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ABSTRACT The Automatic Generation Control (AGC) system is vital for power system frequency stability.
The frequency and tie-line power flow aremeasured and transmitted to the control room to formArea Control
Error (ACE), which is then sent to each generator for power generation adjustment. Due to the vulnerability
of the Inter-Control Center Communication (ICCP) protocol, which is used for data transmission, many
attacks such as Denial of Service, timing de-synchronization, and False Data Injection (FDI) attack can be
inflicted upon the compromised system. In this paper, we investigated the attacking mechanism and the
impact of the coordinated FDI attack. Compared with the single attack model, the coordinated FDI attack
has a smaller Time to Emergency (TTE) value and wider parameter ranges. Therefore, it is stealthier and
more harmful to the AGC system. However, it is found that the pattern of the corrupted ACEs (attacked by
a specific coordination FDI attack) follows a specific fashion. Therefore, we proposed a self-learning and
evolving approach to detect this stealthy attack. The real data from an electric company helps to train and test
the pattern recognition model. The coordinated attack is simulated and compared in a 3-area AGC system,
while the proposed detection method is verified via the IEEE 39-bus test system.

INDEX TERMS False data injection attack, automatic generation control (AGC), pattern recognition, area
control error (ACE).

NOMENCLATURE
AGC Automatic Generation Control
ACE Area Control Error
EDC Economic Dispatch Control
RoCoF Rate of Change of Frequency
UFLS under-frequency load shedding
FDI False Data Injection
TTE Time to Emergency
ICCP Inter-Control Center Communication
DNP3 Distributed Network Protocol 3.0
PJM Pennsylvania-New Jersey-Maryland

Cooperation
λs attacking factor of the scale attack
λr attacking factor of the ramp attack
λp attacking factor of the pulse attack
τT turbine time constant
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τg governor time constant
R speed regulation
D frequency sensitivity load coefficient
KI AGC integrator gain
H inertial constant
Ps synchronizing power coefficient
a1 ∼ a6 six injected attack vectors
1Pij tie-line power flow deviation from the

scheduled value
1ωi angular frequency deviation from the

nominal value
Bi frequency bias factor
δi the set of areas that area i is connected to
atie tie-line attack vector
af frequency attack vector
H state-space matrix
p(x|Ck ) class-conditional densities
p(Ck ) class priors
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p(Ck |x) posterior probabilities
σ (a) logistic sigmoid function
y(x) recognition function

I. INTRODUCTION
In the power system, Automatic Generation Control (AGC)
is regarded as the most critical function among three power
control measures, i.e., the control via synchronous genera-
tor’s governor, AGC, and EDC (Economic Dispatch Control)
[1]–[3]. It is responsible for the load fluctuation cycling from
10s to 2-3min, which is no longer suitable for governor
control. The primary purpose of AGC is to maintain the
nominal power system frequency and minimizes the tie-line
power deviation. The former function is for safety purposes,
while the latter is mainly due to economic consideration.
Basically, AGC is a closed-loop feedback control system that
uses frequency and tie-line power measurements to form the
control signal, i.e., Area Control Error (ACE). The formed
ACE signal is sent to each generator to adjust its output, and
this process repeats every 2-5 seconds [4]–[6].

However, as deepening integration and coupling between
the physical power system and cyber system, the AGC sys-
tem faces severe security challenges. Malware infection,
eavesdropping, False Data Injection (FDI) attack, Denial-of-
Service (DoS), password pilfering, and de-synchronization
threaten the safety and integrity of the power system. The
AGC system’s vulnerability can be categorized into two
aspects: measurement data tampering and control data tam-
pering. Fig. 1 illustrates a 3-area interlinked system and its
vulnerabilities.

FIGURE 1. A 3-area interlinked system and its vulnerabilities.

The measurement data tampering can be achieved by a
false data injection attack first investigated by Liu et al. [7].
By stealthily injecting false data into the measurements,
the perpetrator can affect ACE value to sabotage the fre-
quency stability and economic power dispatch. On the other
hand, the control attack is to alter or block the computed
ACE corrections, which is supposed to be sent to the gener-
ators. It can be realized by FDIA or Denial of Service (DoS)
attack. In most scenarios, the control signal is sent to the

Balancing Area (BA) via Distributed Network Protocol 3.0
(i.e., DNP3) [8]. There are existing IEEE standards (such
as IEEE 1815-2012) and loads of secure authentications for
DNP3 security [9]. While for the measurement data trans-
mission, the widely deployed Inter-Control Center Commu-
nication Protocol (ICCP) is vulnerable to many cyber attacks,
such as data manipulation, Denial of Service (DoS), tim-
ing de-synchronization, and false data injection attacks [10].
In this paper, we focus on the false data injection attack during
measurement data collection.

False data injection attack is a major threat to the security
of the power system. It falsifies the original measurement
data by hacking into the compromised Intelligent Electronic
Devices (IEDs) or transmission devices. FDI attack affects
not only the AGC system, but also other important functions,
such as power system state estimation, power economic dis-
patch, and the integration of renewable energy [11]–[13]. The
impact of FDI attacks on AGC systems has been investigated
using different methodologies, such as model-based analy-
sis [15] and state estimation [21].

Normally, there are simple bad data detection algorithms
to deter adversaries’ actions. A straightforward bad data
checking algorithm in the AGC system can be formed as the
following expression:∣∣∣∣ACEi,t − ACEi,t+TT

∣∣∣∣ < ε (1)

where ACEi,t is the calculated ACE at time t , T is the process-
ing interval, which is 2-5 seconds, ε is the threshold. In the
power system state estimation function, the Chi-square χ2

distribution is used for bad data detection and identification.
The square of the measurement residual will have a χ2 dis-
tribution with N degrees of freedom, i.e.

N∑
i=1

(xi − x̂i)2 ∼ χ2 (2)

where xi and x̂i is the measurement and estimated
measurement, respectively.

Attacks can be classified as brute-force attacks or intel-
ligent coordinated attacks. The brute-force attack is simple
and straightforward yet easy to be detected. An example
of this attack is a line-tripping attack. On the other hand,
a coordinated attack requires a deep understanding of the sys-
tem and sophisticated hacking skills. This attack pattern can
cause severe damage to the system because it nullifies power
system defenses and penetrates stealthily. A good example
to illustrate the coordinated attack is the Ukraine cyber-
induced power outage in 2015 [14]. The highly structured
and resourced perpetrator was co-adaptive and demonstrated
varying tactics/techniques to match the defenses of the three
impacted distribution grids. What’s more, the attack was
conducted in an orderly fashion that is hard for the defense
system to react.

This paper investigates the mechanism of coordinated FDI
attack in the AGC system and its impact; afterward, a novel
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detection method based on pattern recognition is proposed.
The comparison of the coordinated attack and single attack
is simulated based on a 3-area AGC system, and the effec-
tiveness of the proposed countermeasure is verified by the
IEEE 39-bus test system. The contribution of this paper can
be summarized as follows:
• The attack mechanism of the coordinated attack
is thoroughly studied. Unlike other studies that
merely focus on single attack models, i.e., the
scale/ramp/pulse/random attack, the proposed coordi-
nated attack is a combination of several attack tem-
plates. Therefore, its Time-to-Emergency (TTE) value
and parameter ranges (λs, λr , λp) are quite different from
its counterparts.

• An artificial intelligence-based method is proposed to
tackle the sophisticated, coordinated attack. Different
from many studies in which attack detection involves
either state estimation or load forecast, the proposed
countermeasure is a pure statistics approach that embod-
ies self-learning and evolving.

• A 3-area AGC system is simulated to compare four
different scenarios. It shows severer damage can be
caused yet hard to detect. Meanwhile, the IEEE 39-bus
test system, which can be regarded as a specific real
3-area AGC system, is simulated to find the attacked
ACE patterns for coordinated attack detection.

The rest of the paper is organized as follows. Section II con-
ducts a brief literature review. Section III explains the AGC
system and single attack templates. Section IV elaborates
on the coordinated attack, including injected measurement
coordination and attack model coordination. In section V,
the pattern recognition-based attack detection method is pro-
posed. Finally, Section VI concludes the paper.

II. RELATED WORK
Attacks can be classified as brute-force attacks or intelligent
coordinated attacks. The cyber attack on the Ukrainian power
grid is a typical coordinated attack that involves false data
injection attack, spear-phishing emails, BlackEnergy3 mal-
ware, credential cracking, denial-of-service, KillDisk modi-
fication, etc. [14]. Normally, the research of the coordinated
FDI attack against the AGC system is based on the single
attackmodels presented by Sridhar et al. in 2014 [15]. In [16],
the authors derived an optimal attack, which is a combination
of a series of false data injections. It also showed that, based
on eavesdropped sensor data and a few feasible-to-obtain
system constants, the attacker could learn the attack impact
model and achieve the optimal attack in practice. Other opti-
mized or coordinated related FDI attacks against the AGC
system can be found in [17]–[19].

For its countermeasures, the authors used an unknown
input observer (UIO) to estimate the states of the load fre-
quency control system and then calculate the UIO’s residual
function for anomaly detection in [20]. In [21], a machine
learning-based algorithm was proposed to tackle the stealthy
FDI attack. The authors used Neural Network, namely Long

Short-Term Memory (LSTM), to train and forecast the ACE
value, and used Fast Fourier Transform (FFT) to covert the
moving average data from a time domain to a frequency
domain for scale attack detection. However, it is only suitable
for a single attack scenario, whose pattern period is about
50 AGC cycles. There are other literature works looking into
the application of machine learning or artificial intelligence
technology in this territory [5], [22], [23]. Deb Roy et al.
investigated the unique feature of low inertial AGC systems,
such as the system with lots of renewable generations. Low
inertial grid experiences larger frequency fluctuation during
any perturbation due to the lack of rational inertia [24].
Ashok et al. investigate the PowerCyber CPS testbed for
experimental evaluation of cyber attacks on the AGC sys-
tem at Iowa State University. Two types of cyber attacks,
namely, measurement attack and control attack, are per-
formed, and its impacts on system frequency and load supply,
are investigated [25]. There are other testbeds for Supervi-
sory Control And Data Acquisition (SCADA) or Wide-Area
Monitoring, Protection andControl (WAMPAC) system, such
as the National SCADA Testbed (NSTB) [26], Virtual Con-
trol System Environment (VCSE) testbed in Sandia National
Laboratory [27], Virtual Power System Testbed (VPST) in
University of Illinois [28], etc.

III. SYSTEM DESCRIPTION AND ATTACK MODELING
In an interlinked power transmission system, generators are
equipped with Load Frequency Control (LFC) and Automatic
Voltage Regulator (AVR). The LFC has a preset frequency
and constantly monitors the tiny variation of the frequency
and active power output. Base on this, the steam turbines’
valve is controlled. Similarly, the AVR has a preset voltage
and constantly monitors the tiny variation of the voltage
and reactive power output. Base on this, the field current is
regulated. The time constant of the excitation system is much
smaller than that of the turbine, so the transient damping
of the AVR is much faster than that of the LFC. In this
sense, the two control loops can be decoupled and analyzed
separately.

AGC is the most important LFC method in the power
system. The control block diagram of the 3-area AGC system
is depicted in Appendix A, and the system parameters, as well
as its assumed value in each area, are stated in Table 1.

In the control block diagram, six additional inputs
(a1 ∼ a6) are added to model the false data injection attack.
The six attack vectors are injected to tamper the frequency
bias measurement in area 1, 2, and 3 (1f1, 1f2, and 1f3),
and the tie-line power flow measurement (1Ptie1-2, 1Ptie1-3,
and 1Ptie2-3). Therefore, the compromised measurements
can be denoted as 1ωn + an (n = 1, 2, 3) and 1Pij + am
(m = 4, 5, 6). According to [15], there are three attack
templates:
i) Scaling Attack. This attack vector is formed by scaling

the true measurements.

a = (1+ λs)∗z (3)
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TABLE 1. Parameters of the 3-area system.

where λs is the scaling factor, and z is the true
measurement.

ii) Ramp Attack. This attacking vector is formed by adding
a ramp function that gradually increases with time.

a = z+ λr∗t (4)

iii) Random Attack. This attacking vector is formed
by adding a random positive value to the true
measurement.

a = z+ rand(x, y) (5)

iv) Pulse Attack. This attack involves the addition of a very
short period pulse to the true measurement. We regard
this attack as a special kind of random attack.

The ACE signal of area i is:

ACEi =
∑
j∈δi

1Pij + Bi1ωi (6)

where 1Pij is the tie-line power flow deviation from the
scheduled value,1ωi is the angular frequency deviation from
the nominal value, i.e., 100π (50Hz power system) or 120π
(60Hz power system). Bi is the frequency bias factor that
determines the reciprocity of the two connected areas during
a disturbance. δi is the set of areas that area i is connected to.
The various attack models can be integrated into the ACE

expression to obtain the compromised ACEi.c,

ACEi.c =
∑
j∈δ

(1Pij + atie)+ βi(1ωi + af ) (7)

where atie, af represent the tie-line attack and frequency
attack, respectively. The perpetrator can target either type of
measurement or even both.

IV. COORDINATED FALSE DATA INJECTION ATTACK
A. INJECTED MEASUREMENTS COORDINATION
The AGC system has a simple validation mechanism to verify
the input measurements’ credibility and calculated ACEs.
An alarmwill raise if any of the following situations happens:
• The Rate of Change of Frequency (RoCoF) exceeds a
certain value, e.g., if the frequency exceeds 1Hz during
a 15-second time window, an alarm will be raised [20].

• The definite value of the system frequency, tie-line
power, or ACE signal exceeds a predefined limit, e.g.,
the system frequency exceeds ±0.1Hz, or the ACE sig-
nal exceeds ±0.05 p.u..

• Other situations, such as the ACE signal does not return
to around zero within 10 minutes; the average value
of the ACE signal during a specific consecutive time
window exceeds the threshold, etc.

However, this primitive approach is susceptible to the coor-
dinated FDI attack. Still using the 3-area system illustrated in
Appendix A, the mathematic state description is

ẋ(t) = x(t)+ u(t)+ Ca(t)+ ω(t) (8)

where x = [1f1,1f2,1f3,1Pg1,1Pg2,1Pg3,1PT1,1PT2,
1PT3, 1Ptie12, 1Ptie13, 1Ptie23, ACE1, ACE2, ACE3]T ,
u(t) = [u1(t), u2(t)] is the load disturbance, a(t) = [a1(t),
a2(t), a3(t), a4(t), a5(t), a6(t)] is the attack vector, and ω(t)
denotes the process noise. The coefficient C is a constant
used for scaling the coordinated attack vector. The state space
matrices of the 3-area AGC system can be obtained. For
simplicity, only the state variables of area 1 is stated here as
follows:

1ḟ1 =
−D1

2H1
1f1 +

1
2H1

1PT1 −
1

2H1
1Ptie12

−
1

2H1
1Ptie13 −

1
2H1

u1 +
1

2H1
a1 (9)

1ṖT1 =
−1
TT1

1PT1 +
1
TT1

1Pg1 (10)

1Ṗg1 =
−1
R1Tg1

1f1 −
1
Tg1

1Pg1 +
1
Tg1

ACE1 (11)

The three tie-line power are related to the connected areas’
frequency deviation, as well as the corresponding attacks.

1Ṗtie12 = Ps1f1 − Ps1f2 + a4 (12)

1Ṗtie13 = Ps1f1 − Ps1f3 + a5 (13)

1Ṗtie23 = Ps1f2 − Ps1f3 + a6 (14)

The three ACEs are related to the frequency deviation, con-
nected areas’ tie-line power deviation, and the corresponding
attacks.

AĊE1 = −KI1B11f1 − KI11Ptie12 − KI31Ptie13
+KI1B1a1 + KI1a4 (15)

AĊE2 = −KI2B21f2 + KI21Ptie12 − KI31Ptie23
+KI2B2a2 + KI2a5 (16)

AĊE3 = −KI3B31f3 − KI31Ptie13 − KI31Ptie23
+KI3B3a3 + KI3a6 (17)

where

Bi =
1
Ri
+ Di, i = 1, 2, 3 (18)

Therefore, the state-space matrix can be obtained. The full
matrix is given in Figure 2.

We assume that the attacker has access to k specific meters
in different areas. According to [7], the attack vector should
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FIGURE 2. The full state-space matrix of the AGC system.

satisfy the equation a = H · c, where H is the state-space
matrix calculated in Fig. 2, and c is the injected error. Nor-
mally, c could be any arbitrary number. For a random FDI
attack, the attack vector doesn’t have to consider the injected
error vector, provided it complies with the equation B ·a = 0,
whereB = H(HTH)H-I. The purpose of a coordinated attack
is to utilize all the available resources to launch a stealthy
and malicious attack that can cause significant damage to
the power system. In this sense, the error injected into the
AGC system should be carefully chosen. Two criteria must
be guaranteed by vector c for a successful stealthy attack:

(i) The injected error could not exceed the alarming
threshold;

(ii) cs = H−1s (a− b).

In (ii), Hs is the sub-matrix of H containing columns,
whose indices are not corrupted. c = [cj, cs], cj denotes the
targeted state variables with specific error, and cs denotes the
uncompromised state variables.b =

∑
j∈8attack hjcj, where

hj is the indices of Hj representing the corrupted sub-matrix.
The physical meaning of (ii) is that in order to launch a
stealthy targeted attack, the selection of c should keep the
non-attacking region remain unchanged. It means the tie-line
power flow and the state variables of the boundary nodes in
the non-attacking region should be uninterrupted.

To prove the second requirement, we decompose the attack
vector to

a =
∑

i/∈8attack

hscs+
∑

i∈8attack

hjcj = Hscs + b (19)

Therefore, cs = H−1s (a− b).

B. ATTACK MODELS COORDINATION
For a 3-area interlinked system, there are six measurements
can be tampered. Therefore, the coordinated attack is a con-
gregation of the three attack models. For simplicity, we first
investigate the attack mechanism of each type. The 3-area

TABLE 2. Tie-line power flow of the 3-area system.

system depicted in Fig. 1 and Appendix A is used for illus-
tration, and its tie-line power flow is stated in Table 2.

Assuming the attacker launches a scale attack on tie-line
1-2 with λs equals 0.1. Therefore, the compromised tie-line
power flow from Area 1 to Area 2 is 0.2371. For this injected
data changed the real power flow measurement between
Area 1 and Area 2, the false frequency measurement needs
to be calculated according to

1F =
−(1+ λs)kz(t)
n∑
i=1

( 1
Ri
+ Di)

= 0.012 (Hz) (20)

where R and D denote speed regulation and frequency sensi-
tivity load coefficient. Here, the baseline value of the tie-line
power flow is assumed as 100MW. The outcome 1F means
that it does not exceed the 0.1 Hz threshold.

With the falsified power flow and frequency measure-
ments, the ACE is computed to a value of 0.0083 p.u.. As a
result, the generator inArea 1will ramp down and end upwith
a deficiency of power supply. As we mentioned at the begin-
ning of this section, the sudden definite change ofACE cannot
exceed 0.05 p.u.. Otherwise, the detection system will raise
the alarm. On the other hand, the ACE has to be big enough
to trigger the under-frequency load shedding (UFLS) or over-
frequency disconnecting action. For example, the ULFS will
be initiated when the system frequency is below 59 Hz.

It is worth noting that the FDI attack is not a once for all
action but an itinerated process. So, the single attack takes
several iterations to launch a successful malicious attack. For
the above case, the single scale attack takes approximately
20 cycles (i.e., 100s) to cause the ULFS damage. Another
prevalent attack is to target the electricity market. By mod-
ifying the power flow between two areas, a specific plant can
gain benefits. In this case, there is only upper boundary of
ACE value, while no lower boundary is required.

For the ramp attack and random attack, the attack mecha-
nism is the same. However, it is worth noting that the time-
to-emergency (TTE) value of the ramp attack is larger than
those of the two other attacks. TTE is defined as the time
from the onset of an attack to the instant when the system
takes emergency action. Intuitively, the injected false data of
the ramp attack is increasing gradually with time, so it shall
take a while to make an impact.

We assume that there are three different attacks inflicted
into three different areas, i.e., the scale attack on Tie-line 1-2,
the ramp attack on Tie-line 2-3, and the random attack on
the frequency in Area 3. As we mentioned above, if the
tie-line is under attack, the false injected frequency value
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of the corresponding area has to be calculated using (20).
In order to compare the coordinated attack with single attack,
we deliberately use a larger scale and ramping factor. The
scale factor λs of the scale attack on Tie-line 1-2 is set to
0.3, which exceeds the maximum boundary (0.2922) in the
single scale attack scenario, while the ramping factor λr of
the ramp attack on Tie-line 2-3 is set to 0.1, which also
exceeds the maximum boundary (0.0824) in the single ramp
attack scenario. The falsified measurements, calculated false
frequency deviation, and ACE of the scale attack types are
stated in Appendix B.

FIGURE 3. The process of attack types coordination.

The random attack on the frequency of Area 3 is not yet
determined because it is used to coordinate with the scale
and ramp attack. If the calculated instant frequency deviation
exceeds the threshold, i.e., 0.1Hz, the random attack will be
launch for compensation. This process is to guarantee the
stealth of the attack. The entire process of the coordinated
attack is shown in Fig. 3. The scale attack and ramp attack are
firstly introduced by the attackers, and random attack acts as
an adjustment to compensate for the deviation of the sudden
frequency change. It is worth noting that the itineration of a
stealthy attack causing UFLS damage must be bigger than
three because the Rate of Change of Frequency (RoCoF) is
not allowed to exceed 0.3Hz/15s. If so, the detection system
of AGC will raise the alarm. The attack model coordination
is elaborated by a 3-area system in this paper. However,
the procedure and basic principle hold for amore complicated
system, and the attack model combination can be numerous.

C. SIMULATION RESULTS
The coordinated attack, as well as the three different single
attacks, are simulated and compared in a 3-area system.
Among the three single attacks, we use the pulse attack
instead of the random attack, which requires a long time to

take effect. In all four scenarios, the power system will act as
soon as the system frequency is under 59Hz.Wemainly focus
on the TTE value and the attack parameters (i.e., λs, λr , λp)
in each scenario. The system parameters and tie-line power
flows were stated in Table 1 and Table 2.
Scenario 1: A scale attack with a scaling factor of 0.25 is

applied to tie-line 1-2, and the magnitude of the attacking
vector is shown in Fig. 4(a). After the AGC control, the three
tie-line power flow will deviate from its scheduled values,
as shown in Fig. 4(b). Fig. 4(c) shows that after about 63.2s,
the frequency of area 1 descends to 59Hz.

FIGURE 4. The effects of scale attack. (a) Scale attack with a scaling
factor 0.25. (b) Tie-line power deviation. (c) Frequency of area 1.

Scenario 2: A ramp attack with a ramping factor of 0.07 is
applied to the tie-line 1-2, and the magnitude of the attacking
vector is shown in Fig. 5(a). Fig. 5(c) shows that after about
101.9s, the frequency of area 1 descends to 59Hz. The TTE
value of a ramp attack with λr = 0.07 is much bigger than
the TTE value of a scale attack with λs = 0.25. The reason
behind this is that the injected false data of the ramp attack is
increasing gradually with time, so it takes a much longer time
to make an impact. It is worth noting that both the scaling
factor and ramping factor are chosen carefully so that they
match with each other in their own ranges.
Scenario 3: A pulse attack with a magnitude of 0.8 is

applied to the tie-line 1-2, and the attacking period is from
0-15 seconds. The TTE value of the pulse attack is 12.4s,
which is less than three cycles. Therefore, the detection
system will raise the alarm.
Scenario 4: In this scenario, a coordinated attack is con-

ducted. Specifically, a scale attack with λs = 0.3 is inflicted
upon the tie-line 1-2 power measurement, and a ramp attack
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FIGURE 5. The effects of ramp attack. (a) Ramp attack with a ramping
factor 0.07. (b) Tie-line power deviation. (c) Frequency of area 1.

FIGURE 6. The effects of pulse attack. (a) Pulse attack with a magnitude
of 0.8. (b) Tie-line power deviation. (c) Frequency of area 1.

with λr = 0.1 is inflicted upon the tie-line 1-3 power
measurement. Besides, in order to keep the instant frequency
deviation below 0.1Hz, a pulse attack with λp = −0.04 is

FIGURE 7. The effects of a coordinated attack. (a) Tie-line power
deviation. (b) Frequency of area 1.

TABLE 3. The comparison of single attack and coordinated attack.

conducted as an adjustment. Fig. 7(a) shows that after about
17.9s, the frequency will drop to 59Hz. Thus the UFLS will
be initiated.

Table 3 compares the parameter ranges and the least TTE
of each attack, from which we can draw the conclusion that
the coordinated false data injection attack not only shortens
the TTE but also widen the range of the attack parameters.
For example, in scenario 4, λs is set to 0.3, which is beyond
the upper boundary of the scaling factor value for a single
scale attack, but it is viable for a coordinated attack. This is
the case for λr as well (which is set to 0.1 in scenario 4, and its
upper boundary is 0.0824 for single ramp attack), providing
the adjusting frequency attack is well designed to keep the
instant frequency change below the threshold. It can also be
seen from Table 3 that the least TTE value of the coordinated
attack (only three cycles) is much shorter than the single
attacks.

V. THE COUNTERMEASURE
From the analysis of coordinated attack, we can see that
the coordinated attack is a combination of various single
attacks. Therefore, it is difficult or even impossible to verify
every single measurement fed into the AGC system, and
even the system has this computational power, the outcome
may well be incorrect because the adjusting attack keeps
the checking points within its boundaries. A better way to
investigate this problem is to analyze the pattern of the Area
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Control Error (ACE) because it is the ultimate output of all
the available measurements in the AGC system.

The expression of ACE is depicted in formula (7), from
which it can be seen that ACE is linear to frequency deviation
(1ωi) and tie-line power flow (1Pij). The parameter Bi is the
frequency bias factor that determines the reciprocity of the
two connected areas during the disturbance, and it is constant
for a long period of time. Therefore, no matter how many
measurements are falsified, the ACEs still follow a certain
modification trend because of the linearity. For example,
if a scale attack is inflicted upon the tie-line power flow,
the pattern of ACE is just translational displaced, and the
shape of it remains the same. However, for a coordinated
attack, the attacked ACE pattern may change significantly
because of the combination of multiple single attacks, and
because of the uncertainty of the combination, many patterns
need to be considered.

A. ATTACKED ACE PATTERN RECOGNITION
Pattern recognition is concerned with the automatic discov-
ery of regularities to classify the data into different cate-
gories or differentiate individual behaviors. The basic idea
is to find a function y(x), which is determined by train-
ing, to decide which category of the new input belongs to.
Here we use linear models for classification. For generative
approach, we model the class-conditional densities p(x|Ck )
and class priors p(Ck ). The posterior probabilities p(Ck |x) can
be obtained using Bayes’ Theorem, which is

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1)+ p(x|C2)p(C2)

=
1

1+ exp(−a)
= σ (a) (21)

where a = ln p(x|C1)p(C1)
p(x|C2)p(C2)

and σ (a) is the logistic sigmoid
function.

For the case of K > 2, the posterior probabilities p(Ck |x)
can be written as

p(Ck |x) =
p(x|Ck )p(Ck )∑
i p(x|Ck )p(Ci)

=
exp(−a)∑
i exp(ai)

(22)

where ak = ln p(x|Ck )p(Ck ). p(Ck |x) is also known as the
normalized exponential and can be regarded as a multiclass
generalization. Normally, the training data only comprises
a small fraction of all possible inputs. Thus it is vital for
the recognition model to identify every new input correctly.
Generalization signifies the ability of a pattern recognition
algorithm to correctly categorize new inputs that differ from
the training set and is a key feature for the pattern recognition
algorithm to be precise. The normalized exponential is also
known as softmax function as it represents a smoothed version
of the ‘‘max’’ function because, if ak � ai for all i 6= k , then
p(Ck |x) ' 1, and p(Ci|x) ' 0.

For simplicity, we consider a case of two Gaussian dis-
tributed classes with the same covariance matrix. Thus,

the density of Ck can be denoted as

p(x|Ck )=
1

(2π )D/2
1
|6|1/2

exp
{
−
1
2
(x−µk )T6−1(x−µk )

}
(23)

The posterior probabilities of class 1 can be obtained,

p(C1|x) = σ (wT x + ωo) (24)

where w =
∑
−1(µ1 − µ2),

ωo = −
1
2
µT1

∑−1
µ1 +

1
2
µT2

∑−1
µ2 + ln

p(C1)
p(C2)

.

Due to the common covariance matrix assumption,
the quadratic terms in x from the exponents of the Gaus-
sian densities have been eliminated. Therefore, the function
becomes linear and logistic sigmoid.

For the general case of K classes with Gaussian distribu-
tion, we have ak (x) = wTk x + ωk0, where wk =

∑
−1
µk and

ωk0 = −
1
2µ

T
k
∑
−1
µk + ln p(Ck ).

The attacked ACE pattern recognition is essentially a
supervised classification, for all the training samples are
labeled with ‘‘normal ACE’’ or ‘‘attacked ACE," and what
we need to do is to differentiate the two categories. This
supervised pattern recognition is viable because the ACE
data is available online, and we can add arbitrary coordinated
attacks to the normal data to form the training data set.

It is worth noting that this probability approach for pat-
tern recognition is empowered by the identifiability of the
original data set. According to the actual needs of recogni-
tion, the combination of some parameters is selected as a
feature vector. Therefore, the training process could be time-
consuming. A better way to ensure real-time detection is
‘‘offline training, online detection," which means the detec-
tion model is obtained by offline training and updated every
few hours. Other classification methods are also viable, such
as deep learning-based data forgery detection [21], and RNN
(Recurrent Neural Networks) [29].

It is straightforward to extract the features of single
attacked ACEs. Fig. 8 and Fig. 9 shows scale attacked ACE
pattern, and scale attacked plus ramp attacked ACE pattern,
respectively. The real ACE dataset is download from the
PJM company. We use two-years data set (which is about
1 million data records) for training and 1-month data set
for testing for each ACE pattern. The attacked patterns are
artificially made with different attack factors. From Fig. 9,
we can see the attacked ACE follows a certain pattern, and
the only difference is the translational displacement due to
the attacking factor.

B. SIMULATION RESULTS
In this section, we use the IEEE 39-bus system to verify the
pattern recognition method for coordinated attack identifi-
cation proposed in Section V.A. The single-line diagram is
shown in Fig. 10, and its specification can be found in [30].
This 39-bus system is a specific real 3-area system that
we used in the previous sections. In Fig. 10, there are 3,
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FIGURE 8. The ACE pattern of scale attack.

FIGURE 9. The ACE pattern of scale attack and ramp attack.

FIGURE 10. Single-line diagram of the IEEE 39-bus test system.

6, and 1 generator in Area 1, Area2, and Area3, respec-
tively, and the generator controlled by AGC is marked by
orange.

In the previous part of this section, we used real ACE data
from PJM to form the attacked ACE and then find out its
unique pattern. Here, although there is no real ACE data for
the IEEE 39-bus system, we can fabricate the normal ACE
data set resembled the real one. Without loss of generality,
we add some fluctuation, which is Gaussian distributed, to the
loads. Here, we consider the following scenarios to prove the
effectiveness of the proposed method.
Scenario 1:A coordinated attack comprised of scale attack

on tie-line 2-3, ramp attack on 5-8, and pulse attack on the
frequency of Area 3.

FIGURE 11. The attacked ACE pattern of Scenario 1.

FIGURE 12. The attacked ACE pattern of Scenario 2.

FIGURE 13. The attacked ACE pattern of Scenario 3.

FIGURE 14. The attacked ACE pattern of Scenario 4.

Scenario 2:A coordinated attack comprised of scale attack
on tie-line 17-27, ramp attack on 7-8, and pulse attack on the
frequency of Area 3.
Scenario 3:A coordinated attack comprised of scale attack

on tie-lines 1-2, 17-27, ramp attack on 7-8, 5-6, and pulse
attack on the frequency of Area 2 and Area 3.
Scenario 4:A coordinated attack comprised of scale attack

on all the tie-lines connecting Area1 and Area2, ramp attack
on all the tie-lines connecting Area 2 and Area 3, and pulse
attack on the frequency of all three areas.

For the first attack scenario, we illustrate the tendency of
two coordinated attacks in Scenario 1 by tilting the scale and
ramp factor. In Fig. 11, it shows that the tendency is not a
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periodic one. However, it can be used to forecast future ACEs
rather than a cycling pattern that can be used as a decisive
approach to determine whether there is a coordinated attack
or not. This forecast can be achieved by long-short memory
networks (LSMN) or other commonly used forecast methods.
Like Scenario 1, the tendency in Scenario 2 is not an obvious
repetitive one, though it may be found some pattern in the
long-time window (however, that would be meaningless).
Nevertheless, we can also use the LSMN to forecast the near
future ACE value. From Fig. 11-12, we have proved that
the ACE tendency of different coordinated attacks (due to
parameter tilting) is consistent, and different ACE trajectory
forms an ACE band.

The attacked ACE patterns for Scenario 3 and Scenario 4
are shown in Fig. 13 and Fig. 14, respectively. It shows
that the ACE patterns are periodic, and the cyclic period in
Scenario 3 and Scenario 4 is about 12s and 10s, respectively.
Because the TTE value of a coordinated attack is quite small
(3 AGC cycles), this cyclic period is ideal for identifying the
malicious yet stealthy attack. In Fig. 14, we depict four dif-
ferent coordinated attacks by adjusting the attack parameters.
All four attacks follow the same pattern. For practical usage,
the operator can use the historic ACE data for training to form
the pattern recognition function. Although this process is
time-consuming, it can be done offline. Then the 2 or 3 cycles
of newly input ACEs are used for the test. If the pattern of
the newly input ACEs fits the pattern, it can be regarded
as compromised. In this sense, this approach is quite fast
and efficient because it only needs 10-15 seconds to identify
the attack, and it has relatively high accuracy. The accuracy
indexes are shown in Table 4.

However, the mechanism behind the cyclic or acyclic ACE
pattern is unclear. From the four scenarios we have simulated,

TABLE 4. Accuracy indexes from the last two scenarios.

it can only be speculating that it has something to do with
the scale of the coordinated attack itself, i.e., the more single
attacks involved in a coordinated attack, the more likely the
pattern would be cyclic (we can see theACE pattern are cyclic
in Scenario 3 and Scenario 4). The correlation and rigorous
poof will be investigated in our future work.

VI. CONCLUSION
This paper studied the coordinated FDI attack in the AGC
system and proposed an artificial intelligence-based counter-
measure. Through a 3-area AGC system study, we proved
that the coordinated attack comprised of multiple single
attacks could be more harmful and stealthier than the original
one. The coordinated attack not only have much smaller
TTE value (nearly ten times smaller), its attack parame-
ters have much larger ranges. According to the character-
istic of the coordinated attack, we proposed a detection
method based on pattern recognition. Different from other
detection methods that mostly rely on the load forecast or
state estimation, the proposed approach is suitable to tackle
this complicated attack. Through the IEEE 39-bus system
test system, we proved that this method is effective and
efficient.

.

APPENDIX A
The control block diagram of the 3-area system
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APPENDIX B
Itineration of the scale attack process
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