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ABSTRACT Recent advances in mobile technologies and cloud computing services have inspired the
development of cloud-based real-time health monitoring systems. However, the transfer of health-related
data to the cloud contributes to the burden on the networking infrastructures, leading to high latency and
increased power consumption. Fog computing is introduced to relieve this burden by bringing services
to the users’ proximity. This study proposes a new fog computing architecture for health monitoring
applications based on a Gigabit Passive Optical Network (GPON) access network. An Energy-Efficient
Fog Computing (EEFC) model is developed using Mixed Integer Linear Programming (MILP) to optimize
the number and location of fog devices at the network edge to process and analyze the health data for
energy-efficient fog computing. The performance of the EEFC model at low data rates and high data rates
health applications is studied. The outcome of the study reveals that a total energy saving of 36% and 52%
are attained via processing and analysis the health data at the fog in comparison to conventional processing
and analysis at the central cloud for low data rate application and high data rate application, respectively.
We also developed a real-time heuristic; Energy Optimized Fog Computing (EOFC) heuristic, with energy
consumption performance approaching the EEFC model. Furthermore, we examined the energy efficiency
improvements under different scenarios of devices idle power consumption and traffic volume.

INDEX TERMS Cloud computing, ECG signal, energy consumption, Ethernet, fog computing, GPON,
health monitoring, Internet of Things, machine-to-machine (M2M).

I. INTRODUCTION
The recent increase in chronic diseases, the ageing population
and the increasing costs of healthcare have led to the revolu-
tion of remote health monitoring in developed countries [1].
The advances in wireless body sensors and mobile technolo-
gies have motivated the development of mobile-based health
monitoring systems (m-Health) that provide real-time feed-
back to the patients pertaining to their health conditions and
alerts in health-threatening conditions. Additionally, the rapid
growth in cloud computing has enabled the development
of mobile cloud computing (MCC) applications that offer
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higher processing and better storage capabilities to health
data, aside from increasing the accuracy of the diagno-
sis. Furthermore, healthcare systems can be enhanced by
using machine learning methods to perform early-detection
and prediction of diseases [2]. Several cloud-based remote
healthmonitoring systems have been developed. For instance,
an m-Health monitoring system based on cloud computing
platform (Could-MHMS), is designed for pervasive health
monitoring among elderly patients [3]. The system leverages
the high processing and storage of the cloud computing
platform, whereby feasible and flexible personalized pub-
lic healthcare services can be provided. In line with that,
a real-time cloud-based system for users with mobile devices
or web browsers was proposed in [4]. The proposed system
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has been proven to be functional, accurate, and efficient
in both monitoring and analyzing health data. Furthermore,
in [5], the cloud is utilized to enable real-time vision moni-
toring for baby monitoring system that enable the parents to
see their baby’s condition anywhere and anytime through the
network. The developed system is proven to work effectively
in terms of cost and simplicity. Nonetheless, the transfer of
large health-related data from a large number of patients to
the cloud contributes to increasing the congestion in net-
working infrastructure which leads to high latency and hence
violations of Quality-of-Service (QoS) metrics [6]. This also
increases the occurrences of bit errors where the impact of a
single error can cause inaccurate treatment decisions, which
can be critical especially for emergency cases [7]. Further-
more, the large volumes of transferred data can increases the
energy consumption within the network as the data has to
travel multiple hops over the network to reach the cloud [8].

One effective way to address the limitations of cloud-based
systems is to provision the service closer to users [9]. A
new paradigm, referred to as fog computing, has been intro-
duced [10] to extend cloud services by initiating an interme-
diate layer between end users and the cloud where processing
and storage resources equipped with communication capa-
bilities are available [11]. Connections to the cloud are also
possible by the fog server to leverage the rich functionalities
and applications of the cloud. Furthermore, fog nodes can
be distributed at the network edge with dense geographical
coverage and mobility support. Therefore, fog computing can
deliver QoS metrics for healthcare monitoring systems for
patients due to reduced network traffic and shorter network
travel reducing the energy consumption in cloud networking
infrastructures [12]–[20].

Several recent studies have applied fog computing to
develop efficient health monitoring systems. For instance,
a monitoring system in [7] employed the concept of fog
computing at smart gateways to efficiently process health
data, particularly electrocardiogram (ECG) signals. The ECG
empirical results for feature extraction using the proposed
system displayed 90% bandwidth efficiency and low latency
real-time response. Additionally, the authors of [2] claimed
that both continuous monitoring and real-time monitoring
may be dysfunctional with the present limited processing
IoT-based systems. Hence, fog computing was embedded
into the monitoring system and the results exhibited reduced
response time and increased system reliability in intermit-
tent Internet connections. In [21], a prototype of a smart
e-health gateway (i.e. the fog computing device) has been
implemented to reduce the burden on the sensor node pro-
cessing resources and the cloud by performing high-level
services such as real-time data processing, local storage, and
embedded data mining in the fog. The performance of the
gateway is evaluated in terms of energy efficiency of the
sensor nodes, scalability, mobility, and reliability. Further-
more, in [22] a real-time event-triggered health monitoring
system for smart homes is implemented using a Bayesian
Belief Network (BBN) to classify the events at the fog layer.

Several fog-based health network architectures have been
proposed as in [2], [7], [21], [22]. However, most of the
proposed fog architectures therein used simplified models for
the transport network without justifying the type of the access
network used. In this work, the evaluation of the proposed fog
architecture is performed while focusing on the details of the
equipment used as elaborated in Section II.

Increasing energy efficiency is becoming one of the
main priorities for information and communications technol-
ogy (ICT) organizations, given the ecological and economic
drivers that are currently high profile. In view of this, and
with the emission of 228 gm of CO2, whenever the net-
work components consume 1 kWh of traditional electrical
energy [23], CO2 pollution remains high on the agenda. For
instance, in [24] a radio resource management scheme is
proposed to optimize the energy efficiency of heterogeneous
cloud radio access networks. The results show that, the pro-
posed scheme increased the network energy efficiency by
59% under dynamic network traffic. In [25], energy saving
in the access network was achieved by controlling the sleep
scheduling of the radio remote head while in [26], a rout-
ing protocol was proposed to increase the energy efficiency
and Quality-of-Service (QoS) for IoT networks. Meanwhile,
in [27], the authors indicated that content caching can help
reduce the energy consumption of the transport network (i.e.
access and metro network). Therefore, they proposed an Inte-
ger Linear Programming model (ILP) to efficiently control
the powering option (i.e. On and OFF) of caches located in
core, metro and access layer for higher energy efficiency.
Furthermore, in [28] an IoT-based system has been developed
for home automation to control appliances over the Internet
for energy efficiency purposes.

To the best of our knowledge, no studies have considered
the essential aspect of the energy consumption in the access
networks, transport networks, fog and cloud for healthcare
applications, which are growing in number and importance.
In this work, we develop a framework for energy efficient fog
based real-time health monitoring systems. Fog computing
has been identified as a potential paradigm that can contribute
to reducing the energy consumption of networking infrastruc-
ture and processing while providing the same health monitor-
ing services as cloud computing. This framework is based on
our previous research efforts on developing energy efficient
architectures for cloud data centres and core networks [12],
[17], [23], [29], [30]. We considered different techniques and
technologies such as virtualization [13], [31], [32], network
architecture design and optimization [16], [33]–[37], opti-
mizing content distribution [14], [15], [38], progressive big
data processing [20], [39]–[41], network coding [19], [42]
and using renewable energy [18]. In [43], we showed that
energy consumption is minimized when performing the pro-
cessing and analysis of health data at the network edge
compared to processing at the central cloud. In this paper,
we further explore the energy efficiency potential of fog based
health monitoring systems. The contribution of this paper can
be summarized as follows:
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i. Development of a detailed mathematical model using
MILP to optimize the placement of processing
servers (PSs) at the access network so that the total
energy consumption of the health monitoring applica-
tion is minimized.

ii. Development of a heuristic algorithm for real-time
implementation of the energy efficient fog based health
system.

iii. Evaluation of healthcare applications at different data
rates: ECG monitoring (low data rate) and video based
fall monitoring (high data rate) in a realistic case study.

iv. Study of the impact of networking equipment and
servers idle power and the increasing traffic on the
energy efficiency of the proposed healthcare monitor-
ing system.

The remainder of the paper is organized as follows:
Section II presents the proposed fog-based health monitor-
ing system. Next, Section III presents the MILP model for
energy efficient Fog-based health monitoring system. The
parameters selection considered in this work are elaborated
in Section IV. The performance of the proposed approaches
for low data rate health monitoring application and the devel-
opment of the heuristic are presented in Section V. The per-
formance evaluation of the proposed approaches for high data
rate healthmonitoring applications is presented in SectionVI.
Finally, this paper is concluded in Section VII.

II. THE PROPOSED FOG-BASED HEALTH MONITORING
SYSTEM
In general, fog-based health monitoring systems consist of an
IoT layer, a fog layer and a cloud layer [39]–[46]. However,
the function of each layer in term of serving the health-related
data may vary depending on the designed health system.
For instance, in [49] the fog layer is only used to perform
pre-processing of the health data to eliminate noise from
signals and to extract useful knowledge for further analysis
at the cloud layer. In [21], [45]–[47], [51] the fog layer is
used to perform local data processing to analyze the health
data while in [44], [50] the fog layer can only perform local
data processing depending on the requirement of the health
application. Meanwhile, in [48], the fog layer is used to
perform both local processing of the health data and filtering
the analyzed data before uploading to the cloud for further
analysis to reduce the redundancy. In addition, the cloud
is usually used to hold the analyzed health data for either
permanent storage [46] or both permanent storage and long
term analysis [21], [44], [45], [47]–[51]. This section presents
the proposed fog-based health monitoring system. The sys-
tem is composed of three modules; health data analysis and
decision-making module, fog storage module and cloud stor-
agemodule, as illustrated in Figure 1. The health data analysis
and decision-making and the fog storage are embedded in the
fog layer while the cloud storage is incorporated in the cloud
layer.

FIGURE 1. Architecture of the proposed system.

The Fog Storage module is a temporary storage unit for
the analyzed health data before being sent to the cloud for
permanent storage. The fog storage module provides alterna-
tive access to health data for urgent demands. This module is
also used to send the analyzed health data to the cloud storage
and the clinic for permanent storage and feedback purposes,
respectively. The Health Data Analysis and Decision-making
Module performs three tasks. The first is aggregating the
health data sent frommultiple patients via wireless-connected
devices. The second task is the processing and analyses of
patients’ health data and matching it with disease symptoms
based on the extracted features. The final task is making
decisions on the action taken against irregular physical data of
the patients, such as informing the emergencymedical service
resources to act fast for patients who need aid. Nonetheless,
in some cases, the doctors would re-diagnosis the results
before making the final decision. The Cloud Storage Mod-
ule permanently stores the analyzed results of patients for
medical records purposes. This module offers accessibility
for both patients and doctors, similar to that in the fog storage
module. Figure 2 illustrates the system flow of the proposed
fog based architecture (Figure 2(a)) and a cloud-based archi-
tecture (Figure 2(b)) where the raw health data is sent to the
central cloud for processing and analysis, feedback is sent
from the cloud to the patient/clinic and the analyzed data is
permanently stored in the cloud. Note that the three tasks:
the processing and analysis task, the feedback task and the
storage task occur at different times.

The fog based health monitoring system is to be embedded
in a network architecture characterized by four layers, as por-
trayed in Figure 3:

• IoT Devices Layer: This is the bottom-most layer. It is
comprized of IoT devices, mobile phones, iPads etc.
withMachine-to-Machine (M2M) communication capa-
bilities to connect to wireless body sensors to monitor
patients and to send data to higher layers of the network.
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FIGURE 2. System flow of (a) proposed approach (FOA) (b) conventional
approach (CA).

• Access Layer: This is the access network layer where
the fog processing resources reside. This layer aggre-
gates data from the IoT layer via gateways such as an
LTE-M base station, Wi-Fi access point, etc. A GPON
network [52]–[54] is considered to connect the gateways
to the higher layers of the architecture. Fog processing
resources serving the health monitoring application can
be co-located at ONUs and/or the OLT of the GPON
which are equipped with an internal switch. Co-locating
the processing servers (PSs) at ONUs, which is closer
to the users, decreases the energy consumption of the
networking equipment, however, it will increase the
required number of PSs. On the other hand, co-locating
PSs at the OLT reduces the number of PSs required
as it is accessible by all users via minimum num-
ber of network hops. This, however, will increase the
energy consumption of the networking equipment. Also,
an additional Ethernet switch is used at the ONUs
and OLT in scenarios where more than one PSs are
connected to the same node.

• Metro Layer: In this layer, a centre aggregation
switch (CAS) and aggregation router are used to aggre-
gate traffic from access networks and forward traffic to
the upper layer. The CAS aggregates and fast-forwards
data between the BSs in the access network. The aggre-
gation router serves as a gateway to connect the access
network to the core network.

• Core Layer: This is the upper-most layer in the architec-
ture based on an IP over WDM architecture. The most
power-consuming devices in an IP over WDM node is
the IP router. Cloud data centres are connected to the
core network nodes. Inside the data centre routers and
switches, are used to connect content servers and cloud
storages.

III. MILP MODEL FOR ENERGY-EFFICIENT FOG
COMPUTING HEALTH MONITORING SYSTEM
USING LTE-M
This section presents the MILPmodel developed to minimize
the networking and processing energy consumption of the fog
optimized approach (FOA) by optimizing the location of PSs
in the access network. The networking energy consumption
includes the energy consumed by networking devices at all
layers while the processing energy consumption refers to the
energy consumed by the PSs. The architecture considered
uses LTE-M base stations (BSs) to aggregate traffic from the
IoT layer. Before introducing the model, we define the sets,
parameters and variables used as follows:

We start by defining the energy consumption of the net-
work, including access, metro and core networks, and PSs at
fog nodes and cloud.

The power consumption for most networking and com-
puting devices reflects a linear power profile [55], [56].
Hence, power consumption of all networking equipment and
PS consists of both an idle and a linear proportional part.
Figure 4 illustrates the power profile for network devices and
PS. As for BS, PS, and cloud storage; the power consumption
is composed of a fixed idle power and the load-dependent
power given as:

P (C) = Pidle + C
Pmax − Pidle

Cmax
= Pidle + CX (1)

where Pidle denotes idle power consumption, and the
graph slope (X ) represents power consumption per physical
resource block (PRB) for BS, power per GHz for PS, power
per Gbit for cloud storage and energy per bit for ONU, OLT,
Ethernet switch, data centre aggregation switch, data centre
aggregation router, core router, cloud router, cloud switch
and content server. C refers to the load in RB, GHz and
Gbits for BS, PS and cloud storage, respectively. For the
other networking devices C refers to the offered load in bits
per second.

In the following, we show the energy consumption of the
network layers, cloud and fog. Note that the energy consump-
tion at the IoT devices is not considered.

A. ENERGY CONSUMPTION OF ACCESS NETWORK
The energy consumption of access network (EAN ) is com-
posed of energy of LTE BSs, ONUs and OLTs and is as given
in (2):

EAN = (ETBS + EOTNU + ETOLT ) η (2)

The energy consumption of BSs (ETBS), is calculated as
follows:

ETBS = EBSP+ EBSF (3)

where

EBSP =
∑
i∈BS

(
IBS x ζai + PBSβai

)
τa (4)
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FIGURE 3. GPON architecture in the Fog Network.

FIGURE 4. Power consumption profile for network devices and PS.

EBSF =
∑
i∈BS

(
IBS x ζbi + PBSβbi

)
τb (5)

The energy consumed by LTE base stations is composed of
the energy consumed to relay raw health data and the energy
consumed to transmit feedback traffic as given in (4) and (5),
respectively. The energy consumed to relay raw health data
is based on the number of PRBs to send the raw health data
(βai) and the times the BS is used to send the raw health
data traffic (τa).Meanwhile, the energy consumed to transmit
feedback traffic is based on the number of PRBs to send the
analyzed feedback data (βbi) and the time the BS is used to
send the analyzed feedback traffic (τb). Note that x refers
to the fraction of idle power contributed by the healthcare
application while ζai and ζbi refer to the binary indicator that
determines the usage of the BS to send the raw health data

traffic to PS and to send the analyzed health data feedback
traffic to the clinic, respectively.

The energy consumption of ONUs (ETONU ), is
given as:

ETONU = EONUP+ EONUF + EONUS (6)

where

EONUP =
∑

i∈ONU

(
IONUxζai + Pi

(PONU − IONU )
CONU

)
τa

(7)

EONUF =
∑

i∈ONU

(
IONUxζbi + Fi

(PONU − IONU )
CONU

)
τb

(8)

EONUS =
∑

i∈ONU

(
IONUxζci + Si

(PONU − IONU )
CONU

)
τc

(9)

The energy consumed by the ONUs is composed of the
energy consumed to relay the raw health data traffic
(EONUP) analyzed health data feedback traffic (EONUF)
and analyzed health data storage traffic (EONUS) as
detailed in (7)-(9), respectively. Note that, the Pi, Fi and
Si refer to the total raw health data traffic, the total ana-
lyzed health data feedback traffic and the total analyzed
health data storage traffic that traverses node i, respec-
tively while τc and ζci refer to the transmission time
and the binary indicator that determines the usage of
node i, to send the analyzed health data storage traffic,
respectively.
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TABLE 1. The sets used in MILP. TABLE 1. (Continued) The sets used in MILP.
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TABLE 1. (Continued) The sets used in MILP.

The energy consumption of the OLT (ETOLT ), is given as:

ETOLT = EOLTP+ EOLTF + EOLTS (10)

where

EOLTP=
∑
i∈OLT

(
IOLTxζai+Pi

(POLT−IOLT )
COLT

)
τa (11)

EOLTF =
∑
i∈OLT

(
IOLTxζbi + Fi

(POLT − IOLT )
COLT

)
τb

(12)

EOLTS =
∑
i∈OLT

(
IOLTxζci + Si

(POLT − IOLT )
COLT

)
τc

(13)

The energy consumption of the OLT is composed of the
energy consumed to relay raw health data traffic (EOLTP)
analyzed health data feedback traffic (EOLTF) and analyzed
health data storage traffic (EOLTS) as detailed in (11)-(13),
respectively.

B. ENERGY CONSUMPTION OF METRO NETWORK
The energy consumption of metro network (EMN ) is com-
posed of energy consumption of the central aggregation
switch (ECASS) and aggregation router (EARS). Note that
these devices are only used to relay the analyzed health data
storage traffic, Si as the candidate locations of PSs is at
the access layer. The energy consumption of metro network
(EMN ), is as given follows:

EMN = (ECASS + EARS) η (14)

where

ECASS =
∑
i∈CAS

(
ICAS x ζci + Si

(PCAS − ICAS)
CCAS

)
τc

(15)

EARS =
∑
i∈AR

(
IAR x ζci + Si

(PAR− IAR)
CAR

)
τc (16)

C. TOTAL ENERGY CONSUMPTION OF CORE NETWORK
The energy consumption of core network (ECN ) is composed
of energy consumption of core routers to relay the analyzed
health data storage traffic as given in (17):

ECN = ECRSη (17)

where

ECRS =
∑
i∈CR

(
ICR x ζci + Si

(PCR− ICR)
CCR

)
τc (18)

D. ENERGY CONSUMPTION OF CLOU
The energy consumption of cloud (ECL), is composed of
energy of cloud routers (ECLRS), cloud switches (ECLSS),
content servers (ECSS) and cloud storage (ECSTS). Note
that cloud storage is used to perform the storage task while
other devices are used to relay the analyzed health data
storage traffic (Si). The energy consumption of the cloud is
given in (19):

ECL = (ECLRS + ECLSS + ECSS + ECSTS) c (19)

where

ECLRS =
∑
i∈CLR

(
ICLR x ζci + Si

(PCLR− ICLR)
CCLR

)
τc

(20)
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ECLSS = 2
∑
i∈CLS

(
ICLSxζci + Si

(PCLS − ICLS)
CCLS

)
τc

(21)

ECSS =
∑
i∈CS

(
ICSxζci + Si

(PCS − ICS)
CCS

)
τc

(22)

ECSTS = 2
∑
i∈CST

(
ICSTxζci + Siτc

(PCST − ICST )
CCST

)
τc

(23)

Note that the energy consumption of the cloud switches and
the cloud storage is multiplied by ‘2’ for equipment redun-
dancy purposes [38].

E. ENERGY CONSUMPTION OF FOG NODES
The energy consumed by the fog (EFN ), reflects the energy
consumed by PS (EPS), as given below:

EFN = EPSc+ ETESη (24)

where

EPS =
∑
d∈FN

(
IPSφd (τa+ τb+ τc)+ PPSτpd

)
(25)

ETES = EESP+ EESF + EESS (26)

EESP =
∑
i∈FN

(
IESxY i + Pi

(PES − IES)
CES

)
τa (27)

EESF =
∑
i∈FN

(
IESxY i + Fi

(PES − IES)
CES

)
τb (28)

EESS =
∑
i∈FN

(
IESxY i + Si

(PES − IES)
CES

)
τc (29)

The idle energy consumption of the PSs is calculated con-
sidering the following: the time to receive raw health data
from clinic (τa), the time to transmit the analyzed health data
to clinics (τb), as well as the time to transmit the analyzed
health data to cloud storage (τc). Note that we assume the PS
works at full utilization to process the raw health data. The
proportional energy consumption of processing and analysis
for the PS is determined considering the time to perform
the processing and analysis (τpd ). The energy consumption
of Ethernet switches (ETES) is calculated considering the
energy consumed to serve the raw health data traffic, ana-
lyzed health data feedback traffic and analyzed health data
storage traffic as shown in (27)-(29), respectively. Note that
the energy consumed by the Ethernet switches is considered
for a scenario where more than one PS can be connected to
the ONU andOLT (φi is a variable). Also, note that the energy
of the Ethernet switches is consumed if the utilized PSs are
connected to it (Yi = 1).

F. OBJECTIVE FUNCTION AND CONSTRAINTS
The model is defined as follows:

Objective:
Minimize the total energy consumption of networking and

processing given as:

EAN + EMN + ECN + ECL + EFS (30)

Subject to:

ωsd ≤ PtsY d ; ∀s ∈ CL, ∀d ∈ FN (31)

Constraint (31) is used to allocate a fog node (Yd ), where one
or more PSs are placed to serve patients of a clinic s. Note
that patients of a clinic can by served by different fog nodes.∑

d∈FN

ωsd = Pts; ∀s ∈ CL (32)

Constraint (32) ascertains that each patient is served by a fog
node.

Psd = ωsdδa; s ∈ CL, d ∈ FN (33)

Constraint (33) calculates the raw health data traffic from a
clinic to a fog node (Psd ), based on the allocation of fog nodes
to patients of the clinic (ωsd ), as well as the uplink data rate
provisioned to each patient (δa).

Fsd = ωdsδb; ∀s ∈ FN , d ∈ CL (34)

Constraint (34) calculates the analyzed health data feedback
traffic from a fog node to a clinic (Fsd ), based on the alloca-
tion of fog nodes to patients of the clinic (ωds), as well as the
downlink data rate provisioned to each patient (δb).

Ssd =
∑
i∈CL

ωisδcδsd ; ∀s ∈ FN , d ∈ CST (35)

Constraint (35) calculates the analyzed health data storage
traffic from a fog node to cloud storage (Ssd ), based on the
total number of patients served by the fog node (ωis), and the
data rate provisioned for each patient to send analyzed health
data from PS to cloud storage (δc). Note that in this work we
only utilize one cloud storage, hence, δsd = 1.

∑
j∈Nm[i]:i6=j

Psdij −
∑

j∈Nm[i]:i6=j

Psdji =

Psd if i = s
−Psd if i = d
0 otherwise

s ∈ CL, d ∈ FN , i ∈ N (36)∑
j∈Nm[i]:i6=j

F sdij −
∑

j∈Nm[i]:i6=j

F sdji =

Fsd if i = s
−F sd if i = d
0 otherwise

s ∈ FN , d ∈ CL, i ∈ N (37)∑
j∈Nm[i]:i6=j

Ssdij −
∑

j∈Nm[i]:i6=j

Ssdji =

 Ssd if i = s
−Ssd if i = d
0 otherwise

s ∈ FN , d ∈ CST , i ∈ N (38)

Constraints (36)-(38) ensure that the total incoming traffic
is equivalent to the total outgoing traffic for all nodes in
the network, except for source and destination nodes for
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processing (Psdij ), feedback (F sdij ), and storage traffic (Ssdji ),
respectively.

Pi =

∑
s∈CL

∑
d∈FN :s6=d

∑
j∈Nm[i]:i6=j

Psdji

 ; ∀i ∈ N (39)

Fi =

∑
s∈FN

∑
d∈CL:s6=d

∑
j∈Nm[i]:i6=j

F sdij

 ; ∀i ∈ N (40)

Si =

∑
s∈FN

∑
d∈CST :s6=d

∑
j∈Nm[i]:i6=j

Ssdji +
∑

d∈CST :i6=d

Sid

 ;
∀i ∈ N (41)

Constraints (39)-(41) calculate the total raw health data traffic
(Pi), analyzed health data feedback traffic (Fi), and analyzed
health data storage traffic (Si), that traverses node i, respec-
tively.∑

s∈CL

∑
d∈FN

Psdij ≤ λij; ∀i ∈ N , ∀j ∈ Nm [i] :i 6= j (42)∑
s∈FN

∑
d∈CL

F sdij ≤ λij; ∀i ∈ N , ∀j ∈ Nm [i] :i 6= j (43)∑
s∈FN

∑
d∈CST

Ssdij ≤ λij; ∀i ∈ N , ∀j ∈ Nm [i] :i 6= j (44)

Constraints (42)-(44) ensure that the capacity of physical
links used to send the total raw health data from clinics to fog
nodes (Psdij ), the total analyzed health data from fog nodes to
clinics for feedback (F sdij ), and the total analyzed health data
from fog nodes to the cloud storage (Ssdij ), respectively, does
not exceed the maximum capacity of the links (λij). Note that,
as mentioned above, the three tasks occur at different times.∑

s∈CL

∑
d∈FN

∑
i∈N :i6=j

Psdij ≥ ζaj; ∀j ∈ N (45)

∑
s∈CL

∑
d∈FN

∑
i∈N :i6=j

Psdij ≤ Mζaj; ∀j ∈ N (46)

Constraints (45) and (46) identify the nodes traversed by the
raw health data traffic from clinics to fog nodes (ζaj), based
on the total raw health data from clinics to fog nodes (Psdij ),
whereM is a large number.∑

s∈FN

∑
d∈CL

∑
j∈Nm[i]:i6=j

F sdij ≥ ζbi; ∀i ∈ N (47)

∑
s∈FN

∑
d∈CL

∑
j∈Nm[i]:i6=j

F sdij ≤ Mζbi; ∀i ∈ N (48)

Constraints (47) and (48) ensure ζbi = 1 if the analyzed
health data feedback traffic (F sdij ), traverses node i to send
the analyzed data from PSs at node s to clinics d , otherwise
it is zero.∑

s∈FN

∑
d∈CST

∑
j∈Nm[i[:i6=j

Ssdij ≥ θci; ∀i ∈ N (49)

∑
s∈FN

∑
d∈CST

∑
j∈Nm[i]:i6=j

Ssdij ≤ Mθci; ∀i ∈ N (50)

∑
s∈FN

∑
d∈CST

∑
i∈Nm[j]:i6=j

Ssdij ≥ ϑcj; ∀j ∈ N (51)

∑
s∈FN

∑
d∈CST

∑
i∈Nm[j]:i6=j

Ssdij ≤ Mϑcj; ∀j ∈ N (52)

θci + ϑci = 2ζci − νi; ∀i ∈ N (53)

Constraints (49)-(50) ensure that θci = 1 if the analyzed
health data storage traffic (Ssdij ), traverses node i to send the
analyzed data fromPSs at node s to cloud storage d , otherwise
it is zero. However, this does not include the last node (i.e.
cloud storage) that performs the storage task. Hence, con-
straints (51) and (52) are to ensure ϑcj = 1 if the traffic
traverses node j (including the last node) while constraint
(53) is used to determine the activation of all nodes to relay
and store the analyzed health data storage traffic by ensuring
that the ζci = 1 if at least any of θci and ϑci are equal
to 1 (θci OR ϑci), otherwise ζci is zero. We achieve this by
introducing a binary variable νi which is only equal to 1 if θci
and ϑci are exclusively equal to 1 (θci XOR ϑci) otherwise,
it is zero.

Paij =
∑
s∈CL

∑
d∈FN :s6=d

Psdij
δa
; ∀i ∈ CL, ∀j ∈ BS : i 6= j

(54)∑
j∈BS

Paij = Pt i; ∀i ∈ CL (55)

βaj =
∑
i∈CL

PaijRa; ∀j ∈ BS (56)

βaj ≤ R; ∀j ∈ BS (57)

Constraint (54) is used to ensure that each patient in the clinic
is served by single BS to send the raw health data based on the
traffic (Psdij ), traversing the BS and the size of raw health data
traffic of each patient (δa). Constraint (55) is used to ensure
that all patients are served by BSs. Constraint (56) calculates
the total number of PRBs used at each BS to send the raw
health data (βaj), based on the number of patients in clinic i
served by BS j to send raw health data traffic (Paij), and the
number of PRBS per patient to send raw health data (Ra).
Constraint (57) is used to ensure that the number of PRBs
used in each BS j do not exceed the maximum number of
PRBs dedicated for healthcare applications to perform the
processing task (R)

Pbij =
∑
s∈FN

∑
d∈CL:s6=d

F sdij
δb
; ∀i ∈ BS, ∀j ∈ CL (58)

∑
i∈BS

Pbij = Pt j; ∀j ∈ CL (59)

βbi =
∑
j∈CL

Pbij Rb; ∀i ∈ BS (60)

βbi ≤ R; ∀i ∈ BS (61)

Constraint (58) ensures that the analyzed health data of each
patient transmitted to the clinics is relayed by single BS based
on the feedback traffic traversing the BS (F sdij ), and the size
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of analyzed health data feedback traffic of each patient (δb).
Constraint (59) ensures all patients of a clinic are served by
BSs. Constraint (60) calculates the total number of PRBs used
at each BS to relay the analyzed health data (βbi), based on
the number of patients in clinic j served by BS i to relay
analyzed health data traffic (Pbij), and the number of PRBS
per patient to send the analyzed health data (Rb). Constraint
(61) is used to ensure that the number of PRBs in each BS
does not exceed its maximum number of PRBs (R), that are
dedicated for healthcare applications to perform the feedback
task. ∑

s∈CL

ωsd ≤ �maxφd ; ∀d ∈ FN (62)

Constraint (62) ensures that the total number of patients
served by a fog node (ωsd ), does not exceed the number of
users that can be served by the servers placed in the fog node
(�max).

τpd = m
∑
s∈CL

ωsd + ćφd ; ∀d ∈ FN (63)

Constraint (63) calculates the processing and analysis time at
each fog node. This is based on the total number of patients
served by the PS (ωsd ), and the number of PSs used (φd ),
where m is the gradient of the graph while ć is the y-intercept
of the graph.∑

s∈CL

ωsdα ≤ 3maxφd ; ∀d ∈ FN ∀j ∈ BS (64)

Constraint (64) ensures that the analyzed data stored at a fog
node, which is based on the total number of patients served by
the PS (ωsd ), and the size of analyzed health data per patient
(α), does not exceed the storage capacity of the servers placed
at the fog node (3max) Note that we consider the storage
capacity at the central cloud is large enough to permanently
store all the analyzed data.

G. MILP FOR EECC MODEL
We compare the energy consumption of the EEFC model
for the FOA to the conventional approach (CA) where the
location of the PSs (FN ) is fixed at the cloud (i.e. cloud
switch). In the following, we give theMILPmodel for the CA
(i.e. Energy efficient cloud computing (EECC) model). Note
that, we used the same parameters, variables and objective
function as in the EEFC model. However, as the location of
the PS is at the cloud, therefore, additional variables and a
modified set as in Table 2 are used in the EECC model. Also,
for EECC model, we replace the word fog node used in the
EEFC model to cloud node.

The energy consumption of access network (EAN ), is the
same as in (2). The energy consumption of metro network
(EMN ), in (13) is redefined as below:

EMN = (ECASP+ ECASF + ECASS + EARP

+EARF + EARS) η (65)

TABLE 2. Additional variables used in EECC model.

where ECASS and EARS are the same as in (15) and (16),
respectively, while others are given as:

ECASP =
∑
i∈CAS

(
ICAS x ζai + Pi

PCAS − ICAS
CCAS

)
τa (66)

ECASF =
∑
i∈CAS

(
ICAS x ζbi + Fi

PCAS − ICAS
CCAS

)
τb (67)

EARP =
∑
i∈AR

(
IAR x ζai + Pi

PAR− IAR
CAR

)
τa (68)

EARF =
∑
i∈AR

(
IAR x ζbi + Fi

PAR− IAR
CAR

)
τb (69)

Equations (66) and (67) depict the energy consumed by the
cloud data centre aggregation switches to relay raw health
data traffic (ECASP), and analyzed health data feedback traf-
fic (ECASF), respectively. Meanwhile, (68) and (69) depict
the energy consumed by the aggregation routers to relay raw
health data traffic (EARP), and analyzed health data feedback
traffic (EARF), respectively.

The energy consumption of core network (ECN ), in (17) is
redefined as below:

ECN = (ECRP+ ECRF + ECRS) η (70)

where the ECRS is the same as in (17) while other variables
are given as:

ECRP =
∑
i∈CR

(
ICR x ζai + Pi

PCR− ICR
CCR

)
τa (71)

ECRF =
∑
i∈CR

(
ICR x ζbi + Fi

PCR− ICR
CCR

)
τb (72)
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Equations (71) and (72) depict the energy consumed by the
core routers to relay the raw health data traffic (ECRP), and
analyzed health data feedback traffic (ECRF), respectively.
The energy consumption of cloud in (19) is redefined as

below:

ECL = (ECLRP+ ECLRF + ECLRS + ECLSP+ ECLSF

+ECLSS + ECSS + ECSTS) c (73)

where ECLRS, ECLSS, ECSS and ECSTS are the same as in
(20)-(23), respectively, while others are given as:

ECASP=
∑
i∈CAS

(
ICAS x ζai + Pi

PCLR−ICLR
CCLR

)
τa (74)

ECLRF =
∑
i∈CLR

(
ICLR x ζbi + Fi

PCLR−ICLR
CCLR

)
τb (75)

ECLSP= 2
∑
i∈CLS

(
ICLS x ζai+Pi

PCLS−ICLS
CCLS

)
τa (76)

ECLSF = 2
∑
i∈CLS

(
ICLS x ζbi+Fi

PCLS−ICLS
CCLS

)
τb (77)

Equations (74) and (75) depict the energy consumed by the
cloud routers to relay the raw health data traffic (ECLRP), and
analyzed health data feedback traffic (ECLRF), respectively.
Meanwhile, (76) and (77) depict the energy consumed by the
cloud switches to relay the raw health data traffic (ECLSP)
and analyzed health data feedback traffic (ECLSF), respec-
tively. Note that, the energy consumption of cloud switches
to transmit the traffic is multiplied by ‘2’ for equipment
redundancy purposes [38].

The energy consumption of a fog node in (24) is redefined
as below:

ECSN = EPSc+ ETESη (78)

where EPS and ETES are the same as in (25) and (26)-(29),
respectively.

H. THE ENERGY OPTIMIZED FOG COMPUTING (EOFC)
HEURISTIC
The Energy optimized fog computing (EOFC) heuristic is
developed as a method to validate the MILP model and to
deliver a real-time solution of the FOA, as the MILP solution
is exponential in time with increase in the network size. The
heuristic determines the BSs to serve patients to send raw
health data and receive feedback data; and the access network
nodes to place PSs so that the energy consumption of both
networking and processing is minimized. Figure 5 shows the
flow chart of the EOFC heuristic.

The heuristic begins by sorting the clinics based on the
number of patients the clinic serves in ascending order.
The heuristic assigns the clinic with the smallest number of
patients to BSs to help packing the BSs (packing is opti-
mum when equipment has high idle power consumption).
The assignment of clinic patients to a BS is as follows: The
heuristic sorts the BSs that have a connection to the clinic

FIGURE 5. Flow chart of EOFC heuristic.

under consideration starting with BSs previously used by
the healthcare application that has available resources. These
BSs are sorted in ascending order based on the total number
of clinics the BS can serve followed by the unused BSs in
descending order. Ascending order of activated BSs reduces
the number of utilized BS while the descending order of
unused BSs ensures that options are left open until late in
the allocation process. Then, the patients of the clinic under
consideration are consolidated to the minimum number of
BSs to reduce the number of BSs used by the healthcare
application.

The heuristic then determines the number of PSs required
to serve the patients and the nodes hosting them. The candi-
date nodes that can host the servers are the ONUs connected
to the BSs selected to serve the patients and theOLTs. Consid-
ering the minimum number of nodes required to host servers
to serve all the patients (which is based on the maximum
number of servers a node can host), the heuristic finds the
combination of candidate nodes to host PSs that result in min-
imum energy consumption. The aim of limiting the number
of nodes to place the PSs is to reduce the utilization of the
Ethernet switches to serve the PSs.

This energy consumption that results from hosting servers
at a combination of candidate nodes is calculated by routing
the traffic (raw health data traffic) from BSs (starting with the
BS serving the largest number of patients) to the nearest node
with available processing capacity out of the combination
of candidate nodes under consideration based on minimum
hop routing. Also, BSs to send feedback traffic from the

197838 VOLUME 8, 2020



I. S. Binti Md Isa et al.: Energy Efficient Fog-Based Healthcare Monitoring Infrastructure

combination of candidate nodes to clinics are selected using
the same approach used to select BSs to send raw health
data. Note that BSs different from those used to send raw
health data are used to send feedback traffic as the size of the
analyzed health data feedback traffic is smaller than the raw
health data traffic. The combination of nodes hosting servers
considering the minimum number of nodes required to host
servers to serve all the patients that result in minimum energy
consumption is selected.

The heuristic increases the number of candidate nodes to
host servers and repeats the above process. The energy con-
sumption resulting from using this combination of nodes is
calculated and compared to the energy consumption resulting
from the combination of nodes hosting servers considering
the minimum number of nodes required to host servers. If the
latter is lower, the heuristic examines placing servers in more
candidate nodes. If the former is lower, the minimum number
of nodes required to host servers is selected to place servers.

IV. PARAMETER SELECTIONS
We consider two types of health monitoring application
that differ in data rate. First is a low data rate ECG moni-
toring application. It has been reported that cardiovascular
disease (CVD) has emerged as the top cause for mortality
worldwide and is expected to reach 23.3million by 2030 [57].
Therefore, patients with postoperative atrial fibrillation (AF),
a common cardiac case following cardiac surgery are con-
sidered in the ECG monitoring application [58]. Each patient
will send a 30-second ECG signal as recommended in [58]
which requires high processing capabilities for processing
and analysis. The second application is a high data rate,
fall video monitoring application to monitor elderly patients
who suffer from heart disease. It has been reported that
falls account for 10% – 25% of the ambulance call-outs
for elderly people. The fall monitoring application ensures
that elderly patients living by themselves get help when they
experience a fall. In the event of a patient fall, the IoT device
installed at the elderly home will first detect the fall using
limited video processing capabilities and send a 15-second
video recording as proposed in [59] to the fog servers with
higher processing capabilities to reconfirm the occurrence
of the fall before triggering a doctor call. Advanced pro-
cessing at the fog can avoid false alarms which cost the
national health service (NHS) in the UK £115 per ambulance
call-out [60].

These following subsections elaborate on the methodology
of determining the model input parameters considered in this
work.

A. NETWORK LAYOUT
In this study, 37 clinics located at West Leeds, UK, according
to 2014/2015 data [61] are selected to monitor patients of
the two applications. The patients of a clinic are considered
to be located at the clinic due to the uncertainty in their
precise locations. Potential BSs to serve patients are selected
by looking into the distance between the clinics and the BSs.

Note that the locations of clinics and BSs (i.e. latitude and
longitude) refer to the actual locations found in West Leeds,
which had been obtained from Google Maps based on the
names of clinics listed by [61] in 2014/2015 and OFCOM
UK Mobile Site finder published in May 2012 [62], respec-
tively. In this work, LTE-M is considered to serve the health
application with a coverage radius of less than 11km [63].
Hence, patients could be served by a BS within 11km from
their registered clinics. As for this work, 315 BSs are located
less than 11km from any clinic. The 26 nearest BSs to the
clinics were selected to serve patients to reduce the model
complexity. An OLT is selected to be placed within 20 km of
the 26 BSs (the maximum distance from ONU to OLT [52],
[64]) based on the location of local exchange provided by BT
Wholesale network [65]. Figure 4 portrays an overview of the
GPON network considered in this study.

B. NUMBER OF MONITORED PATIENTS
1) ECG MONITORING APPLICATION
According to the British Heart Foundation, the total UK
population aged 18 years and above suffering from Coronary
Artery Bypass Graph (CABG) and Percutaneous Coronary
Interventions (PCIs) who had heart surgeries performed in
the National Health System (NHS) and selected private hos-
pitals in 2014 were 17,513 and 96,143, respectively [66].
Given that the UK population was 63,818,387 in 2014
[67], these patients represent 0.176% of the UK popula-
tion. This percentage is used to estimate the number of
monitored patients in West Leeds, UK clinics based on
the total number of patients registered in each clinic [61].
Table 3 presents the deduced total number of patients reg-
istered at each clinic who have been expected to experience
postoperative AF.

2) FALL MONITORING APPLICATION
The total number of patients registered West Leeds clinics
of all ages who suffered heart disease is obtained from Public
Health England records [68]. As reported in [60], the percent-
age of elderly people aged 65 years and above is 17.7% of
the total population and one-third of them experienced falls
each year. Accordingly, 5.9% of the heart disease patients of
each clinic are monitored by the fall monitoring application.
Table 3 presents the deduced total number of elderly patients
registered at each clinic who are expected to experience
a fall.

C. LINK CAPACITY
The M2M traffic was 2% of the global IP traffic
in 2016 and is expected to be 5% in 2021 [69]. Cisco
also reported that the connected health applications will
represent 6% of M2M traffic in 2020 [70]. Accordingly,
healthcare applications are estimated to account for 0.3%
of the global IP traffic. This percentage is used to esti-
mate the network link capacities available for healthcare
applications.
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TABLE 3. Number of monitored patients in clinics for ECG and fall
monitoring applications.

D. TIME FOR PROCESSING AND ANALYSIS
1) ECG MONITORING APPLICATION
For the ECG monitoring application, a 30-second ECG sig-
nal, illustrated in Figure 7, is required to be sent to monitor
postoperative AF of cardiac surgical patients. This signal is
retrieved from the MIT_BIT Arrhythmia database [71], [72].
Note that, the 30-second ECG signal offers accurate results
for the analysis, as recommended in [58]. Such 30-second
of un-processed ECG signals have a volume of 252.8 kbits.
The ECG signals are processed using Pan Tompkins algo-
rithm [39] to extract heart rate and QRS duration for further

FIGURE 6. Locations of clinics, BSs/ONUs and OLT of the GPON network.

FIGURE 7. The 30-second ECG waveform.

analysis. The calculation of the heart rate from the 30-second
ECG signal is based on the number of R waves within the
30 seconds and this number is multiplied by 2 to obtain the
heart rate in beats per minute [73]. The QRS duration is
obtained based on the time between Q and S waves found
in the ECG signal.

The PS selected in both fog and central cloud to pro-
cess ECG signal is Intel Core i5-4460 with 3.2 GHz CPU
and 500 GByte hard drive [74]. An experiment was con-
ducted using MATLAB with a parallel processing function
to determine the correlation between time and number of
patients for processing and analysis of raw ECG data using
Pan-Tompkins algorithm. This was carried out by performing
the processing task on the 30-second ECG signals generated
by 10k to 50k patients in 10k steps. At each 10k step, the pro-
cessing operation was repeated 5 times to calculate the aver-
age time for the processing duration. Note that, the 30-second
ECG signals are made up of 1 ECG record repeated for all
patients. Also, note that the time to perform the processing
using MATLAB consists of both the time to submit the data
for parallel processing and the time to run the algorithm.
The results were then fitted with a linear line (dotted blue
line), as illustrated in Figure 7. For instance, a 10-second
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FIGURE 8. Number of patient versus time, based on MATLAB simulations.

duration for processing could process 2657 patients. We also
obtained the correlation between the time and number of
patients for the processing and analysis of raw ECG signal
considering 41 ECG records retrieved from the MIT_BIT
Arrhythmia database [71], [72] with a duration of 30-seconds
each. The patient’s ECG signals are uniformly selected from
these 41 records. The results are as shown as a red line
in Figure 8. The two experiments with a single ECG signal
and multiple ECG signals have resulted in similar linear
relationships. The MILP model results in the next section are
obtained considering the single ECG signal. Therefore, for
ECG monitoring applications;

τp = 0.002 Pat + 4.6872 (79)

where Pat is the number of patients served in each PS.

2) FALL MONITORING APPLICATION
For the fall monitoring application, the 15-second video
recording is captured using a Kinect’s IR sensor with a
640 × 480 resolution at 30 frames per second, as proposed
in [59]. Therefore, the video transmitted by a patient is
3.36 Mbits. Note that, the PS selected in both fog and cloud
for fall monitoring application is 2.4 GHz Intel Core-Duo.
The time to process and analyze the video with a 2.4-GHz
processor is around 0.3 ms – 0.4 ms per frame [59]. In this
work, 0.4 ms was used as the per frame processing time.
Therefore, the duration to process and analyze one video
recording per patient is 0.18 s, as calculated below:

τps = 15 s 30 frames/s 0.4 ms/frame (80)

In this work, videos were assumed to be processed in series.
Therefore, the worst-case scenario was considered to be one
in which all the videos are processed and analyzed before the
feedback was sent. Hence, for fall monitoring application,

τp = τps Pat (81)

where τps is the duration to process a video recording per
patient.

E. PATIENT DATA RATE
The American Heart Association (AHA) has recommended
that the golden time to save a heart patient’s life by send-
ing an alarm message to a cardiologist upon detection of a
sudden fall or rise in cardiac vital signs is between 4 and
6 minutes [73]. As such, 4 minutes, τ t , was selected for this
work as the maximum duration to perform all tasks which
is composed of: i) the time to record the health data, τm,
given as 30 seconds for ECG monitoring application while
15 seconds for fall monitoring application as explained above
ii) the time to transmit raw health data to the PS, τmax, iii)
the time for processing and analysis of raw heal data, τp,
estimated as explained above and iv) the time to transmit the
analyzed health data to clinic for feedback, τb. Therefore,
latency is not considered in this work as the time to perform
the main tasks explained above to save the heart patients is
limited to 4 minutes. Note that, this time frame is used to
calculate the minimum data rate for each patient.

The time required to transmit the analyzed data to the
clinics for feedback, τb, is determined based on the GPON
link bandwidth available for the processing node ( fog node
or cloud) to send feedback data to clinics (Cbmin), and the
amount of feedback data each PS needs to send. The link
bandwidth available for the processing node is estimated as
0.3% of the uplink and downlink between the ONU and the
OLT for FOA and CA, respectively, as explained above.

Note that we choose to transmit the feedback data using the
maximum data rate available for healthcare applications in
the GPON links to decrease the feedback time which, in turn,
givesmore time to transmit the raw health signal which allows
a lower data rate. This will result in activating fewer BSs.
Note that, activating fewer BSs for a longer time is more
efficient than activating a large number of BSs for a shorter
time as the idle power consumption of a BS is 63% of its total
power. The feedback data rate transmitted by a fog node is
calculated considering the maximum number of patients that
can be served at a candidate node, Patmax , given as:

Patmax = Pat N (82)

whereN is the number of PSs that can be hosted at a candidate
fog node.

We divided the minimum link/device capacity (Cbmin)
equally among patients, hence the data rate available for each
patient, δf , is given as:

δf = Cbmin
/
Patmax (83)

In this study, an LTE-M base station with the QPSK mod-
ulation scheme is considered with a minimum of 336 bps
per physical resource block (PRB). Therefore, the number of
PRBs for each patient to send the feedback data is given as:

Rb = bδf /336 bitsc (84)

where Rb is the minimum integer value to ensure that the link
capacity that was provisioned for healthcare in the network
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was not exceeded. Therefore, the data rate to send the feed-
back data is given as:

δb = Rb336 bits (85)

while the transmission time is calculated as follows:

τb = α/δb (86)

where α is the size of the analyzed data (feedback data). For
ECG monitoring application, the size of analyzed health data
(α) to be sent to the clinics for feedback purposes and to be
permanently stored in the cloud storage is obtained from the
conducted experiment, which is 256 bits. Meanwhile, for fall
monitoring applications, the size of analyzed data is based on
the maximum size allowed for a notification payload accord-
ing to Apple Push Notification Services, which is 256 bytes
(i.e. 2.048 kbits) [76].

Therefore, the transmission time to send the raw health data
to the PSs is given as:

τmax = τ t − τm− τb− τp (87)

The minimum data rate to transmit the raw health data to the
PSs is calculated based on τmax as:

δmin = D/τmax (88)

where D refers to the size of the raw health data. However,
as the data traverses the LTE base station and the minimum
allocation of resources to each user was one PRB, the number
of PRBs that could be assigned to each patient to transmit
his/her raw health data is:

Ra =
⌈
δmin

/
336 bps

⌉
(89)

where Ra is the maximum integer value to ensure that
the given data rate is equal to or higher than the min-
imum required data rate so that the system could work
within 4-minute. Hence, the data rate to send raw health data
to the PS is:

δa = Ra336 bps (90)

while the transmission time to send raw health data is calcu-
lated as below:

τa = D/δa (91)

The data rate to send analyzed health data from PSs to the
cloud storage for permanent storage is given as:

δc = Ccmin/Patmax (92)

where Ccmin is the lowest shared uplink or node capacity
available for a health M2M application from the PS to the
cloud storage (i.e. uplink capacity between ONU and OLT
and content server capacity for FOA and CA, respectively).
Hence, the time required to transmit the analyzed health data
to cloud storage is:

τc = α/δc (93)

F. EQUIPMENT POWER CONSUMPTION
As explained in Section III, the power consumption of all
networking equipment and PS consist of an idle part and
a linear proportional part. The idle power of BS, PS, and
content server are obtained from datasheets and references
in [7] and [78], [59] and [79], respectively while the idle
power for the other networking devices was considered to
be 90% of the power consumption at maximum utiliza-
tion [8], [80] and [81]. The maximum power consumption
of the networking equipment and the PS and their maximum
capacity is given by the manufacturers. As for ONU, the max-
imum capacity,CONU , is considered as the summation of the
maximum uplink capacity, i.e. 1.25 Gbps [82] and maximum
downlink capacity, i.e. 2.5 Gbps [82], to obtain Eb. Note that,
the networking devices are shared by multiple applications
while the considered PSs and Ethernet switch are dedicated
for the healthcare application. As discussed for the link capac-
ity, in this work we consider 0.3% of the idle power of the
shared devices is contributed by our healthcare applications
while 0.42% for LTE-M BS. Note that, the LTE-M shares
capacity, antenna, radio, and hardware with the legacy LTE
networks (20MHz) [63]. Due to this, the calculated idle power
of the BS (0.42%) contributed for healthcare applications is
based on 7% allocation of LTE-M network from the legacy
LTE network (i.e. 1.4MHz/20MHz) and 6% [70] allocation
of healthcare application from the total M2M application
supported by LTE-M network. Note that, the 6% allocation
refers to the estimated total number of RBs that is dedicated
for healthcare applications which gives 360 PRBs per second
as there are numerous types of M2M applications served by
LTE-M. However, the maximum idle power is considered for
the unshared devices.

Due to cooling, lighting and other overheads in the net-
work, the total power consumed in a site is higher than
the power consumed by the communications and comput-
ing equipment. The ratio of the total power consumed to
the power consumed by the communications and computing
equipment is defined as the power usage effectiveness (PUE).
PUE is used to describe the energy efficiency of each site
(core node site or building, cloud site or building or fog site).
A PUE of 1.5 is considered for IP over WDM, metro, and
access networks [83], [84]. A PUE of 2.5 is considered for
small distributed clouds in this work [38]. In addition, a PUE
of 2.5 is set for fog. Table 4 depicts the input parameters of
the models for the network architecture.

V. PERFORMANCE EVALUATION FOR THE ECG
MONITORING APPLICATION
This section presents the results and analysis of the EEFC
model for the proposed fog optimized approach (FOA) and
the EECC model for the conventional approach (CA) consid-
ering the ECG monitoring application. AMPL software with
CPLEX 12.8 solver running on high-performance computing
(HPC) cluster with a 12 core CPU and 64 GB RAMwas used
as a platform for solving the MILP models. The performance
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TABLE 4. Input parameters for networking and computing devices.

of the EECC model where the ECG signals are processed in
the cloud is used as a benchmark to evaluate the performance
of the EEFC model in terms of energy consumption of net-
working equipment and processing. Note that the evaluation
of the two models is performed using the GPON architec-
ture, as shown in Figure 1. In addition, a heuristic, Energy
Optimized Fog Computing (EOFC), is also introduced for
real-time implementation of the proposed approach based
on insights from the MILP results. The performance of the
EOFC heuristic running on a normal personal computer (PC)
with 3.2 GHz CPU and 16GB RAM is also evaluated. Also,
the impact of the idle power of the servers and network
devices and traffic volume on the energy savings achieved
by the proposed approach (i.e. FOA) is evaluated.

TABLE 5. Input parameters for FOA and CA for ECG monitoring
applications when N = 1 and a single PS can serve all patients.

FIGURE 9. Energy consumption of networking equipment and processing
in GPON architecture.

A. THE MILP MODEL WITH GPON NETWORK
Based on the outcomes of the MILP model, the energy
consumed by both networking equipment and processing in
GPON network had been determined via two approaches: CA
and FOA. Table 5 shows the calculated input parameters for
the FOA and CA for ECGmonitoring applications. Note that,
we consider a single PS to serve all patients (Pat = 669
patients). Also, we consider a scenario where we only allow
one PS at each candidate node (N = 1) as the limited space
at the fog node can be shared by multiple applications, i.e. φd
will be a parameter (i.e. φd = 1).
Figure 9 shows the energy consumption of networking

equipment and processing for the EECC model and EEFC
model. The energy saving of networking equipment achieved
by the EEFC model compared to the EECC model is 83.1%,
as illustrated in Figure 9. This is because in the EEFC model,
the location of PS (i.e. fog server) is optimized at the access
layer which is at the OLT as it is the nearest shared point to
the patients (the OLT is connected to all BSs in the network).
Processing the raw health data at the fog server limited the
network journey of this data to the GPON, i.e. only the
feedback data and permanent storage data (i.e. processed
data) is sent to the cloud, resulting in reducing the metro
and core network energy consumption by reducing the data
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traversing the network and reducing the utilization time of
the network equipment, i.e. reducing the idle power consump-
tion. Note that the larger the size of the data and the longer
the transmission duration, the higher the energy consumption.
Comparing that to EECC model, higher energy is consumed
by the networking equipment in the metro and core layers
in the EECC model as the un-processed data is sent to the
central cloud to be processed. Note that permanent storage is
also performed in the EECCmodel after the data is processed.

Figure 9 illustrates that the energy consumption for pro-
cessing in the EEFC model is slightly higher than the EECC
model by 0.5%. This is due to the high utilization time of
the processing server in the EEFC model compared to the
EECC model. Note that the same number and the same type
of processing server is utilized in both models. As shown
in Table 5, in the EEFC model, the processing server is on
idle mode for 0.76 s and 0.73 s while sending the analyzed
data for feedback and permanent storage, respectively, while
it is idle for 0.38 s and 32 ms in the EECC model. This is due
to the link capacity limitation in the access layer where the
processing server is located in the EEFC model which limits
the data rate to send the analyzed data to the clinic and cloud
storage compared to the EECC model. However, the total
energy saving that includes the networking equipment and
processing achieved by the EEFC model compared to the
EECC model is 35.7%.

Figure 9 also shows the performance of the EOFC heuristic
compared to the EEFC model and the results show that the
EOFC heuristic has the same performance as the EEFCmodel
in terms of the networking and processing energy consump-
tion in comparison to the EECC model. This is because the
optimal location to place the PS in both EOFC heuristic
and EEFC model is at the OLT, and the same networking
equipment is used to serve the patients.

B. IMPACT OF IDLE POWER OF DEVICES
As reported in [86], the idle power level of equipment varies
depending on the manufacturer. Furthermore, manufacturers
are currently pursuing a number of techniques that can reduce
the idle power consumption of equipment, focusing on power
supplies and fast switching techniques for example [87]. The
goal of these efforts by manufacturers is to approach ‘‘power
proportional computing’’ and its equivalent in networking
equipment. Therefore, we also studied the impact of the idle
power of networking and processing equipment on the energy
savings achieved by the EEFC approach to imitate different
manufacturer of equipment used in the network. We reduced
the idle power of all equipment (given in Table 4) by 30%,
60% and 100%. Note that because the idle power of BS, PS,
and content server are obtained from [8], [77] and [79], while
the other equipment is considered to be 90% of the maximum
power, therefore to obtain an equivalent reduction ratio for
all equipment, we considered reductions by 33%, 67% and
100% from their fixed idle power. Also, we used the same
input parameters as in Table 5.

FIGURE 10. Energy consumption of networking equipment and
processing of EECC model, EEFC model and EOFC heuristic with varying
idle power consumption.

Figure 10 illustrates the energy consumption of networking
equipment and processing for the EECCmodel, EEFCmodel
and EOFC heuristic with different idle power consumption.
Figure 10 also shows that the energy consumption of net-
working equipment and processing in the EOFC heuristic are
the same as in the EEFC model. The energy consumption
of networking equipment and processing for both the EEFC
model and the EECC model decrease as the idle power con-
sumption decreases. This is because the idle power dominates
the energy consumption of networking equipment and PS
compared to its proportional load power as the size of data
used in this work is small.

The results also show that the energy savings of networking
equipment obtained by the EEFC model compared to the
EECCmodel decreased from 83.1% to 0.3%when increasing
the percentage reduction of idle power consumption from 0%
to 100%, respectively. This is because, as explained in Section
V-1, the EEFC savings are obtained as a result of reducing the
data traversing the metro and core networks and consequently
the utilization time of the metro and core network equipment,
i.e. reducing the idle power contributi81on of the healthcare
application. Therefore, decreasing the idle power consump-
tion reduces the margin of savings.

Meanwhile, the energy consumption of processing in the
EEFC model and the EECC model are the same when the
idle power is 0%. This is because the PS in the EEFC model
and the EECC model served the same number of patients
with the same processing and analysis time. Note that the
decrease of idle power only affected the energy consumed due
to receiving the raw ECG signal from patients and the energy
consumed due to transmitting the analyzed data for feedback
and permanent storage purposes as shown in (25).

C. THE IMPACT OF INCREASING TRAFFIC ON EEFC
In this section, the impact of increasing the traffic on the
energy consumption of networking equipment and processing
in the EEFC model is evaluated by increasing the number of
patients by 10% to 90% of the number of patients for each
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clinic in 2014/2015 in 10% increments. Note that increas-
ing number of patients increases the traffic in the network.
To maintain the processing and analysis time of each PS at
6.02s where the maximum number of patients a PS can serve
(Pat) is equal to 669 (2014/2015 total number of patients),
multiple servers will be required to serve the increasing num-
ber of patients.

We consider two scenarios related to the number of PSs
that can be deployed at each candidate node (i.e. fog node).
In the first scenario (Scenario 1), each candidate node can
serve only one PS, hence the φd is a parameter (i.e. φd = 1).
The first scenario is applicable for the EEFC model only.
In the second scenario (Scenario 2), each candidate node can
serve more than one PS, hence φd is a variable. The second
scenario is applicable for both the EECCmodel and the EEFC
model. Note that, in Scenario 2, to allow each candidate node
to host more than one PS, an additional networking equip-
ment, Ethernet switch, dedicated for healthcare applications
is required to connect the PSs to each candidate node

The same MILP model in Section III for CA and FOA is
used to evaluate the performance of the proposed approach
under GPON network. Similar input parameters to those
in Table 5 are considered for the GPON network for Sce-
nario 1 to evaluate the performance of the EEFC model in
terms of energy consumption of networking equipment and
processing versus increasing traffic. For Scenario 2, similar
input parameters to those in Table 5 are considered, except the
data rate for permanent storage (δc) and its transmission time
(τc), are employed for the EECC model and EEFC model.
This is because, in Scenario 2, the data rate per patient to
send the analyzed data to the cloud for permanent storage
for the EECC model (i.e. CA) and EEFC model (i.e. FOA)
decreases with increasing number of patients (more than one
PS can be served at each candidate node), which, in turn,
increases its transmission time. Increasing the number of
patients in the network also reduces the data rate for feedback
(δb) and increases its transmission time (τb) for the EECC
model (i.e. Scenario 2) to 336 bps and 0.76 ms, respectively.
The values remain the same for all percentages of patients
as the allocated data rate is the minimum rate in the LTE
when using the QPSK modulation scheme. Table 6 shows
the data rate for permanent storage, δc, and its transmission
time, τc, for the EEFC model (i.e. FOA) and EECC model
(i.e. CA) for Scenario 2 for increasing number of patients in
the network.

Due to the complexity of evaluating the MILP model for
a large network for the increasing percentages of traffic,
the EOFC heuristic is used to study the performance of the
energy consumption of networking equipment and processing
for the EEFC model compared to the EECC model.

Figure 11 shows the energy consumption of networking
equipment and processing for EOFC heuristic for Scenario
1 and EECC model and EOFC heuristic for Scenario 2,
when the traffic is based on 2014/2015 (i.e. 0% increase) and
increased by 10% to 90% from the total number of patients
for each clinic in 2014/2015 in 10% step units.

TABLE 6. Data rate and transmission time for permanent storage with
varying numbers of patient in the network for the EECC and EEFC Model
under Scenario 2.

FIGURE 11. Energy consumption of networking equipment and
processing in EOFC heuristic under Scenario 1 and EECC model and EOFC
heuristic under Scenario 2 with the increasing number of patients.

The results in Figure 11 show that the total energy con-
sumption of the EECC model (i.e. Scenario 2) and the EOFC
heuristic (i.e. Scenario 1 and Scenario 2) increase as the traffic
increases. The increase in energy is a result of increasing
the number of patients which, in turn, increases both the
total traffic traversing the network and the total number of
utilized networking and processing equipment. The results
in Figure 11 show that the total energy consumption of both
networking equipment and processing in the EOFC heuris-
tic of Scenario 1 is lower than the EECC model when the
percentage increase in patients is equal to or less than 60%.
Meanwhile, for the EOFC heuristic under Scenario 2, the total
energy is lower than the EECC model for all percentages
of increasing traffic. The low total energy consumed in the
EOFC heuristic of both scenarios is mainly due to the low
energy consumed by the networking equipment as a result
of the small number of utilized networking equipment and
its utilization time in the EOFC heuristics compared to the
EECC model as explained previously.

The results also show that the total energy consumed by
both networking equipment and processing in the EOFC
heuristic of Scenario 1 is higher than the EECC model when
the percentage of traffic increase is more than 60%. This
is because of the increase in the number of PSs utilized in
the EOFC heuristic of Scenario 1 due to the limited link
capacity at the access network, hence increasing the energy
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consumption of processing of the EOFC heuristic. Note that,
the locations of the PSs are at both OLT and ONUs when the
percentage increase in patients is more than 60%.

Figure 11 also shows that the energy consumption of net-
working equipment of the EOFC heuristic under Scenario 2 is
slightly higher than in Scenario 1. This is due to the additional
energy consumed by the Ethernet switches at the access
layer and the increasing utilization time of the networking
equipment to send the analyzed health data storage traffic to
the cloud storage in Scenario 2, hence high energy is obtained
for EOFC heuristic of Scenario 2.

The results also show that the energy saving of networking
equipment of the EOFC heuristic compared to the EECC
model decreases from 81.7% to 72.8% for Scenario 1 while
it decreases from 81.1% to 71.9% for Scenario 2 as the traffic
increases from 10% to 90%, respectively. This is because the
increase in energy consumption of networking equipment of
the EOFC heuristic of both scenarios is higher than the EECC
model. For instance, in Scenario 1, more networking equip-
ment is utilized to place the PSs (OLT and ONU) compared to
the EECC model. Meanwhile, for Scenario 2, the utilization
time of the networking equipment to perform storage tasks in
the EOFC heuristic is higher than in the EECCmodel. This is
also due to the increasing energy consumption of the BS and
ONU in both approaches to serve the raw health data traffic
(EOFC heuristic of Scenario 1 and EECC model and EOFC
heuristic of Scenario 2) which reduces the energy saving of
networking equipment in the EOFC heuristic when compared
to the EECC model.

Figure 11 also shows that the energy consumption for
processing of the EOFC heuristic in Scenario 1 and Scenario
2 is slightly higher than in the EECC model for all percent-
ages of traffic increase. For Scenario 2, the energy used for
processing for the EOFC heuristic compared to the EECC
model increases from 0.38% to 0.65% with increasing traffic
from 10% to 90%, respectively. This is because the increase
in total utilization time of the PSs in the EOFC heuristic
under Scenario 2 is higher than in the EECC model for
all percentages of traffic increase. Therefore, the processing
energy increases for the EOFC heuristic compared to the
EECC model under Scenario 2. However, for Scenario 1,
the processing energy increase for EOFC heuristic is the same
for traffic increase from 10% to 50%. This is mainly due to
the same utilization time of the PSs to receive the raw health
data and to transmit the analyzed health data for feedback and
storage in the EOFC heuristic of Scenario 1 and the EECC
model, regardless of the increase in the number of patients.

VI. PERFORMANCE EVALUATION FOR FALL
MONITORING APPLICATIONS
This section presents the results and analysis of the EEFC
model (i.e. FOA) for the fall monitoring application under
two scenarios. The first scenario is with a limited number of
patients per PS (Scenario 1) and the second scenario is with a
limited number of PSs per candidate node (Scenario 2). Note
that, we used the same platform and solver as in Section V

for the MILP model presented in this section. Furthermore,
the results of the EOFC heuristic running on a normal PC
with 3.2 GHz CPU and 16 GB RAM are provided for a
real-time implementation of the EEFC model. The same
GPON architecture, as that shown in Figure 1, is used to
evaluate the performance of the EEFC model and the EOFC
heuristic in terms of the energy consumption of both the
networking equipment and the processing. Note that, the PS
used to perform the processing and the analysis of the video
recording data is a 2.4-GHz Intel Core-Duo [77], that has
maximum power consumption and idle power consumption
of 85W and 10W, respectively.

A. LIMITED NUMBER OF PATIENTS PER PS
In this section, the performance of both the EEFC model and
the EOFC heuristic are evaluated for an increasing percentage
of patients served in each PS. The conventional approach,
the EECC model (i.e. CA), is used as the benchmark to
evaluate the performance of both the EEFC model and the
EOFC heuristic for the fall monitoring applications in terms
of the energy consumption of both the networking equipment
and the processing. Moreover, the optimization gaps between
the EEFC model and the EOFC heuristic are presented in this
section. Note that in this scenario, each candidate node can
host more than 1 PS, hence φd is a variable. Table 7 shows the
calculated input parameters for data rates and its transmission
time for FOA and CA.

TABLE 7. Parameter inputs for FOA and CA for fall monitoring
applications for Scenario 1.

Figure 12 shows the energy consumption of the networking
equipment and the processing for the EECC model, EEFC
model, and the EOFC heuristic, while Figure 13 shows
the total energy saving, energy saving of the networking
equipment, and the energy saving of the processing of the
EEFC model as compared to those of the EECC model. The
results are shown for an increasing percentage of patients that
could be served at each PS. The results presented in Fig-
ure 12 revealed that the total energy consumption of the EEFC
model is always smaller than that of the EECC model for all
percentages of patients per PS. For instance, the total energy
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FIGURE 12. Energy consumption of networking equipment and
processing for EECC model, EEFC model, and EOFC heuristic for different
percentages of patients per PS.

FIGURE 13. Percentage energy saving in EEFC model compared to EECC
model for different percentages of patients per PS.

saving of the EEFC model compared to that of the EECC
model is 38% when a single PS serves 20% of the total
number of patients in the network, as shown in Figure 13.
This saving is attributed to the fact that the location of the
PSs in the EEFC model is the OLT, thereby reducing the
amount of networking equipment utilized to transmit the raw
health data traffic to the PS. Compared with the EECCmodel,
the location of the PSs is in the cloud. Therefore, considerable
energy is consumed in the metro and core layers to transmit
the raw health data traffic to the PSs.

Figure 13 also shows that when a single PS serves 80% of
the patients, the EEFC model saves 0.7% of the processing
energy as compared to the EECC model. This saving is
attributed to the low utilization time of the PS with the
EEFC model to transmit the raw health data traffic to the PSs
compared to the EECC model. Note that reducing the utiliza-
tion time of the PSs reduces the energy consumption of the
processing. Meanwhile, for the other percentages of patients
served by a single PS, the amount of energy required for the
processing in the EEFC model is slightly larger than that in
the EECC model, as shown in Figure 12. The high energy
consumption of processing in the EEFCmodel is attributed to
the high utilization time of the PSs to send the analyzed health
data feedback traffic and the analyzed health data storage

traffic to the clinics and the cloud storage, respectively,
compared to the EECCmodel, while the same amount of time
is needed to transmit the raw health data traffic.

Figure 12 also shows that the total energy consumption
of the EEFC model and the EECC model decreases when
more patients can be served by a single PS. This is because
allowing more patients to be served by a single PS reduces
the number of utilized PSs, thereby reducing the processing
energy consumption. Figure 13 shows that the total energy
saving increases as the percentage of patients served by a
single server increase. This is because allowing more patients
to be served by a single PS reduces the available time to send
the raw video recording to the PSs, which in turn reduces the
energy consumed to keep the networking equipment and the
PS in idle state.

Figure 13 also shows that the total energy consumption of
the EOFC heuristic approached the total energy consumed
by the EEFC model. Table 8 shows that the overall gap
between the EEFC model and the EOFC heuristic for differ-
ent percentages of patients per PS is less than 2%. This gap is
mainly attributed to the higher number of base stations used
by the EOFC heuristic compared to the EEFC model. The
processing energy consumption of the EEFC model and the
EOFC heuristic are equal as the same number of PSs is used.

TABLE 8. Optimization gap between the EEFC model and the EOFC
heuristic for different percentages of patients per PS.

B. LIMITED NUMBER OF PSS PER CANDIDATE NODE
In this section, the performance evaluation of the EEFC
model and EOFC heuristic for the increasing number of PSs
per candidate node is presented. Moreover, the optimization
performance gaps between the EEFC model and the EOFC
heuristic are presented. Note that when the number of PSs
per candidate node is limited to 1, we considered a single PS
is connected directly to the ONU or the OLT and φd is set
as parameter (i.e. φd = 1). In contrast, when the number of
PSs per candidate node is allowed to be more than 1 (i.e. φd
is a variable), an Ethernet switch is used to connect the PSs
to the ONU or the OLT. Also note that, in this scenario, each
PSs can only serve 20% of the total patients. Table 9 shows
the calculated input parameters in terms of data rate and its
transmission time to transmit video to PS (i.e. δa and ta,
respectively), to transmit analyzed video to clinics (i.e. δb
and tb, respectively) and to transmit analyzed video to cloud
storage (i.e. δc and tc, respectively) for FOA and CA.

Figure 14 and Figure 15 show the total energy consump-
tion of the networking equipment and the processing and
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TABLE 9. Input parameters for FOA and CA for Scenario 2.

TABLE 10. Optimization gaps between the EEFC model and the EOFC
heuristic for different numbers of PSs per candidate node.

FIGURE 14. Energy consumption of networking equipment and
processing for EEFC model and EOFC heuristic for different numbers of
PSs per candidate node when 20% of patients can be served in a
single PS.

the optimal location to place the PSs, respectively, for the
EEFC model and the EOFC heuristic. Table 10 shows the
optimization performance gaps between the EEFC MILP
model and the EOFC heuristic. The results are shown for
increasing number of PSs per candidate node. The results pre-
sented in Figure 14 revealed that the total energy consumption
increases as the number of PSs per candidate node increased
from 1 to 2. The increasing energy consumption is attributed
to the utilization of the Ethernet switches dedicated to the
health applications to connect multiple PSs to the ONU and
the OLT.

Figure 14 also shows that the total energy consumption of
both networking equipment and processing slightly decreases
when the number of PSs per candidate node increased from
2 to 5. This is because limiting the number of PSs per can-
didate node required the placement of servers in multiple
locations (i.e. OLT and ONUs) as opposed to the optimal
location at the OLT when a node can accommodate multiple

FIGURE 15. Optimal location of PSs for EEFC model and EOFC heuristic
for different number of PSs per candidate node when 20% of patients can
be served in a single PS.

servers. This is shown in Figure 15wheremore PSs are placed
at the OLT while reducing the number of utilized ONUs to
place the PSs when the number of PSs per candidate node
increases. Note that the larger the number of nodes used to
place the PS, the higher the energy consumption because of
the increasing amount of networking equipment (i.e. Ethernet
switches) used.

Furthermore, note that the data rate available per patient
to transmit the analyzed health data feedback traffic and the
analyzed health data storage traffic to the clinics and cloud
storage, respectively, increases as fewer patients are served
at a node. Hence, more time can be allocated to send the
video signal to the PS. However, as the provisioned data rate
to send the video signal is based on the number of PRBs,
the same data rate and transmission time are used to send
the video signal to the PS (i.e. irrespective of the number
of PSs that can be placed at each candidate node), as shown
in Table 9. This resulted in using the same number of base
stations to serve all the patients. Note that the increasing
energy due to the increasing amount of networking equipment
used to host multiple PSs (i.e. Ethernet switches) with a
small number of PSs at each candidate node dominated the
reduction in energy. This is a result of the low utilization
time of the network devices and the PSs used to transmit
the analyzed health data feedback traffic and the analyzed
health data storage traffic to the clinics and the cloud storage,
respectively.

The results shown in Figure 14 also reveal that the total
energy consumption (networking equipment and the process-
ing) of the EOFC heuristic approached that of the EEFC
model. The overall optimization gaps between the EOFC
heuristic and the EEFC model for all numbers of PSs per
candidate node is less than 1%, as shown in Table 10.
This difference is only due to a large amount of network-
ing equipment (i.e. base stations) used in the EOFC heuris-
tic as compared to the EEFC model. However, the gap in
energy consumption of the networking equipment between
the EOFC heuristic and the EEFC model for all numbers
of PSs per candidate node is less than 3.3%, as shown
in Table 10.
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VII. CONCLUSION
This work has investigated the energy efficiency of an inte-
grated healthcare approach that uses fog computing with
the central cloud to serve low data rate and high data rate
healthmonitoring applications. A PS is deployed at the access
network to perform both processing and analysis of health
data. The analyzed data is sent to the cloud for storage. A
MILP model (EEFC) and a heuristic (EOFC) were developed
to optimize the number and location of PSs at a GPON access
network for energy-efficient fog computing. The results of
the EEFC model for the low data rate health applications
reveal that the optimal location for placing PSs is at the
OLT as it is the nearest shared point to all the patients. The
EEFC model achieved 36% total energy savings compared
to the EECC model where the processing is performed at
the central cloud. This saving is a result of reducing the
traffic and the utilization time of the networking equipment.
We also studied the impact of decreasing the idle power
consumption of devices and increasing traffic volume on the
performance of the EEFC model. The results revealed that
the percentage network energy saving in the EEFC model
compared to the EECC model decrease with decreasing per-
centage in idle power consumption of devices as idle power
dominates the energy consumption of networking equipment
and PS compared to its proportional load power. For high
data rate applications, the results reveal that for scenario
where the number of PSs can be hosted at each candidate
node is not limited, a 38% total energy saving is achieved
by the EEFC model as compared to the EECC model when
20% of the patients are served by a single PS. Increasing
the number of patients served by a single PS reduced the
total energy consumption of both the EEFC model and the
EECC model because of the reduction in the number of
activated PSs. The total energy saving in the EEFC model
as compared to that in the EECC model increased to 52%
when all the patients can be served by a single PS. Further-
more, the results show that increasing the number of PSs
at each candidate node reduced the total energy consump-
tion of the networking equipment and the processing. This
reduction in energy is attributed to that fact that allowing
more PSs at each candidate node reduced the total amount of
networking equipment (i.e. Ethernet switches). The perfor-
mance of the EOFC heuristic approaches that of the EEFC
MILP model for low data rate and high data rate health
applications.
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