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ABSTRACT With the development of artificial intelligence and the Internet of things, the prospects of
cloud computing applications have become broader, and the number of users and cloud data centers (CDCs)
has exploded. It is a challenge to realize efficient job scheduling and resource allocation of multiple
users and data centers. However, the traditional scheduling model based on heuristic algorithm has some
limitations in the complex and changeable cloud environment. In addition, many existing single-agent
models rarely consider the multi-objective global optimization of the system. Therefore, this paper proposes
a two-stage job scheduling and resource allocation framework that adopts multiple intelligent schedulers to
solve the cooperative scheduling problem between job scheduling and resource allocation. A heterogeneous
distributed deep learning (HDDL) model is used in the job scheduling stage to schedule multiple jobs to
multiple cloud data centers. The deep Q-network (DQN) model is a resource scheduler to deploy virtual
machine to physical servers for execution. Extensive numerical results show that both HDDL-baesd job
scheduler and DQN-based resource allocator outperform the benchmark algorithm in terms of optimizing
energy consumption and job delay. Furthermore, the proposed framework not only can achieve a global
near-optimum by achieving local optimization at each stage but also has good scalability and low computa-
tion delay.

INDEX TERMS Cloud computing, multi-user multi-data center, resource allocation, job scheduling.

I. INTRODUCTION
The rapid implementation of cloud computing has resulted in
significant investment and fast growth. Continuous research
of cloud computing has become a powerful engine for the
development of artificial intelligence, further accelerating the
development of applications such as big data and the Internet
of things [2].With the explosive growth of applications, users,
and cloud service providers (CSPs), efficient job scheduling
and resource allocation of multi-user multi-CSPs has become
a major challenge [3]. An effective scheduling strategy must
consider quality of service (QoS) and CSP benefits, and
significant progress has been made.

An improved heuristic algorithm is the most common
solution to the scheduling problems of cloud computing [5].
Alkayal et al. [6] combined multi-objective optimization
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(MOO) and particle swarm optimization (PSO) to opti-
mize resource allocation, aiming to schedule jobs to virtual
machines (VMs) with minimal waiting time and maximum
system throughput. Hu et al. [7] devised a scientific work-
flow multi-objective scheduling algorithm for the reliabil-
ity of workflow scheduling in a multi-cloud environment,
with a goal to minimize the completion time and cost of
workflow under reliability constraints. A number of hybrid
algorithms [8]–[10] combine the excellent characteristics of
multiple heuristic algorithms to achieve good performance.

Some scholars have adopted the decision-making ability
and trial-error mechanism of reinforcement learning (RL)
to explore optimal scheduling strategies. Cui et al. [11] and
Peng et al. [12] combined RL and queue theory to solve
task scheduling and resource allocation problems in com-
plex cloud environments, cleverly transforming a scheduling
problem to a sequence decision problem and adopting the RL
agent to continuously interact with the cloud environment to
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explore optimal scheduling strategies. Considering the auto-
matic scaling of applications in the cloud, Wei et al. [13] pre-
sented a reinforcement learning-based auto-scaling approach
for SaaS providers in a dynamic cloud environment. How-
ever, RL has certain limitations and has convergence prob-
lems in the case of a high-dimensional state space.

Against this background, a number of researchers
have adopted deep reinforcement learning (DRL) to
achieve breakthroughs in automatic control [14] and game
competition [15], [16] and better solve cloud comput-
ing scheduling problems. Bu and Wang [17] devised
a DRL-based hierarchical system resource allocation and
power management framework, which includes a global
layer to allocate VMs to physical servers and a local layer
for server power management. The framework achieves the
best balance between server cluster latency and energy. For
large-scale cluster resource scheduling in cloud computing,
Ran et al. [18] presented a DRL-based elastic resource provi-
sion system that can automatically and dynamically allocate
computing resources with the best resource management
strategy according to changes in user workload demands.
Bitsakos et al. [19] proposed a hierarchical hybrid online
task scheduling framework based on DRL, which takes
into account various optimization objectives. Peng et al. [20]
developed a task scheduling and resource allocation frame-
work based on a DQN algorithm, which can dynamically
tradeoff multi-objective optimization relationships in accor-
dance with dynamic requirements.

The above research can effectively solve specific schedul-
ing problems, but it has several deficiencies. First, optimiza-
tion is specific to job scheduling or resource allocation, rather
than global. Second, optimization tends to focus on user
service quality or CSP benefit and is not multi-objective.
We devise a two-stage cloud job scheduling and resource allo-
cation frameworkwithmultiple intelligent schedulers to com-
plete scheduling tasks in different stages. The HDDL [21]
model schedules multiple jobs to multiple data centers. At the
resource allocation stage, DQN configures VMs for tasks
and deploys them to physical servers for execution. The
framework considers user service quality and CSP benefits
to realize multi-objective optimization.

Our work makes the following three main contributions.
(1) To figure out the cooperative problem of job scheduling

and resource allocation for a multi-user and multi-data
center, a two-stage scheduling framework is pro-
posed, with stages of job scheduling and resource
allocation.

(2) Various intelligent schedulers which combine the
excellent features of deep learning and reinforcement
learning, are adopted to effectively solve large-scale
cloud scheduling problems of different schedul-
ing stages. In addition, different agents realized
multi-objective optimization of cloud system schedul-
ing based on cooperation mechanisms.

(3) The proposed framework is flexible, extensible and low
latency, which can not only dynamically adjust system

optimization goals according to the actual require-
ments, but also scale the size of data center.

This paper is organized as follows. Some of the related
research work is organized in section 2. Section 3 introducess
the key stages and components of the system framework and
defines the job scheduling and resource allocation models.
Section 4 discusses our extensive simulations to test the
performance and advantages of the proposed framework.
Section 5 draws our conclusions and makes a future prospect.

II. RELATED WORKS
Scheduling of cloud computing is NP-complete and is not
fully solved. Pinedo and Hadavi [23] give the following
definition: ‘‘Scheduling is a decision-making process that is
used on a regular basis in many manufacturing and services
industries. It deals with the allocation of resources to tasks
over given time periods and its goal is to optimize one or more
objectives’’. In large-scale cloud systems, multiple resources
(e.g., computing and network) and user requirements change
dynamically. Therefore, to find the optimal solution for a
dynamic scheduling problem is a difficult but forced chal-
lenge. It is feasible to solve the scheduling problem using
a deep reinforcement model combining the excellent per-
ception ability of DL with the decision-making ability of
RL. DRL is an adaptive intelligent learning agent, which
continuously interacts with the dynamic environment and
explores the optimal scheduling strategy through trial-error
and reward [24]. DRL has been used to solve cloud job
scheduling and resource allocation problems. Some recent
work has used an innovative architecture-hybrid hierarchical
scheduling framework in cloud computing systems. Multi-
ple intelligent schedulers achieve collaborative job schedul-
ing and resource allocation to realize superior optimized
performance.

A. RESEARCH ON JOB SCHEDULING
Workflow scheduling methods are still limited in aspects
such as task dependency. Tong et al. [25] proposed an
intelligent method called deep Q learning task schedul-
ing (DQTS) to solve the problem of directed acyclic
graph (DAG) task scheduling. Wang et al. [26] realized
multi-objective workflow scheduling based on multi-DQN
agent reinforcement learning. For the uncertainty of real-
time workflow scheduling, Chen et al. [27] developed an
unceRtainty-aware Online Scheduling Algorithm (ROSA),
which skillfully integrates both the proactive and reactive
strategies, to schedule dynamic and multiple workflflows
with deadlines. With the growth of cloud computing appli-
cations, mobile edge computing (MEC) has seen broad
application prospects [28]. In the area of MEC task offload-
ing, Liu et al. [29] considered the dynamic changes of user
equipment (UE) location and service requests and proposed
a DRL-based task scheduling scheme. Large numbers of
vehicles are used as mobile edge servers to provide com-
puting services to nearby equipment, effectively solving
the task scheduling problem in a changing environment.
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Similarly, Huang et al. [30] presented a DQN-based MEC
task offloading and resource allocation algorithm that effi-
ciently offloads tasks of multiple mobile terminals to multiple
edge servers to achieve reasonable resource allocation and
minimize global costs. Huang et al. [30] and Liu [31] pro-
posed actor-critic DRLS-based computation offloading for
three-tier mobile computing networks. This model minimizes
the weighted sum of task delays and energy consumption
by optimizing task offloading strategies in dynamic net-
work systems. Lu et al. [32] developed an improved IDRQN
algorithm to solve the offloading problem of multi-service
nodes and multi-mobile tasks in large-scale heterogeneous
MEC clusters. Considering task scheduling for fog-based
internet of things applications, a double deep Q learning
(DDQL) scheduling algorithm [33] was adopted to mini-
mize long-term service delays and computation costs under
resource and deadline constraints.

B. RESEARCH ON RESOURCE ALLOCATION
Revenue is the primary goal of CSPs, so it is crucial to
reduce the energy consumption of data centers while ensur-
ing the quality of user services. Yadav et al. [34], [35]
proposed several adaptive heuristic algorithms to reduce
energy consumption while maintaining the required perfor-
mance levels in CDCs. Moreover, to reduce the energy con-
sumption of large-scale mobile cloud data centers, a novel
adaptive heuristic host overload detection algorithm called
MeReg was introduced, takeing energy consumption and
SLA violations into full consideration [36]. Li et al. [37]
applied the DRL model to cloud computing and residen-
tial smart grid systems to effectively solve cloud resource
allocation and smart grid user task scheduling problems.
Seyed et al. [38] devised a controller based on RL and imple-
mented a distributed architecture that can rapidly expand
system resources tomeet demands, and shut down idle servers
to save costs. Xiao et al. [39] developed a DRL-based sys-
tem, SARA, to find the optimal cloud allocation strategy
for workloads. It is particularly stable and fast for heteroge-
neous data-intensive workloads. To improve the QoS of edge
computing, Carpio et al. [40] adopted a resource allocation
algorithm based on DQN, which has strong adaptability.
Wang et al. [41] paid more attention to efficient resource
allocation in a dynamically changing MEC environment to
meet the needs of mobile devices. They proposed an intel-
ligent resource allocation scheme based on DRL (DRLRA)
to adaptively allocate computing and network resources and
reduce average service time.

C. RESEARCH ON COOPERATIVE SCHEDULING
Researchers have proposed a variety of hybrid hierarchical
scheduling frameworks to address the issues of job schedul-
ing and resource allocation, adopting multiple intelligent
schedulers for the global multi-objective optimization of a
system. A hierarchical resource allocation and power man-
agement framework based on DRL was devised, including
a global layer to assign VMs to physical machines and a

local layer for power management [42]. Cheng et al. [43]
introduced a DRL-based resource provision (RP) and task
scheduling (TS) system to minimize the energy cost of
CSPs. The two-layer RP-TS processor automatically gener-
ates the best long-term decisions by learning from changing
environments while considering the task offload of mobile
devices with limited resources. Quan et al. [44] developed
a two-layer RL (TLRL) algorithm. The DQN scheduler at
the first layer assigns clusters to offload tasks, and the
second layer specifies the physical machine for a task.
Cheng et al. [45] presented a hierarchical hybrid online task
scheduling framework based on DRL. The framework com-
prehensively considers various key factors of cloud platform
and has high efficiency in terms of energy and cost.

III. SYSTEM FRAMEWORK
As shown in Figure 1, the system framework of this paper
divides the cloud scheduling process into the two key stages
of job scheduling and resource allocation.

FIGURE 1. System framework.

A. JOB SCHEDULING
Multiple users submit jobs with different requirements to the
cloud data center through the network and pay on demand
for cloud computing services [5]. Jobs may be computation-
or data-intensive, for example, while data centers differ in
computing power, bandwidth, and energy consumption. The
job scheduling stage selects appropriate data centers for jobs
according to user requirements and data center attributes,
so as to execute jobs withminimum delay and cost.Moreover,
users and data centers have an intricate geographic relation-
ship [3]. The system forms multiple job queues by gathering
workloads from geographically close locations. The HDLL
schedules jobs to multiple data centers according to the opti-
mal scheduling strategy, taking into account both QoS and
CSP benefits.

B. RESOURCE ALLOCATION
The cloud system decouples subtasks of jobs that have task
dependencies and arranges them in the task queue in topo-
logical order to meet their dependencies [46]. The data cen-
ter links multiple heterogeneous physical servers through
high-speed bandwidth. Note that data placement factors and
data transmission costs and time in the same data center are
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not considered in this work. Various servers have different
maximum load capacity and energy consumption. DQN, as a
resource scheduler, deploys VMs to physical servers accord-
ing to the state of a system, aiming to achieve the optimal
server load and reduce the energy consumption of data centers
while ensuring QoS.

IV. SYSTEM MODEL
A. JOB SCHEDULING MODEL AND ALGORITHM DESIGN
For the job scheduling model, we consider N cloud job
queues, {Q1, . . . ,Qn}, each with a fixed number of jobs M ,
represented as {J1, . . . , Jm}, thus, the total number of jobs
is N · M . K data centers are denoted as {DC1, . . . ,DCk}.
Job Jnm (job m in queue n) is associated with a parameter
tuple {αnm, βnm}, representing the required CPU cycles and
size of data transmission, respectively. We set the linear
correlation between the required CPU cycles and the size
of data transmission [47], αnm = q · βnm, where q is the
computation-to-data ratio. Each data center DCk is associ-
ated with a parameter tuple, {Ck ,Prunk ,BWk ,Pcommk }, which
represents computational power, running power, bandwidth,
and communication power ofDCk , respectively. Note that the
data center adopts an average resource allocation strategy to
divide the computing power and bandwidth equally between
its cloud jobs. The system state space s consists of all cloud
jobs in the queue, represented as {α11, β11, . . . , αnm, βnm},
and the output action decision d is {a11, a12, . . . , anm},
where anm contains K binary numbers. anm is denoted as
{b1, b2, . . . , bk |k ∈ K}, bk ∈ {0, 1}. For example, bk = 1
represents that Jm inQn is deployed toDCk . The optimization
goal of the job scheduling model is to reduce job delay and
energy consumption.

The communication model includes communication delay
and energy consumption for data transmission. The CPU
cycles and bandwidth allocated to each job in the data center
DCk can be calculated as

Rcpuk =
Ck
Ak

(1)

Rbwk =
BWk

Ak
, (2)

where Ak is the number of jobs inDCk . Thus the job commu-
nication delay and communication energy consumption are,
respectively,

Dcommnm =
βnm

Rbwk
(3)

Ecommnm = Pcommk · Dcommnm . (4)

The computation model includes computation delay and
computation energy consumption, which are calculated,
respectively, as

Dcompnm =
αnm

Rcpuk
(5)

Ecompnm = Pcompk · Dcompnm . (6)

Considering the optimization goals of job delay and energy
consumption, the cost function obtained by taking decision d

in state space s is calculated as

Cost(s, d) = w1 · max
n∈N ,m∈M

(Dcommnm + Dcompnm )

+w2 ·
∑
n∈N

∑
m∈M

(Ecommnm + Ecompnm ) (7)

where w1, w2 are the reward weights of delay and energy
consumption, respectively. In addition, the maximum delay
(the sum of communication delay and computation delay)
of all tasks in the queue is used to represent the delay cost,
while the total energy consumption of all tasks in the queue
is taken as the system energy cost. The sum of the two can
accurately calculate the cost of the decision. The ultimate goal
is to minimize the job delay and energy consumption, as

Min Cost(s, d). (8)

The goal is to schedule jobs in multiple queues to specific
data centers according to a scheduling strategy. HDDL is used
as the scheduler. The model [21] uses multiple heterogeneous
deep neural networks (DNNs) as the fitting function, which
not only accelerates the convergence speed, but also explores
the optimal solution of the scheduling problem more effi-
ciently. In addition, the experience replay mechanism [16]
of DRL is used in this model to improve the utilization of
training samples. The DNNs have the same number of hidden
layers but different numbers of hidden layer nodes. Figure 2
shows the HDDL model structure.

FIGURE 2. Architecture of HDDL model.

We describe the training steps of the HDDL model. The
job state st of the system contains the job properties in all
queues, which represented as {α11, β11, . . . , αnm, βnm}. st is
the input of x DNNs, which output x action decisions, f xθ :
st → dxt , where θ

x is the x-th DNN parameter. The cost
of each action decision is calculated according to the cost
function Cost(st , dt ). The HDDLmodel takes the action deci-
sion with the maximum reward as the optimal decision doptt
of this episode. Memory is a key component in the model,
which store st and optimal decision doptt of each training
episode of each DNN model as samples. Min-batch samples
are randomly selected from thememory as a common training
sample set for each DNN. The training goal is to minimize the
cost. The cross-entropy loss function is defined as follows,

L(θx) = −dTt log fθx (st )− (1− dt )T log(1− fθx (st )). (9)
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and updates θx with stochastic gradient descent (SDG). The
pseudo-code of the job scheduling algorithm based on HDDL
is shown as Algorithm 1.

ALGORITHM 1 PSEUDO - CODE OF JOB SCHEDUL-
ING ALGORITHM BASED ON HDDL

Algorithm 1 Pseudo-Code of Job Scheduling
Algorithm Based on HDDL
1. Initialize all X DNNs with different random weights θx ,
x ∈ X .
2. Initialize memoryM to capacity D.
3. Input: all job properties in job-ready queues.
4. Output: job scheduling decisions dx.
5. For t = 1, 2, . . . ,T do:
6. Input st to each DNN.
7. Generate X scheduling decisions, {dxt } = fθxt (st ), from

the DNNs.
8. Select the optimal decision

doptt = argmin
x∈X

Cost(st , dxt )

9. Store transition (st , d
opt
t ) into M (D).

10. If transition size reaches the threshold do:
11. Randomly sample mini-batch of transitions (s, d) from

M (D) to train the DNNs.
12. Define loss function

L(θx) = −dT log fθx (s)− (1− d)T log(1− fθx (s)).

13. Update X DNN parameters using SDG.
14. End If
15. End For

B. RESOURCE ALLOCATION MODEL AND ALGORITHM
DESIGN
In resource allocation, the cloud system configures a
VM that meets the resource requirements for each
task. Subsequently, as a scheduling unit, the VM is
deployed to the server according to the scheduling strat-
egy. We consider X physical servers in data center
DCk , expressed as {DCk |S1, S2, . . . , Sx}. The data cen-
ter consists of multiple heterogeneous servers with differ-
ent maximum load VMs, {VMmax

1 ,VMmax
2 , . . . ,VMmax

x }.
The number of VMs running on the server at time t is
{VM run

1 (t),VM run
2 (t), . . . ,VM run

x (t)}. Thus the load rate
Ux(t) of server Sx at time t can be calculated as

Ux(t) =
VM run

x (t)
VMmax

x
· 100%. (10)

The energy consumption of server Sx at time t includes
static energy consumption Pxstatic(t) and dynamic energy con-
sumption Pxdynamic(t) of the server, both depending on the
load rate of the server. Pxstatic(t) is constant when Ux(t) >
0, and otherwise is zero. A complicated relationship exists
between the dynamic energy consumption and the load rate
of the server. In work [48], the server has an optimal load

rate U x
opt . The dynamic energy consumption Pxdynamic(t)

increases linearly with the load rate when U x(t) ≤ U x
opt .

However, the dynamic energy increases nonlinearly when
U x(t) > U x

opt . Therefore, the dynamic energy Pxdynamic(t) can
be calculated as

Pxdynamic(t) =


U x(t) · αx , (U x(t) ≤ U x

opt )
U x
opt · αx + (U x(t)− U x

opt )
2
· βx ,

(U x(t) > U x
opt ),

(11)

where αx is the linear growth rate, βx is the nonlinear growth
rate, and U x

opt is the optimal load rate.
The total energy consumption of the cluster at time t is

Etotal(t) =
∑X

x=1
(Pxstatic(t)+ P

x
dynamic(t)). (12)

The resource allocation model selects the optimal
VM deployment scheme based on the load and power con-
sumption of each server in the cluster. Therefore, the load rate
of all servers can be collected as the state space of the system,
{U1,U2, . . . ,Ux}, and the action space is {a|S1, S2, . . . , Sx}.
The optimization goal of the resource allocation model is to
reduce task delay and energy consumption; thus, the reward
function for task delay optimization can be specified as
Rdelay = 1 if the VM can be successfully deployed to the tar-
get server, and otherwise, Rdelay = −1. The reward function
for energy consumption optimization can be calculated as

Rec = Etotal(t)− Etotal(t − 1). (13)

Thus the total reward function of the system is

Rtotal = wd · Rdelay + wec · Rec, (14)

where the role of weighting parameters wd , wec is to avoid a
large difference between Rdelay and Rec, so as to ensure the
training effect of the model. Furthermore, the weight ratio
of the above two parameters can be dynamically adjusted to
meet the actual requirements of the system.

FIGURE 3. Architecture of DQN model.

As a classic model of deep reinforcement learning,
DQN [16] is adopted as the scheduler in the resource allo-
cation stage, with architecture as shown in Figure. 3.
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Agent continuously interacts with the cloud environment,
accumulating learning experience through reward and the
experience replay mechanism to find the optimal scheduling
strategy. The training steps for the DQNmodel are described.
First, the system state st of the cloud environment at timestep
t is used as the input of the neural network in Agent, which
selects action at according to the strategy π , calculates the
reward rt , and returns the state st+1 of the next time step.
Subsequently, the model stores transitions (st , at , rt , st+1)
as training samples in Memory. Until the number of samples
in Memory exceeds the threshold, mini-batch samples are
randomly extracted as training set. The optimization goal of
the model is to maximize the expected cumulative discount
reward,

Q∗(s, a) = max
π

E
[
rt + γ rt+1 + γ 2rt+2 + . . .

|st = s, at = a, π
]
. (15)

For each training episode, M transitions (s, a, r , s′) are
taken out of the memory, where the state s is the input of
the online network to output the current value Q of action a.
Similarly, the next state, s′, is the input of the target net-
work to obtain the maximum Q of all actions. Mean-square
error (MSE) is adopted as the loss function:

Li(θi) = E(s,a,r,s′)∼D(M )[(r + γ max
a′

Q(s′, a′; θ∼i )

− Q(s, a; θi))2] (16)

where γ ∈ [0, 1] is the discount factor. θi and θ∼i are
the parameters of the online and target network, respec-
tively, at the i-th iteration. Stochastic gradient descent (SDG)
method is adopted to update θi. EveryC iterations, the param-
eters of the online network are copied to the target network
to update its parameters. The pseudo-code of the resource
allocation algorithm based on DQN is shown as Algorithm 2.

For convenience, the notations used above are listed
in Table 5 at the end of this paper.

V. SIMULATION EXPERIMENT AND RESULT ANALYSIS
Weperformed simulation experiments to test the performance
of the proposed scheduling framework. First, the optimiza-
tion effects of the job scheduler and resource allocator were
compared and analyzed. Then, we selected multiple sched-
uler combinations as benchmarks and compared the global
scheduling effects with the HDDL and DQN scheduler com-
binations adopted in the proposed framework. Finally, the
average CPU computation time of each algorithm to make
a scheduling decision is compared.

A. EXPERIMENTAL STEPS AND PARAMETER SETTING
In the job scheduling stage, we examine the effectiveness and
convergence of the algorithm by observing the change in the
cost ratio, which is equal to the ratio of the costs between the
optimal decision and the HDDL. The closer the ratio is

ALGORITHM 2 THE PSEUDO CODE OF THE
SCHEDULING ALGORITHM to 1,

Algorithm 2 Pseudo-Code of Resource Allocation Algo-
rithm Based on DQN
1. Initialize memory D to capacityM
2. Initialize online network and target network with random

weights θ , θ∼

3. Initial original state space s with load rate of each server
4. For each episode do:
5. For each task in task-queue do:
6. Select at = argmaxQ(st , a) with probability ε or select

random action at with probability 1- ε.
7. Execute action at , calculate the total reward

Rtotal = wd · Rdelay + wec · Rec

8. Observe new state st+1, store transition (st , at , r, st+1)
in memory D(M )

9. End For
10. If transition size reaches the threshold do:
11. Sample randommini-batch of transition (s, a, r, s′) from

D(M )
12. Define loss function

L(θ ) = E(s,a,r,s′)∼D(M )[(r + γ max
a′

Q(s′, a′; θ∼)

− Q(s, a; θ ))2]

13. Update the online network θ using SDG:

∇θL(θ ) = E(s,a,r,s′)∼D(M )[(r + γ max
a′

Q(s′, a′; θ∼)

− Q(s, a; θ ))∇θQ(s, a; θ )]

14. End If
15. Every C episodes, update target network θ∼ = θ
16. End For

the better the performance of HDDL. Then we compare
the optimization effects of the proposed and benchmark
algorithms in task delay and energy consumption. Finally,
the proportion of the two optimization goals in the reward
function is adjusted to test whether the HDDL algorithm can
flexibly adjust the system optimization goals. The bench-
marks include the random, round-robin (RR), Greedy, and
multi-objective particle swarm optimization (MoPSO) algo-
rithm [6]. The Greedy algorithm enumerates KM•N schedul-
ing schemes, calculates cost for each, and selects the scheme
with the smallest cost as optimal. However, it is costly and
uses much calculation time because the number of scheduling
schemes increases exponentially with the number of data
centers, queues, and jobs. In addition, the MoPSO algorithm
based on swarm intelligence has been widely used in the field
of engineering optimization due to its unique searchingmech-
anism and excellent convergence performance. Note that
50 particle swarms were initialized in theMoPSO simulation.

In the simulation, we considered three job queues, four
jobs per queue, and three data centers, for a total of 33·4
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scheduling schemes. The data transmission amount of the
job was distributed between [100, 500] MB and the num-
ber of subtasks contained in each job ranges from [10, 20].
Note that the quantitative relationship between the amount of
data and number of CPU cycles is αnm = q · βnm, where
q = 330 cycles/byte. The respective key parameters of the
three data centers were set as follows. The calculation cycle
number was 1.5 ·1015 cycle/s, 2.5 ·1015 cycle/s, and 3.5 ·1015

cycle/s; the running power was 1.0 · 105 W, 2.5 · 105 W, and
4.0 · 105 W; the bandwidth was 250 Mbps, 550 Mbps, and
750 Mbps; the communication power was 0.2 W, 0.6 W, and
0.75 W; and the number of maximum load virtual machines
was 410, 680, and 990. Using the above parameter settings,
500 sets of job sets were generated as datasets, each contain-
ing 12 jobs and corresponding minimum cost. Datasets were
divided into training and test sets with the ratio 8: 2.

In the resource allocation stage, we selected one data center
as the research object to verify the performance of the DQN
scheduler. We observed the total reward of the DQN algo-
rithm during training under a specific cluster load to verify the
convergence and effectiveness of the scheduling algorithm.
Then the scheduling effect of DQN scheduler under different
cluster loads was tested. Finally, we explored the scheduling
strategy of DQN scheduler by analyzing the load distribution
of various servers in the cluster. The benchmarks at this stage
include the Random, Round-Robin (RR), Minimum Load
First (MLF), and Fast and Energy-aware Resource Provi-
sioning and Task Scheduling (FERPTS) algorithm [46]. The
advantage of the RR algorithm is its simplicity, with the
scheduler taking turns assigning tasks to the server at each
time step. With MLF, the scheduler chooses the server with
the lowest load rate as the target server, which can achieve
load balancing among the servers. With FERPTS, one con-
temporary iterative algorithm which divide the provisioning
and scheduling to multiple steps, and can effectively reduce
the complexity and minimize the run time while achieving a
reasonable energy cost.

We considered that the data center has eight servers, con-
sisting of four types of servers, two for each type. The respec-
tive parameters were set as follows for the four servers. The
numbers of maximum load VMs were 40, 50, 55, and 60; the
optimal loads were 0.6, 0.65, 0.7, and 0.75; the linear growth
rates were 0.5, 0.65, 0.75, and 0.85; and the nonlinear growth
rates were 14, 13, 11, and 9. Note that a large number of
simulation results show that better optimization effect can be
achieved by setting parameters wd and wec to 1.0 and 20.0,
respectively. To more clearly represent the dynamic energy
consumption relationship of various servers, the dynamic
energy consumption curves are shown in Figure 4.

In the global scheduling simulation experiment, we
selected seven scheduler combinations as benchmarks to
test the global optimization performance of our proposed
framework. We conducted 50 global scheduling experiments
to compare the optimization effects of different scheduler
combinations on QoS as well as energy consumption. Job
delay and delay rate were adopted as indicators of QoS.

FIGURE 4. Relationship between server load and dynamic energy
consumption.

TABLE 1. HDDL model parameters.

TABLE 2. DQN model parameters.

Simulation experiments were conducted on an experimen-
tal platform with the Python-3 and Tensorflow-1.2. The key
parameters of the HDDL and DQN models adopted in the
experiments are shown in Tables 1 and 2, respectively.

B. EXPERIMENTAL RESULTS AND ANALYSIS
1) EXPERIMENTAL RESULTS OF JOB SCHEDULING STAGE
Figure 5 shows the changes in cost ratio of each algorithm
during training, from which it is clear that the cost ratio of
HDDL gradually increases with the amount of training, and
the final convergence value is slightly better than that of
MoPSO. It is worth noting that the convergence value of the
HDDL curve is close to 1, which means that the closer the
ratio is to 1, the better the performance of scheduling model.

Figure 6 shows the job delay and energy consumption of
each algorithm running 10 sets of jobs when λd = 0.5 and
λe = 0.5. It is seen that the delay and energy consumption of
HDDL are closer to those of the greedy algorithm among the
benchmark algorithms.

Figure 7 shows the variation trend of the delay and energy
consumption rewards obtained by the HDDL algorithm run-
ning 10 sets of jobs under different weights of w1 and w2 in
formula (7). It can be seen that the delay reward decreases
with the increase of w1, indicating that the optimization goal
of the scheduler is more inclined to reduce job delay. As the
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FIGURE 5. Cost ratio.

FIGURE 6. Job delay and energy consumption of each algorithm.

FIGURE 7. Trend of delay reward and energy consumption reward.

energy consumption weight w2 decreases, the energy con-
sumption gradually increases. Therefore, it can be inferred
that HDLL can dynamically adjust the optimization goal
according to different weight values to meet scheduling
requirements with good flexibility.

2) EXPERIMENTAL RESULTS OF RESOURCE ALLOCATION
STAGE
Figure 8 shows the total return of each algorithm for com-
pleting task scheduling under 90% load of the cluster. From a

macro-perspective, as the number of episodes increases, the
reward curve of DQN gradually increases and eventually con-
verges. From a micro-perspective, during the first 300 train-
ing episodes, the DQN reward curve gradually increases,
exceeding the random, RR, and approaching the MLF reward
curve. After 300 episodes of training, the reward of DQN
begins to surpass the MLF curve and gradually converge.
In addition, the convergence trend of DQN is similar to that of
FERPTS [42] during the whole iteration, but get more reward.

FIGURE 8. Total reward under 90% workload.

Figure 9 shows the changes in the total reward obtained
by various algorithms for scheduling tasks under different
cluster loads. There are three notable trends. First, when
the cluster load is less than 65%, the reward curve of each
algorithm shows an upward trend. The rewards of DQN,MLF
and FERPTS are similar and are better than those of other
benchmark algorithms. Second, the gap in reward between
them is small at less than 75% of the cluster load. Finally,
when the load exceeds 75%, three of them rewards begin
to decline, DQN declines slower than MLF and FERPTS,
and the total reward is better than those of other benchmark
algorithms.

The analysis is as follows. The MLF scheduling strat-
egy is more inclined to ensure the load balance of each
server. It is a better strategy for low loads, but under high
loads, the dynamic energy consumption of different servers
increases at different rates, resulting in poor scheduling.
Moreover, FERPTS pays more attention to the reduce run
time of task scheduling, which leads to the increase of cluster
energy consumption under high load. The DQN algorithm
learns the scheduling strategy from historical experience,
considering the relationship between dynamic energy con-
sumption and load under high loads. Thus the scheduler can
dynamically adjust the scheduling strategy according to the
load state of the system for further optimization.

Figure 10 shows the load distribution of various servers
under different cluster loads. As shown in the box-plot, when
the cluster is under a low load, the load rate of weak servers
is larger, and the load rate of strong servers is smaller. As the
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FIGURE 9. Total reward under different cluster loads.

FIGURE 10. Load distribution of various servers under different cluster
loads.

TABLE 3. Optimization results of each scheduler combination.

cluster load increases, the load rate of strong servers increases
significantly, approaching full load.

The analysis is as follows. When the cluster load is
below 65%, the linear increase in energy consumption of
the weak server is smaller than that of the strong server,

TABLE 4. Average CPU computation time of different algorithms.

TABLE 5. Notation used in this paper.

so the scheduler will get more reward for deploying more
tasks to the weak server. With the increase of cluster load,
the nonlinear growth rate in energy consumption of the strong
server is less affected by the load, so its energy consumption
growth rate is less than that of the weak server. Therefore,
when the cluster is under high load, the scheduler tends to
deploy more tasks to the server with strong load capacity to
reduce the total energy consumption of the cluster.

3) EXPERIMENTAL RESULTS OF GLOBAL OPTIMIZATION
Table 3 shows the results of global optimization using dif-
ferent scheduler combinations. The purpose of experiments
1-4 was to verify the impact of different job schedulers on
global optimization. Different combinations adopt various
job schedulers, but they uniformly use DQN as a resource
scheduler. These experiments show that HDDL and MoPSO
adopt more efficient scheduling strategies according to the
resource configuration of each data center, to effectively
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reduce job delay and energy consumption. In addition, HDDL
performs better than MoPSO. To examine the impact of
different resource schedulers on global optimization, experi-
ments 4-8 adopt HDDL as the job scheduler and use different
resource schedulers. Results show that FERPTS and MLF
are superior to DQN at reducing job delay. Hovever, DQN
reduced energy consumption by 5.7%, 9.7% compared to
MLF and FERPTS respectively, while with an acceptable job
delay rate increase.

In Table 4, we compared the average CPU computation
time taken by different algorithms to make a scheduling
decision. The results clearly show that the computation time
of both HDDL and DQN is less than the classic heuristic
algorithm MoPSO and iterative algorithm FERPTS, respec-
tively. Moreover, the computation time of both is close to
milliseconds, which is applicable for real-time application.

VI. CONCLUSION AND FUTURE WORK
For the cooperative scheduling problem of job schedul-
ing and resource allocation for multi-user multi-cloud data
centers, this paper proposes a novel two-stage scheduling
framework with multiple intelligent schedulers. The pro-
posed framework decomposes the complex cloud scheduling
problem into two sub-scheduling problems, and uses different
DRL-based intelligent models to act as the scheduler accord-
ing to the optimization goals of different stages. Numeri-
cal simulation experiments show that both HDDL-baesd job
scheduler and DQN-based resource allocator can achieve
better performance and computation delay than baseline.
Specifically, the proposed framework can achieve a global
near-optimum by achieving local optimization at each stage.
Besides, each intelligent scheduler in the cloud system is
deployed independently, so it has good scalability. Both of
them have low latency, which can be applied to real-time
cloud platforms.

Our future research will focus on improving the cooper-
ative ability of multiple learning models to achieve the local
optimization of each sub-scheduling task, so as to obtain near-
global optimization. Effective load forecastingwill allow data
centers to adjust the resource allocation in advance, such
as by turning on more servers to respond to burst requests,
or turning off idle servers to reduce the cost of cloud systems.

APPENDIX
HDDL: Heterogeneous distributed deep learning
DL: Deep learning
DQN: Deep Q-network
MOO: Multi-objective optimization
CDCs: Cloud data centers
GA: Genetic algorithm
DRL: Deep reinforcement learning
PSO: Particle swarm optimization
QoS: Quality of service
SLA: Server-level agreement
DAG: Directed acyclic graph

CSP: Cloud service provider
MEC: Mobile edge computing
MoPSO: Multi-objective particle swarm optimization
VM: Virtual machine
RL: Reinforcement learning
DNN: Deep neural networks
SDG: Stochastic gradient descent
RR: Round-robin
MLF: Minimum load first
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