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ABSTRACT The accurate detection of ice hockey players and teams during a game is crucial to the tracking
of individual players on the rink and team tactical decision making and is therefore becoming an important
task for coaches and other analysts. However, hockey is a fluid sport due to its complex situation and the
frequent substitutions by both teams, resulting in the players taking various postures during a game. Few
player detection models from basketball and soccer take these characteristics into account, especially for
team detection without prior annotations. Here, a two-phase cascaded convolutional neural network (CNN)
model is designed for the detection of individual ice hockey players, and the jersey color of the detected
players is extracted to further identify team affiliations. Our model filters most of the disturbing information,
such as the audience and sideline advertising bars, in Phase I and refines the detection of the targeted players
in Phase II, resulting in an accurate detection with a precision of 98.75% and a recall of 94.11% for individual
players and an average accuracy of 93.05% for team classificationwith a self-built dataset of collected images
from the 2018Winter Olympics. The results for the regular season games of the 2019-2020 National Hockey
League (NHL) covering all 31 teams are also presented to show the robustness of our model. Compared to
state-of-the-art approaches, our player detection model achieves the highest accuracy with the self-built
dataset.

INDEX TERMS Player detection, team detection, player tracking data, ice hockey.

I. INTRODUCTION
Ice hockey is a popular team sport in North America and
Northern Europe; it is described as a fluid sport [1], [2],
with players frequently substituting on and off the rink
without timeouts. Although hockey games are fascinating
to watch, the use of analytical approaches to assess player
performance is still at an early age due to the games’ low
scores [2] and complex dynamics [3], [4]. Evaluating the
performance of individual players and their contribution to
the overall performance of the team [5], [6] is a major
challenge in the field of sports analysis. Several metrics
have been proposed for performance analysis in different
team sports, e.g., ‘‘Expected-Point-Value’’ in basketball [7],
[8] and ‘‘Expected-Goal-Value’’ in soccer [9] and American
football [10]. In professional ice hockey leagues, such as the
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National Hockey League (NHL) in North America, winning
the final championship is the greatest honor and goal of all
players and teams. As a result, a number of natural concerns
arise, such as how to assemble a winning team with players
maximizing their capacity and how to design the most effec-
tive tactics after comparing different offensive and defensive
formats. The key factor to answer these questions is to take
advantage of enormous data.

As ice hockey is considered spatiotemporally complicated,
the most valuable data are trajectory tracking data, which
encode vital information on the actions and intentions of the
players [3] and could be analyzed in multiple ways, such as
visualization of player trajectories [11], heat map analyses
[12], event recognition [4], [12], [13] and performance assess-
ments [14], [15]. Many models use deep learning diagrams
to analyze player and team dynamics based on trajectory data
in different team sports. Le et al. [7] utilized deep imitation
learning to generate alternative strategies for defensive teams
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in soccer. Another group carried out similar work in the
same sport [16]. Miller and Bornn [17] analyzed National
Basketball Association (NBA) team strategies through prob-
abilistic theme modeling that captured the structure of player
trajectories. Wang et al. and Mehrasa et al. [3], [18] used
a convolutional neural network (CNN) to classify offensive
plays in basketball games, while Tian et al. [19] distinguished
defensive patterns through a number of machine learning
models based on team trajectory data.

One of the most essential steps in collecting trajectory
data is the detection of the targeted players. Although deep
learning approaches [20]–[26] have been widely applied in
the detection of objects, the detection of players is more
difficult because of complex game dynamics and the sparse
distribution of players, as seen from broadcasted videos.
A variety of player detection studies have been introduced
via nonintrusive methods. Lara et al. [27] used two calibrated
cameras to capture the location of individual tennis players
to assist in an auxiliary training medium. Lu et al. [28] and
Parisot and De Vleeschouwer [29] achieved player detection
from broadcasted images via a single calibrated camera.

However, despite numerous studies on trajectory tracking
models, few have focused on ice hockey. The main reason
is because traditional models fail to recover several common
characteristic features of ice hockey games, such as severe
occlusions and the large number of physical confrontations
between players [30]–[32]. In addition, due to their high
movement speeds and abrupt direction changes, ice hockey
players always produce body positions with stretched aspect
ratios. These features challenge the efficiency and accuracy
of the detection of individual players and teams, which is
regarded as the most vital component of analyzing trajectory
data.

In this paper, a two-phase cascaded CNN model is pro-
posed for individual ice hockey player detection during ice
hockey games. Phase I of the cascaded architecture roughly
detects the targeted players by filtering most of the disturbing
information, such as the audience and sideline advertising
bars, while Phase II incorporates detailed information such
as overlapping areas (occlusions) of body position caused
by individual player movements and the uniform colors of
the two different teams to further refine the results derived
from the outputs of Phase I. An image collection from
the 2018 Winter Olympics was constructed and divided into
training (4048 samples) and testing (1341 samples) datasets.
Then, the distribution of the aspect ratios of all players was
calculated from the training data to derive a suitable bounding
box using a deep learning framework to resolve the chal-
lenging situation when players exhibit a variety of postures.
Following player detection, the regions containing the uni-
forms of the detected players are cropped, and the features of
the distribution of the uniform color are represented through
five color channels that are preliminarily divided according
to the statistics of the uniform color features to recognize the
team affiliation. Since prior knowledge of the uniform color
features is obtained, the proposed method is able to classify

the team affiliations without the need for extra annotations in
the construction of the dataset.

The proposed method achieves high accuracy and recall
for both individual player and team detection with the test-
ing dataset. Meanwhile, the detection results for images
from the 2019-2020 NHL regular season games covering
all 31 teams also validate the robustness of our model.
A comparison with several state-of-the-art object detec-
tion methods validates the effectiveness of our model in
the detection of ice hockey players. Thus, our proposed
two-phase cascaded CNN model is particularly designed to
detect individual players and teams in ice hockey games,
with the goal of tracking personal trajectory data to eval-
uate player performance and recognizing team offensive
and defensive patterns to aid in decisive tactical decision
making.

II. RELATED WORK
In this section, work related to the proposed cascaded CNN
model for ice hockey player detection will be presented,
including that on player detection and cascade-structured
object detection.

A. PLAYER DETECTION
Player detection has gained great popularity as a specialized
form of object detection in the sports field in recent years.
The earliest methods used to achieve player detection were
mostly based on single-feature extraction and background
subtraction [33], [34]. For example, Liu et al. [33] combined
background subtraction based on the dominant color with a
Haar-like feature detector to obtain the locations of soccer
players. This kind of approach is commonly effective for
specific scenarios but vulnerable to complex backgrounds,
such as those in basketball and ice hockey. By contrast,
pedestrian detection algorithms applied to player detection
tasks performed more robustly for a variety of complicated
background noises and usually included feature selection
and classification [35]–[37]. Mackowiak et al. [36] applied
a histogram of oriented gradients (HOG)-based detector for
feature extraction and a support vector machine (SVM)
for classification to detect football players. Nevertheless,
pedestrian detection-based method performed poorly in the
rotation and stretching of objects. Following the substantial
development of deep learning technology for object detec-
tion [38], CNN models have been applied to player detec-
tion tasks because of their strong feature extraction ability.
Mrazova and Hrincar [39] proposed a CNN-based method to
detect players from broadcasted video streams and achieved
high precision with robustness to image transformation to
some extent. Sorano et al. [40] utilized YOLOv3 [41] to
detect football players and balls on the ground to accom-
plish further event recognition. CNN-based methods have
numerous advantages for feature extraction, and cascaded
CNNs are among the most effective algorithms for detecting
players.
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FIGURE 1. Architecture of the two-phase cascaded CNN model. The backbone network along with Phase I and II classification branches are encircled
by a gray, red and blue dotted line, respectively. The suffixes ‘‘B1’’, ‘‘B2’’ and ‘‘S1’’, ‘‘S2’’ mean the convolution and pooling layer of Phase I (B1 and S1)
or Phase II (B2 and S2) in both backbone network and classification phases, respectively.

B. CASCADE-STRUCTURED OBJECT DETECTION
Cascade architectures have been widely applied to multiple
computer vision tasks [42]–[45]. For example, Gao et al. [43]
proposed a cascaded boundary regression model to achieve
temporal action recognition, and Xie et al. [45] proposed a
cascaded scene classification method with a hybrid image
representation that performed commendably in scene recog-
nition and domain adaptation. Moreover, in the field of object
detection, especially for one-class detection purposes, the
hierarchical property of cascaded structures is beneficial to
filtering out vast numbers of background regions. One clas-
sical approach [46] was to construct a cascaded detector with
Haar-like features and Adaboost [47] for feature selection.
Based on this pioneering work, Zhang et al. [48] presented
the Multi-block Local Binary Pattern (MB-LBP) features
to replace the Haar-like features for more effective feature
extraction, which was inspiring in that better performance
could be achieved by producing more discriminative rep-
resentations and utilizing a cascaded architecture. Conse-
quently, Li et al. [49] proposed a cascaded CNN model
by integrating multiresolution stages to remove a majority
of false positive samples in earlier stages. Compared with
the abovementioned cascaded detector that utilizes assigned
features, the cascaded CNNmethod integrates a CNNmodule
for feature extraction to exclude redundant regions, enabling
it to describe the features of objects accurately and robustly.
Note that the cascaded CNN model was proposed above
to perform one-class, multiobject, and variable-scale face
detection, similar to the player detection task to some extent.
For player detection, Lu et al. [28] applied a cascaded CNN
model to basketball and soccer games to extract the players’
spatial location information. Considering the complexity of
ice hockey games, a cascaded CNN model was specifically
designed in this paper to obtain the positions of ice hockey
players.

III. MODEL FOR THE DETECTION OF ICE HOCKEY
PLAYERS AND TEAM AFFILIATIONS
A. TWO-PHASE CASCADED CNN MODEL FOR ICE
HOCKEY PLAYER DETECTION
Figure 1 shows the schematic diagram of our proposed two-
phase cascaded neural network topology, which is catego-
rized as two phases that branch from the backbone network:
Phase I in red and Phase II in blue. With learning based on
AlexNet [38] a rectified linear unit (ReLU) activation func-
tion and Dropout regularization [50], a very light architecture
with a parameter memory of only 20.88 KB was designed,
which is lightweight compared with the AlexNet model (the
parameter memory of the AlexNet model with for an input
image of size 224×224 is 238MB). As shown in Figure 1, the
two classification phases are trained separately. (1) To train
Phase I, annotated player patches are inputted to the backbone
network and processed with a convolution layer, Conv-B1,
consisting of 16 filters of size 3 × 3, which is then followed
by a ReLU activation layer to speed up the convergence of the
learning rate and prevent the optimized function from becom-
ing trapped in saddle points or local minima. Furthermore,
a pooling layer, Pool-B1, of size 3 × 3 is used to subsample
the output feature map from Conv-B1/ReLU to ensure the
extraction of the most informative local features based on
max-pooling criteria. Subsequently, the featuremaps from the
backbone network are compressed by layer Pool-S1 through
average pooling, which could further extract characteristic
features and smooth the feature maps. To avoid overfitting,
Pool-S1 is subsequently followed by another layer, Dropout,
that randomly drops units from the neural network.Moreover,
a convolution layer, Conv-S1, equipped with a ReLU activa-
tion function is applied to produce 1× 1 feature maps, which
are then processed by a Softmax layer to show the likelihood
that input patches will be recognized as a player. (2) The
training in Phase II follows almost the same procedures as
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Phase I, differing only in their inputs. Both targeted players
and false positive samples are misclassified as layers in the
results of Phase I; the latter are further trained as negative
training samples in Phase II to develop the ability to recognize
more difficult samples. Therefore, Phase II is particularly
capable of classifying confusing background areas of the
ground-truth players.

In both classification branches, a cross-entropy loss func-
tion that is commonly used in other deep learning frame-
works [3], [28], [51], [52] is applied to attune the weights
of the proposed model. The training set is denoted as S ={(
xi,j, yi,j

)}
, 1 ≤ i ≤ N , 1 ≤ j ≤ K with xi,j ∈ Rd

representing the feature map of the ith sample at the jth
cascaded phases and yi,j ∈ {0, 1 } standing for the binary label
accordingly. The probability of predicting a positive sample
is:

ppi = pi (yi = 1 |xi,w ) =
K∏
j=1

pi,j
(
yi,j = 1

∣∣xi,j,w) , (1)

where w are the weights of the model. Likewise, the proba-
bility of predicting a negative sample is:

pni = pi (yi = 0 |xi,w ) = 1−
K∏
j=1

pi,j
(
yi,j = 1

∣∣xi,j,w) , (2)

Therefore, the loss function is defined as:

LP (w) = −
N∑
i=1

[
yi log

(
ppi
)
+ (1− yi) log

(
pni
)]
. (3)

The proposed cascaded CNNmodel is trainedwith this loss
function Lp(w) using the stochastic gradient descent algo-
rithm, which yields the lowest probability of predicting false
positive samples, and targeted players or nonplayer elements
are accurately classified. Based on the size of our dataset, the
weights are updated over 37000 iterations, and the learning
rate is set to 0.001.

One of the distinct features of our two-phase cascaded
CNN model is that the two separate classification phases are
optimized as a unified block. The goal of Phase I is to recog-
nize the ground truth (usually annotated in the training set) as
positive samples and randomly select other elements as neg-
ative samples; thus, the rough outputs consist of both player
and nonplayer elements, while the false positive samples are
labeled negative samples during the training of Phase II.

The layered design is of great advantage for simplifying the
architecture over a conventional CNN and for adjusting the
design of each layer by observing the performance hierarchi-
cally. The first phase eliminates most nonplayer elements and
confirms the detection of players faithfully, and the second
phase focuses on complicated false positive samples, such as
the background of audience members and sideline cameras.

B. PARAMETER SETTINGS
Since ice hockey players exhibit different postures depending
on real-time team decisions, the bounding box for targeted

detection should be specifically adjusted in response to the
overall statistics of the players in the rink from the perspec-
tives of spatial scale and aspect ratio. Therefore, in addition
to model parameters, we determined two crucial physical
parameters related to the postures of the hockey players from
various games by analyzing the training set.

1) PARAMETER 1: THE SIZE OF THE INPUT IMAGE PATCHES
When setting the parameters, the size of the input image
patches is prioritized to obtain a suitable size for input image
patches, as the number of layers in the neural network will
increase exponentially for a large input image size, while
small patches are insufficient for extracting discriminative
features. Note that the aspect ratios of the ice hockey players
are more widely distributed than those of the players of other
popular team sports, such as basketball and soccer. During
ice hockey game broadcasts, the photographic distance of the
cameras is much closer to the ground than in soccer games,
which results in a variety of size differences for the different
players. Furthermore, due to the high player moving speeds
and the number of physical confrontations during ice hockey
games, a larger range of aspect ratios are presented than those
in broadcasted basketball games. The sizes of all players in
the training set were calculated, showing that the majority of
the players’ aspect ratios was equal to 1.65 (height/width).
Given the comprehensive design of the architecture, the size
of the input patches was determined to be 42× 25.

2) PARAMETER 2 ZOOMING SCALES OF THE ORIGINAL
IMAGE IN THE TESTING PROCEDURE
An adjusted sliding window strategy was implemented to
classify the image patches in the testing procedure. Due to the
filming angles and the locations of the broadcasting cameras
and the players’ locations in the rink, the sizes of the players
vary from image to image. For instance, players in the neutral
zone are larger than those in the defending or attacking zones.
As mentioned in Parameter 1, the size of the input image
patches was determined to be 42× 25 according to the statis-
tics of the aspect ratio. To detect players with diverse pixel
sizes, the input image patches should be cropped from the
original images by appropriate zooming scales to ensure that
the sizes of cropped players are approximately 42×25. Based
on the statistics of the player pixel sizes in our training set,
the zooming scales for the original images were determined
to be 30%, 40% and 50%, which covered most of the player
sizes. The confidence thresholds of the first phase for both the
training and testing procedures were set to 0.85 to ensure a
recall rate of 98% in order to exclude samples with particular
appearances from the training in the second phase, which
would be beneficial for the generalization of the proposed
model. Considering the diversity of players’ appearances, the
confidence threshold of Phase II was determined to be 0.6
to recognize players whose appearances were very different
from those of the training samples. Non-maximum suppres-
sion (NMS) is used after the detection portion of Phase I so
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TABLE 1. Reference criteria for the HSL values of the pixels.

FIGURE 2. Procedure of team classification. The uniform regions were cropped from the detected players that contained discriminate color feature of
uniforms, from which the contribution of essential color were extracted to determine the team affiliations.

that Phase II needs only to further recognize very small areas
of samples.

C. TEAM CLASSIFICATION BASED ON THE UNIFORM
COLOR FEATURE OF THE PREDICTIONS
To adaptively classify the teams to which the players belong
without requiring any additional dataset annotations, a simple
but effective inference-basedmethod is proposed based on the
outcome of the prediction. The most obvious feature for team
classification is the uniform color, which is notably different
between the home and away teams. Therefore, five essential
color channels for the ice hockey uniforms are integrated
by understanding the color features of the samples and by
calculating the color distribution of the region corresponding
to the uniform for the five pixel-by-pixel color channels to
determine the team affiliation.

After the targeted players are detected, images with
detected players are processed to extract the features of the
color distribution. Figure 2 shows the team classification pro-
cedure. First, the center areas of the predictions are cropped
to represent the discriminatory uniform regions, and then the
hue, saturation and lightness (HSL) values of the uniform
regions are extracted pixel by pixel. Second, all the pixels
in a uniform region are allocated into five essential color
channels (green, yellow, blue, red and white) according to the
HSL reference criteria, which are obtained by summarizing
the color features of the ice hockey player samples. The
reference criteria are shown in Table 1, where the lightness
and saturation values are on a scale of 0 to 1 and the hue
value is in the range of 0 to 360. Finally, the team affiliations

are determined by the channels that contain the maximum
proportions of pixels.

Let S =
{(
ck , qck

)}
, 1 ≤ k ≤ 5 denote the inter-

vals of the color distribution of a uniform region. ck =
{yellow, green, blue, red,white} is the color of the kth chan-
nel. qck ∈ N ∗ is the number of pixels in the kth channel.
According to the statistics on uniform color from 64 countries
of the International Ice Hockey Federation (IIHF), 87.5% of
the home team uniforms are white, which, compared with
the other colors, is vulnerable to misclassification from the
presence of a pattern on the uniform. To reduce the influence
of different uniform designs on white uniforms, the weight
of the white channel is increased by a weighted term λ. The
final result for team membership T is defined as:

T =

{
white, λqwhite ≥ qmax

cmax, otherwise
(4)

where qwhite is the number of pixels in the white channel, qmax
is the maximum number of pixels in the five channels, cmax is
the corresponding color of the channel with qmax, and λ is the
weighted term for the pixels in the white channel. If qwhite is
equal to or greater than qmax/λ, the final result will be white;
otherwise, it will be cmax. In our numerical experiments, λ is
set to 0.7.

IV. DATASET CONSTRUCTION FROM THE 2018 WINTER
OLYMPICS
Our dataset consisted of six broadcasted ice hockey games
from the 2018 Winter Olympics in PyeongChang, including
five men’s and one women’s games, namely, Russia (OAR)
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FIGURE 3. Statistics of dataset. (a) The distribution about the scales of players. Scales are defined as the ratio of height and width. (b) The
distribution about the heights of players with each number calculated as pixel values per player. (c) The total number of players per image.

vs Germany (GER), Canada (CAN) vs GER, Czech Repub-
lic (CZE) vs OAR, CAN vs The United States (USA),
Finland (FIN) vs OAR and Switzerland (SUI) vs Japan (JPN).
These videos were recorded by official pan-tilt-zoom broad-
cast cameras. Most of the highlights and playback scenes
were manually removed from our dataset, and some of the
close shots from cameras were also excluded to ensure that
the players of interest are well positioned in the video. Images
with a resolution of 1280 × 720 were extracted from these
game videos, where the locations of the players were man-
ually annotated in the form of {xbbox , ybbox , hbbox ,wbbox},
where xbbox and ybbox are the x-coordinate and y-coordinate,
respectively, of the left-top point of the bounding box, hbbox
andwbbox are the pixel values of the height and width, respec-
tively, of the bounding box. In addition, several statistical
analyses were conducted to visualize our dataset, as shown
in Figure 3.

Figures 3a and 3b show that both the aspect ratios and
heights are widely distributed, with nearly half of the aspect
ratios close to 1.65 and the height of the players ranging
from 80 pixels to 150 pixels. Additionally, the total number
of players in each image can be approximated by a Gaussian
distribution with amean value of six (Figure 3c). Note that the
main purpose of our proposed model is to detect individual
players and teams, which indicates that team uniform color
should be considered when segmenting the whole dataset.
Hence, the images from four games in which the team uni-
form colors greatly differ from each other are divided into
a training set (705 images with 4048 annotated players in
total) and a testing set (212 images with 1341 annotated
players in total). The parameters of the self-built dataset from
the 2018 Winter Olympics are summarized in Table 2.

V. EXPERIMENTAL RESULTS
In this section, numerical experiments on the self-built dataset
from the 2018 Winter Olympics in PyeongChang were con-
ducted to validate our proposed two-phase cascaded CNN
model for the detection of individual players and teams. Fur-
thermore, the proposed model was applied to the broadcasted
videos of the 2019-20 NHL regular season games covering

TABLE 2. Parameters of the self-built dataset from the 2018 Winter
Olympics.

all 31 teams (source from https://v.qq.com/) to verify the
robustness of themodel. After that, ourmethodwas compared
with a baseline and several state-of-the-art object detection
algorithms. For a statistical analysis of all the experimental
results, an intersection over union (IOU) threshold of 0.3 was
chosen. Different from conventional object detection (0.7 for
Faster R-CNN [53], 0.5 for SSD [54] and YOLOv3 [41]),
ice hockey players moving at high speed result in seriously
stretched aspect ratios and blurred limbs, which makes the
predicted boxes unable to cover the entirety of the player
regions the way that the ground-truth boxes do. Thus, a lower
IOU threshold was selected to ensure the integrity of the
statistics.

A. DETECTION OF INDIVIDUAL PLAYERS AND TEAM
AFFILIATIONS FOR THE SELF-BUILT DATASET FROM
THE 2018 WINTER OLYMPICS
In silico experiments were performed with our model to
detect individual players from four games, namely, GRE vs
OAR, CZE vsOAR, FIN vsOAR, and CANvsUSA. The first
row in Figure 4 represents Phase I of the detection algorithm,
with green bounding boxes indicating the outputs from the
first branch of the classification. As the figure shows, mis-
classifications occur when the player images are in a complex
context, such as mixed with the audience (for example, see
FIN vs OAR and CAN vs USA), or when the backgrounds are
complicated; e.g., stripes appearing on the sideline advertis-
ing bars could easily be recognized as player jersey numbers
(for example, see GER vs OAR and CZE vs OAR). How-
ever, these misclassifications disappear in Phase II because,
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FIGURE 4. Performance of player detection in two classification phases.

FIGURE 5. Detection of teams. The colored bounding boxes indicate the inferred teams suggested by the model.

TABLE 3. Performance in the detection of individual players.

as the true positive samples, the targeted players have larger
confidence scores than the false positive samples. Hence, the
second branch of classification accurately selects all false
positive samples.

The performance of our two-phase cascaded CNN model
was evaluated according to precision, recall and F-score,
which are shown in Table 3. Across all the selected games,
the average precision and recall reach 0.9875 and 0.9411,
respectively. Since our model is capable of detecting players
in blurred images and recognizing players with various body
positions, the model was thus able to achieve a high recall
in the testing set. The F-scores for all four games exceed
95%, demonstrating the robustness and effectiveness of our
individual player detection.

The validation of our model for team detection is fur-
ther verified by exploring team classification based on the
color information from the jerseys. Table 4 summarizes the
evaluation of the team classification, where GT stands for
the ground truth and INF stands for the inferred teams pre-
dicted by our model, comprising team A (TA) and team B
(TB). OTHER means that the predicted results belong to a
third category, for instance, a referee or misclassified teams.

The results in Table 3 indicate that our approach attains an
average accuracy of 93.05% for team detection. Figure 5
presents several team classification examples for the four
different uniform components.

B. DETECTION OF INDIVIDUAL PLAYERS AND TEAM
AFFILIATIONS FOR THE SELF-BUILT DATASET FROM
2019-2020 NHL REGULAR SEASON GAMES
The NHL is the most popular ice hockey league in North
America and includes 31 teams, with each team scheduled
for 82 games during the regular season. Due to the high
impact and high-level competence of the NHL, the vast
amount of data from the games are worth exploring to develop
winning tactics and improve player performance. Therefore,
another image set was built that contains the newest 39 games
from the 2019-20 season that cover all 31 teams in the league
to verify the robustness of the two-phase cascaded CNN
model. Since individual players and teams are well detected
according to Figure 4 and Figure 5, the main purpose here is
to test the ability of our method to detect more challenging
samples.
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TABLE 4. Performance in team classification.

FIGURE 6. Hue value statistics of 31 NHL teams’ uniforms.

To understand the diversity of player appearances from
the 31 NHL teams, first, the color components of the home
and away uniforms of all NHL teams were calculated (source
from nhluniforms.com), and the results are shown in Figure 6.
Then, the mean hue (the attribute of color that enables an
observer to classify it as red, green, blue, purple, etc., and
excludes white, black, and shades of gray) values of the
different uniforms was extracted and normalized to a range
of 0 to 1 to preliminarily describe the major color compo-
nent, or essential color, of the uniform. Nonetheless, note
that the uniforms of the Los Angeles Kings and Detroit
Red Wings are exceptions since the hue values of their
essential colors equal zero (the major color components are
black for Kings and red for Red Wings); thus, the corre-
sponding bars are colored in black and red, respectively,
in Figure 6.

In addition, 12 sample images were selected in which
all 31 teams appeared, and a video of approximately

10 seconds, consisting of 287 frames, was used to observe
if our method was still effective. Figure 7 shows the detec-
tion result for 24 sample images where most players were
accurately classified into their correct teams. However, some
samples were misclassified because the illumination condi-
tions in the stadiums and the positions of the cameras are
different for each team. Additionally, the tempo of an NHL
games is quicker than that of one of the Winter Olympic
Games, resulting in severe overlap between players and large
numbers of physical collisions, which worsen the detection
accuracy for both individual players and team classification.
In general, the proposed method performs well in detecting
individual players and determining the team to which they
belong within the NHL image set, which motivated us to
apply our method to a continuous image sequence to validate
the potential for tracking players. A broadcasted video of the
Pittsburgh Penguins vs the Anaheim Ducks in the 2019-2020
season is illustrated as an example (see supplementary mate-
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FIGURE 7. Detection of individual players and teams simultaneously from NHL matches.

rial). This video exhibits a power play from the Pittsburgh
Penguins that ends with a goal, which is a characteristic
offensive pattern that occurs in most ice hockey games. This
video is therefore useful for coaches to further devise tactical
decisions that weigh the pros and cons of the positions of
the players in the offensive team and of the defensive pat-
terns of the opposing team. The results for this continuous
image sequence show that our method is able to form a
solid foundation for extracting ice hockey player tracking
data.

C. COMPARISON EXPERIMENTS FOR THE SELF-BUILT
DATASET FROM THE 2018 WINTER OLYMPICS
The size of the input image patches (Parameter 1 in 2.2) was
adjusted based on the statistics of the dataset to make our
model suitable to detect ice hockey players. To evaluate the
benefit of the adjustment of Parameter 1, our method was
compared with a baseline model with an input size of 40×18,
which is closer to the aspect ratio of pedestrians and soccer
and basketball players. The results are presented in Table 5.
The precision of our method shows significant improvements
over the baseline, confirming that adjusting the size of the
input patches is beneficial for extracting the features of the
players, especially for our shallow architecture. The recall is

slightly lower in our method, as the parameter was adjusted
to match the average size of player samples, which to some
extent weakens the generalizability for uncommon sizes.
Overall, the adjustment of Parameter 1 improves the perfor-
mance of our method over the baseline in terms of both the
F-score and the area under the curve (AUC) value. In addition,
several state-of-the-art object detection methods were com-
pared with our method: YOLOv3 [41], Faster R-CNN [53]
(vgg16, res101) and CornerNet [55]. YOLOv3 is an efficient
one-stage method for object detection, Faster R-CNN is a
CNN-based method and CornerNet is an anchor-free object
detection algorithm.

Experiments were conducted using the self-built Winter
Olympics ice hockey dataset, and the results are shown in
Table 6, based on calculations with a confidence score thresh-
old of 0.6. Our method achieves the best overall performance
with the highest F-score and outperforms all of the state-of-
the-art methods in terms of precision. The recall is much
better than that of YOLOv3 and close to the highest value,
achieved by the Faster R-CNN-vgg16 method. For the self-
built dataset, YOLOv3 performs very well in terms of pre-
cision, and the Faster R-CNN methods can expertly recall
more players. Our method yields competitive results in both
precision and recall, and it outperforms YOLOv3 and the
Faster R-CNN methods overall. The performance from the
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TABLE 5. Comparison of performances between our method and the baseline.

TABLE 6. Comparison of the performances of our method and state-of-the-art algorithms.

FIGURE 8. ROC curves of the methods. The AUC values are presented in
the legend.

CornerNet method is unsatisfactory in the detection of ice
hockey players, as the applied bottom-up design detects a
top-left corner set and a bottom-up corner set at first and then
groups the corner pairs by calculating the distances between
the corresponding embedding vectors, which possibly leads
to poor sensitivity in recognizing similar-appearing samples
from a single class.

Figure 8 shows the receiver operating characteristic (ROC)
curves and AUC values for all methods. Our method (blue
line) outperforms YOLOv3 and CornerNet with obvious
advantages but underperforms with respect to the Faster
R-CNNs. As a result of not setting the threshold of the
confidence score for our method and YOLOv3, the levels
of detection for low confidence scores were close to those
for the true positives, which therefore might be considered
positive samples, leading to a lower AUC value. On the other
hand, the low-score detections of the Faster R-CNN methods
were more likely to appear in the background, resulting in a
better performance. However, our method is still competitive
in terms of AUC value.

VI. DISCUSSION
Accurate detection of the players in ice hockey games is
crucial for improving player performance and team tactical
decision making and is therefore urgently needed for coaches
and other analysts. In this paper, a two-phase cascaded CNN
model was proposed to detect individual players labeled with
team affiliations on a self-built dataset from the 2018 Winter
Olympics in PyeongChang. The precision and recall for indi-
vidual player detection in the ice hockey games in the Winter
Olympics dataset were 98.75% and 94.11%, respectively,
while the average accuracy of the team classification reached
93.05%. Our model was also applied to the dataset containing
2019-20 NHL regular season games covering all teams in
the league, in which our model accomplished the concurrent
detection of players and their team affiliations from image
and video inputs.

Our model is designed in particular for player tracking
data collection in ice hockey and is capable of dealing with
some characteristic video and image features, for example,
attaining high detection accuracy with fuzzy images. In addi-
tion, the main architecture of the proposed deep learning
network is effective and straightforward, as the two phases
in the network subtly establish different confidence scores
for the targeted players and other noninformative contexts,
which avoids the need to update parameters redundantly
and repetitively. Nevertheless, some further improvements
have to must be implemented in future studies, such as the
recognition of players with extremely stretched aspect ratios
and precise team classification when players are in physical
contact. The currentmodel is potentially capable of extracting
players’ tracking data for other group sports similar to ice
hockey, such as rugby and handball. In addition, the proposed
player detection model can be applied to player annotation
and event recognition in broadcasted video. Additionally, it is
worth noting that the trajectories of the players can be recon-
structed so that the locations and movements of players can
be visualized temporally (Figure 9). Advanced game statistics
could be extracted by developing our current models, which
will shed light on insightful analyses and predictions in ice
hockey.
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FIGURE 9. Envisioned frameworks for tracking data analysis in ice hockey. Steps on solid line are completed while Step 4 to 6 on the
dashed line constitute future work.
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