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ABSTRACT When children suffer from cognitive disorders, school performance and social environment
are affected. Measuring changes in cognitive progress is essential for assessing the clinical follow-up of
the patient’s cognitive abilities. This process is considered as a challenge in ambulatory settings, where
follow-ups should be non-invasive and continuous. Psychophysiological measures are an objective and
unobtrusive evaluation alternative for recognizing cognitive changes. This paper aims to validate the
relationship between cognition and the changes in physiological signals of children suffering from Specific
Learning Disorders (SLD). This validation was carried out in an eHealth rehabilitation context (with the
HapHop-Physio game). Electrodermal activity (EDA) signals were collected, processed, and analyzed
through a machine learning approach. Obtained results were: a dataset built from wearable physiological
data and a supervised classification model. The classification model can identify the children’s cognitive
performance (class) from the features of the tonic component of the EDA signal (attributes) with an
accuracy of 79.95%. The presented results evidence that psychophysiological measures could allow for a
highly objective follow-up for patients. They can also lead to creating a basis for further improvement of
rehabilitation environments and developing neurofeedback applications.

INDEX TERMS Electrodermal activity, cognitive performance, supervised classification, specific learning
disorders.

I. INTRODUCTION
Children suffering from disorders related to learning
processes and school performance represent a vulnerable
population. Learning disorders affect up to 10% of the world
population. Under this condition, academic and cognitive
skills are significantly lower than expected according to
age [1].

The treatment of these disorders focuses on improving the
necessary cognitive skills for learning. Conventionally,
the assessment of these disorders and their therapies, use
standardized questionnaires and activities. Questionnaires are
used for the qualification and evaluation of the condition.
Afterward, the questions become the standardized activi-
ties for conducting the treatment, whose resources are lim-
ited to pencil and paper. This situation is close to what
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children experience in school, which generates fatigue, lack
of motivation, and the desertion of therapies [2].

The HapHop-Physio system is an alternative application
that can be used in these therapies. HapHop-Physio is an exer-
learning game: children learn and perform physical activity
simultaneously while playing [3]. The system supports the
rehabilitation therapies of children with learning disorders,
focusing on memory and attention functions. Further details
of HapHop-Physio are available in [4].

In this work, psychophysiology is used to detect
the changes in children’s cognitive performance using
HapHop-Physio in their therapies without recurring to cog-
nitive test batteries as usual in laboratory environments.
Measures from physiological signals and/or psychological
events are collected separately, to obtain their counterpart.
Physiological signals are readings produced by physiological
processes measured from the central or the peripheral ner-
vous system (PNS). Psychological events are the phenomena
related to cognition, emotion, experience, and behavior of
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organisms due to stimuli in the physical and social environ-
ment. The process of obtaining one from the other is known
as psychophysiological inference [5].

Most psychophysiological measures are obtained from
brain activity and are assessed using Electroencephalography
(EEG). Other tests include functional Magnetic Resonance
Imaging (fMRI) in the laboratory or clinical settings [6], [7].
Despite being directly related to cognitive processes [8], these
measures tend to be uncomfortable since users cannot move
freely, preventing them from experiencing a natural interac-
tion. Thus, measuring electrophysiology through wearables
is a good approach for psychophysiological assessments in
ambulatory settings [9], [10].

With wearable technology, the invasiveness of the sensors
has been substantially reduced [11]. Wearables frequently
measure signals derived from the PNS, such as electrocar-
diogram (ECG), heart rate variability (HRV), electroder-
mal activity (EDA), electromyogram (EMG), and respiratory
measures [12].

Detection of cognitive processes (e.g., memory, attention)
from peripheral physiological signals measured with wear-
able technology has not been addressed in cognitive support
technologies. Therefore, this work presents the evaluation of
memory and attention activities’ performance from measur-
ing EDA and HRV signals with a wearable device (E4 wrist-
band). Assessment is carried out during the interaction of
children suffering from Specific Learning Disorders (SLD)
with the HapHop-Physio system. Both physiological signals
are good indicators of cognitive changes [13]–[15]. The final
aim of this paper is going towards the validation of the
relationship between cognition (as the class) and changes in
these signals (as attributes), demonstrating the feasibility of
a machine learning classification approach in a three-class
classification task (low, medium, and high performance).

The papers’ remaining is organized as follows: in
section II, the papers related to every step in identifying
cognition through physiological signals are detailed. Part III
identifies the experimental pipeline followed to obtain data
and analyze it. Section IV details the obtained results from the
implementation of machine learning algorithms. In section
V, the data analysis is presented in terms of the significance
of results and comparisons to other works. Finally, section
VI summaries the findings and provide insights regarding
future work.

II. RELATED WORKS
The classification of cognition through physiological signals
in eHealth contexts has not been thoroughly addressed com-
pared to emotion recognition [16]. Three aspects are essen-
tial in the identification of cognition through physiological
signals:

• The sensing and analysis techniques.
• The definition of the ground-truth on the cognitive state
and its elicitation process.

• The procedure to obtain the cognition (psychophysio-
logical inference).

Through a systematic mapping process addressing these
three aspects, the construction of state of art was carried out
with 27 papers.

In the literature, there are a variety of commercial devices
used to measure physiological signals. Examples of these
devices are the Biopac GSR100C [17], the NeXus 4 [18], the
NeXus 10 [14], [19], the Affective Q sensor [20], and
the PowerLab 16SP System [21]. However, only 18.2% of
the papers use wearable technologies in their experiments.
Wearable technology allows moving results from the labo-
ratory to a free-living environment [22]. None of the related
works carried out experiments outside laboratory settings
[23]–[26] due to unsuitable sensors for daily activities, like
Brain-Computer Interfaces.

Statistical analysis [14], [17]–[19], [27] and machine
learning [8], [13], [18], [21], [28]–[31] were found as the
most-used analysis techniques for the processed signals
(to infer the psychological event from the physiological sig-
nal). Authors established relationships between EDA/HRV
changes and cognitive states such as cognitive load [13], [14],
[21], [23], [24], [32], [33], attention [8], [28], mem-
ory [19], autistic aspects [17], engagement [20], anxiety
states and stress [27], and different cognitive tasks [30]
under impairment conditions [31]. There are works rec-
ognizing cognition from EEG signals. Analysis techniques
require deep learning capabilities in this type of works since
this signal’s resolution is higher [34]–[37]. However, these
works do not include EDA/HRV signals in the analyzed
data.

The analysis also depends on the number of signals: 37.5%
of the works only used EDA as a data source; 42.9% used two
physiological signals (complementing EDA with measures
such as HRV), and 14.2% used three or four input signals.
From the papers that only used the EDA signal, 42.9% per-
formed the analysis with the signal’s SCR component, 28.6%
with the SCL component, and 28.6% of the works did not
discriminate between them. Reasons for using one or the
other component are varied and depend primarily on each
study’s conditions and objectives. However, the SCL com-
ponent can provide more information to classify different
cognitive abilities [30].

The most common way to identify cognitive states is to
measure performance indices from tasks [19], [21], [27], [38],
standardized tests [8], [14], [17], [30], [31], self-reports [13],
[28], and expert observations [18]. However, these identifica-
tion strategies are considered subjective and cannot be mea-
sured continuously [39]. Measuring these indices is known
as establishing the ground-truth. Only one paper carried out
a more objective process for defining the ground-truth for the
cognitive state: analyzing the signal’s variation according to
standardized indices of cognitive activity [20].

The time and frequency domains help in extracting the
features of the physiological signals. The psychophysiolog-
ical inference needs the labeling of signal data according
to the cognitive states. This process was performed through
binary classes, three, four, and five classes in related works.

196188 VOLUME 8, 2020



C. Rico-Olarte et al.: Towards Classifying Cognitive Performance by Sensing Electrodermal Activity in Children

The accuracy of the classification does not exceed 88% in the
binary classification [8].

Healthy adults are the most common population (71.4%)
for the recognition of cognitive states. Experiments with
children deal with one-year-old children to seek changes in
the attentional processes [40] and treat children with Autism
SpectrumDisorder (ASD) in two different game-play settings
[41], [42]. Technology evaluated in the papers varies between
games for entertainment [33], [43], and technology aids for
diagnosis [44].

Given the previous state-of-the-art summary and to the
best of our knowledge, few works (e.g., [8], [42]) have
objectively identified changes in the cognition of children
suffering from a cognitive disorder by using physiological
signals. In [8], anxiety-related arousal was differentiated
from arousal related to attention processes (binary subject
dependent classification) with an accuracy of 84% based on
heart rate indices on children with ASD. In [42], authors
designed playful experiences for childrenwithASD assessing
physiology-based data such as EDA and HRV; they identified
the arousal activity (a two-class subject dependent classifica-
tion task) with an accuracy of 77%. However, these works do
not target a cognitive aspect, such as performance. Wearable
technologies were not used to collect data in therapeutic
rehabilitationwith a technology suited for it. The analysis was
approached as a binary classification, and accuracy was not
as high as expected.

III. MATERIALS AND METHODS
In this section, the experiment to collect the EDA signal is
described. First, a brief description of the devices and tools
that were used. Then, the design of the experiment and a data
analysis pipeline is detailed.

A. DEVICES AND TOOLS
The HapHop-Physio game focuses on the rehabilitation of
memory and attention functions. Specifically, it trains the
auditory and visual components for learning abilities and the
training of reading and writing processes. It has an electronic
mat as an input device that induces physical activity when the
child interacts with it [4]. In this experiment, HapHop-Physio
was used to train and evaluate the children’s learning abilities.

The E4 wristband (Empatica, Milano, Italy) was used to
collect the EDA and HRV physiological signals during the
interaction with HapHop-Physio. The device is as easy to use
as wearing a watch. It is a portable wireless device designed
for comfortable, continuous, and real-time data acquisition,
making it the ideal device (wearable) according to the study’s
requirements. The unobtrusive monitoring and easy access to
raw data are some advantages of this wearable [45].

The EDA measures the changes in conductivity produced
in the skin due to increases in sweat glands’ activity. The
signal has two components: the phasic component (Skin
Conductance Response - SCR) and the tonic component
(Skin Conductance Level - SCL). This separation helps in
the analysis at a macro level (larger pieces with SCL) or a
micro-level (related to events or SCR) [46]. The HRV is

FIGURE 1. Experimental design and data analysis pipeline.

the fluctuation in the time intervals between adjacent heart-
beats. It is generated by heart-brain interactions and dynamic,
non-linear autonomic nervous system processes [47].

In the experiment, EDA and HRV signals from 14 children
diagnosed with SLD were collected through the E4 wearable
device. In the E4 wearable, the sensors used to obtain both
signals are different. For HRV, an optical sensor is imple-
mented, while two dry electrodes are used to measure the
EDA. The HRV is computed from the reflected amount of
light with a proprietary algorithm. This algorithm ruled out
various signals as they featured many motion artifacts.

On the other hand, EDA signals were complete since the
data’s robustness is determined by the wristband’s automatic
noise artifact detection algorithm. Therefore, since the wear-
able optical sensors were susceptible to motion artifacts [48],
the device discarded many HRV signals. For this reason, this
signal was removed from the analysis, and the focus was on
EDA.

Matlab was the tool used to perform the decomposition
process of the EDA signal. Similarly, in this environment,
the filtering and the feature extraction of the signal was
performed.

The open-source software application Weka1 was used to
generate the classification models of the dataset and to test
the accuracy of the models. To evaluate the performance of
the model, the 10-fold Cross-Validation (CV) technique was
used. This technique allows estimating how well the results
of a model will generalize to an out-of-sample dataset [49].

B. METHODS
Data preparation for further analysis and the dataset
construction is reported in the order described in Fig. 1.

1) STUDY PROTOCOL
A quasi-experimental pilot study was conducted to deter-
mine the changes in the cognitive domains of memory
(visual/auditory-verbal) and attention (visual/auditory) after
receiving treatment with the HapHop-Physio application for
eight weeks. However, only the memory domain was evalu-
ated for this paper since the attention module was still under
development.

Considering the rehabilitation goal of HapHop-Physio, this
study attempted to classify cognition using the EDA signal
of children with SLD based on non-invasive measurement
procedures.

The autonomy and integrity of patients who voluntarily
participated were respected. An informed consent signed by

1https://www.cs.waikato.ac.nz/ml/weka/
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FIGURE 2. Child playing with HapHop-Physio while wearing the E4.

the children’s parents and approved by the Ethics commit-
tee from Universidad del Cauca, in session 6-1.38/6 from
04.29.2015, guaranteed the confidentiality and privacy of the
information collected the study.

Three phases comprised this study. The first phase was
applying the ENI (Evaluación Neuropsicológica Infantil)
[50], a test battery developed in Spanish for Latin American
children with similar language backgrounds. The ENI deter-
mines the presence of cognitive and behavioral changes in
children who were under suspicion of some type of cognitive
alteration. In the second phase, the population presenting low
average, limit, or very low percentile scores in one or more
of the cognitive skills evaluated were selected to follow a
rehabilitation process with the HapHop-Physio therapeutic
program. An evaluation of the children’s cognitive profile
was the third phase of the study to check the progress or
degradation of the first assessment’s cognitive difficulties.

a: DATA COLLECTION
In every therapy session, the E4 wristband was placed
on the child’s non-dominant side and turned on. Children
wore the wristband when carrying out the therapies under a
neuro-psycho-pedagogy specialist (Fig. 2).

While the recording time began, the game was set up.
Next, the specialist selected the first game in the first therapy
session according to the ENI battery results. In the following
sessions, game selection depended on the progress of the
child. A therapy session was conducted for as long as the
specialist thought it was appropriate, according to her profes-
sional judgment and the child (between 20 and 30 minutes).
Finally, the recording time is ended as soon as the specialist
indicated the end of the session.

Signals were collected from 14 children, during a total
of 130 recording sessions. Each game session lasted approx-
imately 25 minutes, generating an approximate of 54 hours
of EDA signal recordings, with a sampling frequency of 4 Hz
and a measurement range from 0.01 to 100 µSiemens.

2) DATA PREPARATION
It was essential to identify the stimuli that caused changes in
the child’s physical response (Fig. 3) during the rehabilitation
treatment. Thus, the non-stationary signals’ preparation had
three major tasks: the signal segmentation, the data (features)
extraction from the segments, and the data labeling.

FIGURE 3. Example of an EDA signal obtained from the E4 device.

First, segmentation was performed by the duration of each
mini-game in HapHop-Physio. Since the time taken to clear
eachmini-game and the number of levels solved by each child
was different, the segmentation was not uniform. The seg-
ments’ cleaning process was based on three rules to guarantee
the quality of the EDA segment [51]:

1. EDA not higher than 0.05 µS
2. EDA changes faster than ±10 µS/s
3. EDA data surrounding ±5 s of invalid portions

Second, features from each signal segment were extracted for
building the dataset, following the regular procedure found in
the literature [52]: (a) filtering the segment to detect motion
artifacts or weak sensor readings, and (b) extracting features
to represent the segments.

Before filtering the EDA segments, theywere decomposed,
and the tonic component of EDA was obtained by using
a convolution process with a Sinc function in the time
domain [53], [54]. This component was selected for analysis
since it represents time changes due to variations gener-
ated by the phasic component. The SCL slowly varies over
time in an individual depending upon his/her psychological
state, and it is associated with both cognitive and emotional
arousal [55].

It is impossible to label each of the SCRs produced by the
child’s interaction with HapHop-Physio because many SCRs
might be found for each mini-game. For this study, the SCL
component (attributes) were assigned to the results (class)
achieved by the child during a mini-game. This means the
class of one instance from the dataset results from one ses-
sion’s mini-game from one child. Once the decomposition
process was performed, the SCL segments of EDA were
filtered using a low pass filter specially adapted for their
number of samples.

To extract the features, multiresolution analysis tech-
niques were found to represent the information contained
in non-stationary signals. The Wavelet Transform (WT) is
a widely used technique for multiresolution analysis of
EDA data [56]–[59]. The study of the SCL segments was
performed to obtain the features in the Wavelet domain.
The Daubechies wavelet of order 10 (db10) was used as
the mother Wavelet [60] along with the Mallat algorithm
[61]. Ten decomposition levels (detail coefficients) of each
segment were obtained in the Wavelet domain.

The following features were selected: total amplitude,
normalized amplitude, and absolute amplitude from each
detail coefficient (i.e., each representation of the segment
in the Wavelet domain) and the first and second deriva-
tive of the detail coefficient. Four statistical variables were
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TABLE 1. Features extracted in the Wavelet domain.

also selected: the mean, the variance, the kurtosis, and the
standard deviation. Table 1 summarizes the features.

Third, after segmentation and feature extraction, each seg-
ment was labeled according to changes in cognitive activity.
For the labeling, five variables related to cognition were out-
lined. The information about these variables was available in
theHapHop-Physio database, according to the scoring system
of the game. Data from each segment was labeled according
to the information of these variables:

• Session: a game session is equivalent to the therapy
session. Each session has a variable number of mini-
games. The stimulated cognitive domains in the child’s
profile should increase as the game’s therapy sessions
continue. Therefore, the game session is considered an
indicator of cognitive development.

• Level: HapHop-Physio has five levels of difficulty.
In the therapy session, the game level is considered an
indicator of cognitive workload [33].

• Score: the score of the mini-games depends on the game
level. Each level is consistent with the average percentile
of cognitive ability. Thus, the game score is equivalent
to the child’s memory span [62].

• Performance: this variable was established in terms of
the game score in HapHop-Physio. The game’s reward
is in stars: players collect one, two, or three stars for each
completed mini-game. This represents a low (less than
25% of the mini-game was completed), medium (at least
25% of the mini-game was achieved), and high perfor-
mance (at least 75% of the mini-game was performed).
Game performance is considered a measurement of
cognitive performance.

• Time: it is the variable that measures the duration of
each mini-game. Game time gives information about the
length of the cognitive load and the organization’s speed
and planning of the child’s executive functions [63].
The variable is a proximate measurement of cognitive
processing length/speed.

The cognitive performance variable was the selected class
to carry out the classification, based on:

• The small range of values avoiding an undersampling
of the dataset instances. This is a three-class dataset:
low performance, medium performance, and high
performance.

• It is a representative variable of the set of cognitive
variables.

A labeled dataset was generated per child, and the general
dataset was built by concatenating the individual datasets.
This public dataset can be found in Kaggle: https://www.kagg
le.com/carolinarico/cognition-in-children-through-eda.

Finally, a framework for data quality was used to guarantee
the dataset [64]. The generated dataset had the following
problems: (i) imbalanced classes, (ii) high dimensionality,
and (iii) low amount of data. These problems were identified
in the individual datasets, and solutions were also applied to
the general dataset.

3) DATA MODELING
With the dataset built, machine learning classification
algorithms were used to model the labeled data [65]. This
classification is the psychophysiological inference of the chil-
dren’s cognitive state. Data modeling is the final stage of the
methods that will help fulfill this work’s objective: find and
validate a relationship between cognition and physiological
signals changes.

The classification algorithms were selected due to their
extensive use in the literature. The classification was per-
formed with nine different algorithms:

• Ensemblemeta-algorithms: Boosting, Bagging, Random
Forest.

• Support Vector Machines algorithms: SMO and Lib-
SVM

• Neural Networks algorithms: Multilayer Perceptron
(MLP)

• Decision Trees algorithms: J48
• Probabilistic algorithms: Naïve Bayes
• Non-parametric algorithms: KNN

Personal models from individual datasets were generated to
compare themwith the general model. The subject-dependent
classification was performed to obtain the accuracies of the
classification models. For the evaluation and selection of the
algorithm, 10-fold cross-validation was used. The average
of instances correctly classified in each fold’s test set was
obtained, and the standard deviation. From these parameters,
the best algorithm was selected.

IV. RESULTS
A total of 360 features were extracted from representing the
SCL segments in the Wavelet domain: 36 features for each of
the 10 levels. With the features’ extraction, a general dataset
with 945 samples (instances), 360 features (attributes), and
different output classes according to the defined cognition
labels was generated.

The quality problems found in the dataset were solved.
Regarding the first problem, the classes were balanced
by generating synthetic instances through oversampling.
By employing a Wrapping approach, the classifier’s relevant
attributes were selected [64], solving the second problem.
Due to the scope of the experiment, the third problem could
not be addressed.
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TABLE 2. Personal classification results with performance class.

TABLE 3. General classification results with performance class.

A. PERSONAL RESULTS
The classification algorithms were applied to each individual
dataset. Datasets for the F and G patients could not be
balanced because of its classes’ final distribution. A possi-
ble explanation is that both children exhibited an excellent
and consistent performance throughout the study. In these
cases, imputation methods do not work. Since the class is
unbalanced, the classification is biased. Table 2 contains
information on the best classification algorithm and the accu-
racy percentage for each personal model. The percentages
vary from 75.50% to 97.87%, with a mean of 87.09%.
A cross-validation of the machine learning models was
performed.

B. GENERAL RESULTS
By balancing the general dataset, the number of instances
increased to 1,916. By selecting the relevant features,
the number of attributes decreased to 31. It is important to
mention that the input dataset for the MLP neural network
had the 360 first attributes obtained in the feature extraction
process. The data was normalized since this algorithm is
sensitive to feature scaling. The final results of the classifi-
cation models with ten-fold cross-validation of the models
are shown in Table 3. The best algorithm for this dataset was
Random Forest, with an accuracy of 79.95%.

The Kappa statistic was calculated to evaluate and guaran-
tee the quality of the accuracy of the classification algorithm.
It compares the observed accuracy of a random classifier
with the expected accuracy. This technique measures how
closely the classified instances matched the data labeled as
ground-truth [66]. The Kappa statistic for the Random For-

FIGURE 4. Confusion matrix from the Random Forest classification model
with the Performance label.

est classifier in the general model is 0.698 (probed by the
confusion matrix – Fig. 4).

Other metrics indicating quality in the classification accu-
racy are the recall and the area under the curve (AUC).
For the general classification model, each of these measures’
weighted average is 0.799 and 0.861, respectively. The recall
metric indicates the ability of the classification model to
identify all relevant instances. The AUCmetric calculates the
overall performance of the classification model [67].

V. DISCUSSION
This study classifies the cognitive performance in children
with SLD from features of EDA signals, aimed to validate
its relationship. The accuracy in the classification model
(79.95%) is a useful marker of the robustness in the psy-
chophysiological inference. Results from evaluation metrics
indicate a substantial agreement in the classification accu-
racy and the generation of an excellent general classification
model. These results justify HapHop-Physio as a cognitive
support technology.

This work presented considerable differences regarding
similar papers in the literature. First, sensing the physiolog-
ical signals through wearable devices allows for less inva-
sive monitoring in ambulatory environments. Second, as the
game scoring system is based on the ENI battery’s cognitive
indices, this cognitive activity was acquired objectively and
unobtrusively. Selecting cognitive performance as an indica-
tor of the child’s cognitive state during the interactionwith the
game has not been addressed before. Moreover, data analy-
sis with machine learning addresses the psychophysiological
inference giving confidence in the achieved results. This
is due to: (i) comprising four essential steps in processing
and characterizing the physiological signals, and (ii) finding
non-linear patterns between the signal and the cognitive state.

A. SIGNIFICANCE OF THE RESULTS
Two main results were presented: a dataset built from wear-
able physiological data collected in a real clinical environ-
ment. A classification model was generated to recognize
cognitive states from physiological data in the rehabilitation
eHealth context.

• Since changes in the children’s cognitive domains
are progressive, its relationship with the physiological
responses should have the same nature. The EDA’s
SCL component to building the dataset provided a bet-
ter insight into the signal’s behavior while children
interacted with HapHop-Physio.

• When employing machine learning algorithms to make
the psychophysiological inference, encouraging results
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can classify different cognitive indicators, according to
the rehabilitation aim.

• Deep learning algorithms’ performance highly relies
on the amount of data and its complexity [68]. Neural
networks were implemented, yet the configuration that
provided the best results in accuracy had only one hidden
layer in the MLP algorithm. Several configurations in
the MLP algorithm were tested (up to four hidden lay-
ers). However, these results did not exceed the accuracy
of the Random Forest algorithm.

• General classification accuracy presents a lower value
than personal classification accuracies. As demonstrated
in other domains [69], better performance in classifica-
tion is expected in small to medium-sized datasets when
algorithms are trained with a single individual (subject-
independent). However, the subject-dependent classi-
fication models were more accurate in this particular
problem.

• Based on the achieved results, this work’s aim was com-
pleted. It can also be confirmed that HapHop-Physio is
a cognitive support technology; i.e., it does impact the
cognitive progress of the children. Besides, the eval-
uation of this progress has a highly objective com-
ponent. Thanks to this, health professionals can make
better decisions regarding the course of cognitive
rehabilitation.

B. COMPARISONS WITH OTHER RESEARCH WORKS
• In terms of the classification accuracy value, the pre-
sented results are better compared to other works
addressing cognition. In [24], the value varied between
50% and 60% in a three-class classification (with leave-
one-subject-out validations), and [23] obtained a value
of 75% in the classification using only the EDA (leave-
one-subject-out cross validation test). In [30], the accu-
racy did not exceed 66% in a four-class model with
two signals (EDA and HRV) as input attributes (leave-
one-subject-out cross-validation). However, these inde-
pendent subject models do not show results regard-
ing test datasets. Also, in [8], [26], the classifica-
tion values ranged between 88% and 90%. However,
the used datasets combined different physiological sig-
nals and different cognitive states and subject dependent
classifications.

• The use of several signals means a larger number of
features, a more extensive processing load, and more
time invested in obtaining results. By using just one
signal as the EDA, processing was faster, considering
the analysis domain (Wavelet domain). The processing
time needed to be less to obtain the same results as other
research works [23].

• This work allowed the collection of data from children
with SLD in a real clinical rehabilitation environment.
Other datasets were built-in laboratory environments
[25], [26]. The obtained dataset constitutes a good basis

for detecting other cognitive states, even co-occurring
events such as behavior and emotions.

• None of the related works (including this study), reaches
a testing phase of the model, only training and valida-
tion. Therefore, it cannot be said that there is an effective
prediction of cognitive processes from the EDA signal.
In this regard, more research is needed before obtaining
a reliable model that can be used in real applications.

C. LIMITATIONS OF THE STUDY
Within this study, it is important to recognize its four main
limitations. First, an EDA signal decomposition process using
more validated tools in the state of the art can help to improve
the classification results obtained by making comparisons
with the originally used convolution process.

Second, complementing the tonic component of the
signal with the Non-Specific Skin Conductance Responses
(NS.SCRs) may improve the features used as inputs to the
classificationmodel. Unfortunately, this analysis was not pos-
sible in this study because the annotations made for labeling
the signals did not take into account the NS.SCRs. Also,
some data related to this component was eliminated when
performing the EDA signal’s cleaning process.

Third, the subject dependence classification performed
is also a limitation. Therefore the proposed model must
be updated by an independent subject model for future
deployment of the model. However, before addressing an
independent-subject model, it is necessary to guarantee a
homogeneous data collection.

Finally, the quality of the signal obtained by the E4
wristband needs to be improved by addressing motion noise
cancellation [70] and the users’ wrists’ size, critical in this
study because of the experiments that were performed with
children.

D. FUTURE WORK
The obtained results provide a basis for future research
regarding the analysis of the EDA signal, NS.SCRs would be
considered to complement the SCL component. Concerning
the dataset, its size will be increased in participants and/or
by using the remaining signals received from the E4 wrist-
band. Signals include (i) processing the Blood Volume
Pulse (BVP) from the pulse plethysmography (PPG) sensor
off-line to obtain HRV signal with higher quality, (ii) the
motion-based activity from the three-axis accelerometer,
and (iii) the peripheral skin temperature. Tests within the
Deep Learning field need to be performed to improve
the classification models’ accuracy by taking advantage of
its capabilities in feature extraction and feature selection
(e.g., autoencoders). Likewise, the EEG signal measurement
will be considered a baseline to identify cognitive processes
in the HapHop-Physio context and the data from the attention
activities.

Regarding the generalizability of the experiment, it would
be a significant contribution to evaluate the EDA classi-
fication model for cognitive performance in real activities
of children’s daily lives. Examples of application scenarios
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include progress in the school day, checking the rehabilitation
activities at home, and verifying their cognitive performance
according to their ages.

Finally, these results can be compared to healthy children’s
performance to analyze and compare data to diagnose SLD.

VI. CONCLUSION
This study classified cognitive performance from the EDA
signal during a cognitive rehabilitation therapy performed by
children with SLD. An analysis from supervised machine
learning algorithms was made to find patterns and validate
the relationship between EDA data and cognitive states.

In this paper, five variables of cognition were addressed,
being cognitive performance, the best evaluated. It was mea-
sured at three levels: low, medium, and high, obtaining a
general classificationmodel with 79.90% accuracy. The accu-
racy of this model is better compared to other works address-
ing cognition through EDA. Thus, finding the relationship
between cognition and the EDA signal verified the purpose
fulfillment of HapHop-Physio.
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