage sensor (0–25V) and
LEM LA 25-NP current sensor were inputted into to a laptop
via an Arduino board (Mega 2560). Thereafter, a MATLAB
package [49] was used to read the sensors connected to the
Arduino board in real time and store the data in the MAT-
LAB environment. Nine DUPU lithium-polymer batteries
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TABLE 1. Estimated parameters (α̂7–α̂21) of the data from a single
battery and multiple batteries.

TABLE 2. Estimated open-circuit voltage (E0) parameters.

(2S, 7.4V, and 1.3Ah) were discharged using two types of
loads: a fixed-value power resistor and a variable resistor.
The setup included seven individual fixed-value resistors,
each with a 10-� load. The variable resistor (0–30�) was
controlled via the servomotor to obtain a sine-wave load.

A. VOLTAGE RELAXATION TESTS
Voltage relaxation tests were conducted to obtain the E0
equation parameters, i.e., α̂1–α̂6. The battery was discharged
by repeated on/off cycles until the terminal voltage dropped
below 6V. Each cycle comprised a 10-min discharging inter-
val followed by a 10-min recovery interval activated by ter-
minating the battery from the load. Each open-circuit voltage
observationwas sampled between the first and second periods
before the battery was reconnected to the load. For parameter
estimation of a single battery, four resistive loads (i.e., 40,
50, 60, and 70-�) were used to discharge the battery and
obtain the E0 parameters. The open-circuit voltages and their
averaged curves are shown in Fig. 4 (a). Thereafter, the aver-
aged curve and Eq.(5) were inputted into the MATLAB curve
fitting toolbox to extract the E0 parameters α̂1–α̂6 for a
single battery. Similarly, in Fig. 4 (b), the E0 parameters of
multiple batteries required for the proposed fusion approach
were obtained. The E0 parameters for each scenario are listed
in Table 2. The open-circuit voltage parameters were used
within the identification methods to estimate the remaining
model parameters.

FIGURE 4. (a) Open-circuit voltage of a single battery (i.e., B1).
(b) Open-circuit voltage of multiple batteries (i.e., B1 · · ·B9).

B. SINGLE DATA APPROACH
The terminal voltage and current recorded from a single
battery (i.e., B1) as a result of 60-� continuous load discharge
were inputted into the DPE, PSO, and TLBO to identify
α̂7–α̂21. The first column in Table 1 shows the model param-
eters α̂7–α̂21 estimated using different methods. The DPE,
PSO, and TLBO results for a single battery using the 60-�
data are listed in the second, third, and fourth columns,
respectively. In contrast, the DPE, PSO, and TLBO results
obtained by fusing the data of the nine batteries (tot = 9) are
listed in the fifth, sixth, and seventh columns, respectively.
The confidence levels for the adaptation law were set to
10. The PSO predefined constants in the form of inertia
(W ) and acceleration coefficients (i.e., c1 and c2) were set
to 0.1, 0.5, and 0.5, respectively. For both the PSO and
TLOB algorithms, the population size (Np) and total number
of iterations (Tmax) were set to 100. As shown in Fig. 10,
the computational times of DPE, PSO, and TLBO based
on the data from a single battery were 2.4537, 33.607, and
65.667 min, respectively. The accuracy of the battery model
based on the estimated parameters is shown in Fig. 5 (a),
where the output of the model is compared with the actual
battery data. Both PSO and TLBO achieved better accuracy
than DPE. However, while TLBO achieved the highest accu-
racy, it required a very long computational time because the
cost function was involved twice per iteration.

C. MULTIPLE DATA APPROACH
The fusion approach aimed to enhance the accuracy of
the identification techniques using continuous discharging
data from the nine batteries (i.e., B1, · · · ,B9). First, voltage
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TABLE 3. Statistics of terminal voltage discharging/charging error of
batteries.

FIGURE 5. (a) Battery model output based on the single-battery data
approach. (b) Battery model output based on the multiple-battery data
approach.

relaxation tests along with the DPE algorithm were used to
estimate each battery parameter (α̂1–α̂21). DPE was selected
over PSO and TLBO to initiate the adaptive UKF because
it has a low computational time. Accordingly, the estimated
parameters of individual batteries were used to initiate the
noise estimation and adaptive UKF algorithm. For each bat-
tery data, the initial process and measurement noise covari-
ances were identified as explained in Section IV-A1, for
which the Jacobians of the transition matrix (F) and mea-
surement matrix (H ) were determined according to the f (·)
and h(·) equations. Thereafter, the O matrix was constructed
according to Eq.(32). Furthermore, the initial state values
were substituted as follows: ρ0 = 1, θ0 = 0, and λ0 = 0. The
MATLAB optimization routine fminconwas utilized to deter-
mine the initial process and measurement noise values using

FIGURE 6. Model discharging-error histograms and cumulative
distributions for the single-battery data approach. (a), (b), and (c) X- and
Y-axes represent the discharging-error (V) and number of samples,
respectively.

FIGURE 7. Model discharging-error histograms and cumulative
distributions for the multiple-battery data approach. (a), (b), and
(c) X- and Y-axes represent the discharging-error (V) and number of
samples, respectively.

the cost function expressed in Eq.(34). Note that the optimiza-
tion routine was only applied at the beginning, whereas the
adaptive noise estimator described in Eqs.(48)–(51) received
the initial values and then updated the process and measure-
ment noise covariances at each time step. The parameters
α̂7–α̂21 from multiple batteries were obtained using the pro-
cedure described in Section IV-E2, as listed in Table 1. The
computational time of the parameter estimation significantly
increased, as shown in Fig. 10. However, the accuracy of the
identification methods was significantly improved, as shown
in Fig. 5 (b).

D. COMPARISON
The battery model parameters listed in Tables 1 and 2 were
compared by determining the difference between the actual
battery terminal voltage and the model output. Accordingly,
a discrete Chen–Mora equivalent circuit model, represented
by Eqs.(1)–(10), was constructed in the MATLAB environ-
ment, and the estimated parameters obtained by each method
described above were inputted.

1) DISCHARGING COMPARISON
Adopting the study in [31], a single lithium-polymer bat-
tery cell was preferably discharged until it dropped to 3V.
Accordingly, the battery discharging process was terminated
when the terminal voltage dropped close to 6V because each
battery employed in the study had two cells. During battery
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FIGURE 8. Model charging-error histograms and cumulative distributions
for the single-battery data approach. (a), (b), and (c) X- and Y-axes
represent the charging-error (V) and number of samples, respectively.

FIGURE 9. Model charging-error histograms and cumulative distributions
for the multiple-battery data approach. (a), (b), and (c) X- and Y-axes
represent the charging-error (V) and number of samples, respectively.

FIGURE 10. Computational time of different identification approaches.

discharging, the terminal voltage and current were sampled.
Initially, the nine fully charged lithium-polymer batteries
were individually discharged in three ways:
• Continuous discharge, 27 tests: nine lithium-polymer
batteries were discharged with constant resistive loads
(i.e., 40, 50, and 60-�).

• Pulse discharge (square-wave load), 36 tests: nine
lithium-polymer batteries were discharged for 10-min
(using 40, 50, 60, and 70-� constant resistive loads)
followed by a 10-min recovery (no-load).

• Sine-wave discharge, 18 tests: the power potentiometer
(0–30�) controlled by a servomotor was used to gener-
ate different sine-wave loads for all batteries.

Evidently, the model performance based on the fusion-
based approaches was better than that of the normal
approaches, as shown in the magnification views of

FIGURE 11. Experimental setup.

Fig. 5 (a) and (b). For further analysis of each technique, sev-
eral error arrays from all discharging tests were combined to
form a large error array; the total number of samples for each
full array was 33309653. Thereafter, statistical tools such as
mean, median, mode, and standard deviation were applied to
the full error array of each technique. The results are listed
in Table 3. Based on Figs. V-C and 7 (a)–(c), the single-
battery data approach exhibited small errors. In contrast,
the multiple-battery data approach exhibited almost zero
errors. Furthermore, the distribution of the multiple-battery
data approach was more compact than that of the single-
battery data approach according to the mean values and stan-
dard deviations listed in Table 3. According to the cumulative
distributions shown in Fig. V-C (d), the model output error
based on DPE, PSO, and TLBO using the single-battery
data approach yielded 54.782%, 71.565%, and 71.967% of
the discharging-error samples in the ±0.05-V range, respec-
tively. In contrast, according to the cumulative distributions
of the multiple-battery data approach shown in Fig. 7 (d),
the model output errors based on DPE, PSO, and TLBO
yielded 67.77%, 78.765%, and 80.13% of the discharging-
error samples in the ±0.05-V range, respectively.

2) CHARGING COMPARISON
The estimated parameters were examined using charging pro-
files. Each battery was charged with 0.1, 0.2, and 0.3A using
a charger (SKYRC-IMAXB6MIN), as shown in Fig. 11. The
battery terminal voltage and current were also recorded, and
the error arrays were assembled by determining the difference
between the actual battery terminal voltage and the model
output. Thus, the full charging-error array for each technique
was constructed. The total number of charging-error sam-
ples for each method was 5229694. Similarly, the charging-
error mean, median, mode, and standard deviation were
calculated as listed in Table 3. The error histograms of
the single- and multiple-battery data approaches are shown
in Figs. 8 and 9, respectively. According to the mean values
and standard deviations summarized in Table 3, the multiple-
battery data approach was better distributed than the
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single-battery data approach. According to Fig. 8 (d),
the single-battery data cumulative distributions of the DPE,
PSO, and TLBO parameters were 27.33%, 36.24%, and
36.49% of the charging-error samples in the ±0.05-V range,
respectively. However, Fig. 9 (d) shows the cumulative dis-
tributions of the multiple-battery data approach, where the
DPE, PSO, and TLBO parameters were 42.34%, 36.09%,
and 40.42% of the charging-error samples in the ±0.05-V
range, respectively. Note that the charging profiles were sig-
nificantly affected by the switching behavior of the DC/DC
converter within the used charger.

VI. CONCLUSION
In this study, the advantage of estimating the lithium-polymer
battery model parameters based on the consideration of
data from multiple batteries instead of a single one was
established. An adaptive UKF algorithm was individually
applied to nine batteries, and the MLE fusion technique
was employed to create fused quantities. Instead of inputting
the quantities directly measured from a single battery into
the identification algorithms, the fused quantities of multi-
ple batteries were inputted into DPE, PSO, and TLBO for
parameter estimation. The results indicated that fusing the
data of only nine batteries resulted in a higher accuracy
compared with ordinary methods. The comparison of the
discharging/charging errors shows that the multiple-battery
approach accomplished higher accuracy than the single-
battery approach. The proposed method is therefore advan-
tageous for battery unit modeling when several batteries are
combined to power a load (e.g., an electric vehicle). In addi-
tion, an accurate model is useful for generating training data
for pattern classification and neural network applications.
In contrast, the computational time significantly increased
owing to the involvement of adaptive UKF and MLE.
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