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ABSTRACT The usage of transportation systems is inevitable; any assistance module which can catalyze
the flow involved in transportation systems, parallelly improving the reliability of processes involved is
a boon for day-to-day human lives. This paper introduces a novel, cost-effective, and highly responsive
Post-active Driving Assistance System, which is "Adaptive-Mask-Modelling Driving Assistance System"
with intuitive wide field-of-view modeling architecture. The proposed system is a vision-based approach,
which processes a panoramic-front view (stitched from temporal synchronous left, right stereo camera
feed) & simple monocular-rear view to generate robust & reliable proximity triggers along with co-relative
navigation suggestions. The proposed system generates robust objects, adaptive field-of-view masks using
FRCNN+Resnet-101_FPN, DSED neural-networks, and are later processed and mutually analyzed at
respective stages to trigger proximity alerts and frame reliable navigation suggestions. The proposed DSED
network is an Encoder-Decoder-Convolutional-Neural-Network to estimate lane-offset parameters which are
responsible for adaptive modeling of field-of-view range (1570-2100) during live inference. Proposed stages,
deep-neural-networks, and implemented algorithms, modules are state-of-the-art and achieved outstanding
performance with minimal loss(L{p, t}, Lδ , LTotal) values during benchmarking analysis on our custom-
built, KITTI, MS-COCO, Pascal-VOC, Make-3D datasets. The proposed assistance-system is tested on
our custom-built, multiple public datasets to generalize its reliability and robustness under multiple wild
conditions, input traffic scenarios & locations.

INDEX TERMS Adaptive field of view modeling, automotive applications, driving assistance systems, lane
detection and analysis, object detection and tracking, spatial auto-correlation.

I. INTRODUCTION
Transportation plays an indispensable role in individual and
social welfare, the economy, and quality of life. Society pays
monetary (purchase, Functional, and maintenance) costs,
social and environmental costs (noise pollution and traffic
jams), penalties on detrimental traffic accidents, etc.

Recent studies from the World Health Organization indi-
cate that 1.25 million deaths occur every year due to road
traffic accidents.1 Moreover, such accidents resulted in a

The associate editor coordinating the review of this manuscript and

approving it for publication was Aysegul Ucar .
1Refer to ‘‘https://www.who.int/violence_injury_prevention/road_safety_

status/2015/en/’’

global cost of ∼US$518 billion per year, which results in
a decline of ∼1-2% gross domestic product from all of the
countries in the world2 [1]. Dynamic visual environmental
analysis and understanding are key [2] requirements for any
autonomous-mobile systems. The tracking and recognition
of traffic participants (pedestrians, cars, bicyclists [3]–[7],
etc) which are in proximity plays a crucial role in the safe
maneuvering of self-governed autonomous [8] vehicles. Sen-
sors, such as radar and LIDAR [9]–[11], have also been
used for detection & tracking purposes, using sensor data
fusion [9], [10] approaches. An obstacle, lane detection [12]
& tracking with Field of view spatial analysis are key

2Refer to "https://www.asirt.org/safe-travel/road-safety-facts/"

198748 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-9392-7264
https://orcid.org/0000-0002-5253-3779


V. S. Desanamukula et al.: AMMDAS: Multi-Modular Generative Masks Processing Architecture

functions of advanced driver-assistance systems (ADAS [8]).
In the context of driver-assistance systems [2], the purpose of
obstacle-detection and tracking systems [3], [9], [13]–[15]
is to detect and monitor & analyze the dynamic-behavior
of one or more obstacles in the proximity of the host vehi-
cle. The role of lane detection [12] and road spatial analy-
sis [14], [16], [17], is to analyze and make decisions based on
dynamic surroundings for safer navigation. These modules
play a predominant role to dynamically process the DAS sys-
tems [2], [8] into the surrounding environment. The objective
of driving-monitoring and assistance systems (DMAS [2])
is to keep an observation on a driver’s driving-status and
to provide needful assistance for safe and reliable driving.
Such systems help drivers by reinforcing sensing power,
providing inputs to aid better decision-making. Depending
on their features & functionalities, there are numerous names
for autonomous systems such as intelligent-vehicle control
systems, advanced driver-assistance systems [8], collision
avoidance systems [10], [11], driver’s inattention monitoring
systems, etc. Therefore, the usage of ADAS [8], DMAS,
DAS [2] can aid to avoid potential crashes and to pro-
vide the required information for decision-making. Reliable
modules for detection and tracking in general ADAS [8],
DAS for real-time situations in wild environments have
been a challenge from the last 2 decades, predominantly
recognizing various classes of objects, their spatio-temporal
variance, and their state’s approximation from noisy
observations & findings at discrete intervals of time. In some
cases driver’s voluntary behaviors, such as eating, drinking,
smoking, or answering a call, etc, are reasons for accidents
and road-crashes [1]; drivers may be less likely to engage in
these types of behaviors when driving task demands are high,
for example, when negotiating a busy intersection, driving in
poor visibility, or on a busy multi-lane roadway [18]. From
the above discussed factors and reasons safety in automobile
systems has been a vital concern since the early days of
on-road vehicles to avoid them. Several original-equipment-
manufacturers (OEMs) have attempted to solve this issue
by developing numerous safety systems [2], [8] (ADAS,
DMAS, DAS, accident alerting systems, etc.) to safeguard
the occupants simultaneously avoiding collateral damage to
external surroundings of the vehicle. Generally, these systems
are mainly classified into two types: i) reactive and ii) proac-
tive. Passive safety systems protect vehicle occupants from
injuries after a crash, e.g., seat belts, airbags & accident alert
systems & fatigue prevention systems, etc. Active systems
include lane-keeping and automatic braking [6], [7], [19],
Proximity alert [10], [11] systems etc.

In recent years, many vision-only based methodologies
have been proposed for their versatility in usage, information
they can provide, and their cost efficiency. In these methods,
some learning-based approaches only focus on the tracking
and detection of specific obstacles [3], [4], [11] (pedestrians
and vehicles) and to keep a track on their respective surround-
ings within the field of view; while motion based methods
can detect objects which are in motion [5] and analyze their

optical flows [3], [9], [10], [13] in real-time environments.
Modern-day robust ADAS are key and under-structure tech-
nologies in building reliable autonomous vehicles [8], but
several challenges with the design, implementation, and func-
tioning of ADAS andDAS remain yet to be overcome [2], [8].
Some of these challenges include optimizing energy utiliza-
tion, Cost efficiency, achieving minimal response latency,
dynamic adjustment based on weather conditions, and secu-
rity of the overall system. Moreover, current DAS/assistance
systems pertain only for proximity alerting (i.e tracking and
detecting objects on-road and alerting the user in case of
proximity). So in this paper, the proposed DAS solves the
challenges faced (mentioned in section 2, Fig. 25) by current
driving assistant systems, by introducing an ‘‘adaptive mask
modeling strategy’’, where the generated adaptive masks are
modeled based on the external dynamic field of view and
surrounding traffic flow. The proposed system(AMMDAS)
is purely a vision-based approach and is completely built
on real-time computational modules using deep neural net-
works & computer vision techniques. This proposed system
eliminates the usage of extra sensors, and considers input
only through stereo camera feed (front left-right∼1650& rear
∼650 of vehicle and the overall FOV covered by our input
feed is∼2300), thereby reducing cost, processing power, and
response latency. The proposed system follows a multi-stage
methodology where each stage is individually built and,
the built modules are concurrently executed according to
Fig. 3 proposed pipeline to generate and process adaptive
masks during inference time to output final proximity alerts
along with corresponding robust navigation suggestions to
the end-user.

Each stage implemented in this paper plays a significant
role in generating end-user’s navigation suggestions (Fig. 2)
by stitching a panoramic image (Fig. 1(b)), detecting objects
in the feed (Fig. 7), adaptively modifying FOVs, and generat-
ing l, c, r-masks (Fig. 12), processing intermediate results +
calculated parameters and framing proximity alerts along
with corresponding logical suggestions, and generation of
dense depth maps (Fig. 15). Here adaptiveness refers to the
capability of the currently proposed system to dynamically
change and adjust the reach of FOV according to the external
environment3 of the host. We initially construct a 1650 wide
panoramic view from input stereo feed, so that any decision
& alerts made will be based on a complete broad view under-
standing of scenes in their surroundings (Fig. 1). This front
view’s constructed panoramic video frames and concurrent
frames from the rear view’s video feed are simultaneously
passed to anOMMmodule and aD.F.O.V.Mmodule to gener-
ate object masks (Fig. 7) and adaptive left, center, right-field
of view (FOV) masks (Fig. 12) based on surrounding objects,
vehicles, lanes respectively for each view. These generated

3Environment in this proposed paper refers to the external situations
present outside of the host vehicle, here external situations refers to the
conditions and orientations of live on-road lanes, objects/vehicles and other
necessary factors which should be considered to ensure a safer navigation to
the end-user.
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FIGURE 1. (a) Red lines indicate the FOV range outliers covered by our module. Front view covers ∼165o by
stitching a panoramic image from stereo input, and rear-view covers ∼650, so the overall FOV coverage is around
2300. (b) represents the entire 1650 field of view covered by our proposed system; and the regions highlighted in
red are additional fields of view covered by our module due to panoramic stitching, the highlighted FOVs are
generally omitted by any DAS method when they input feed via regular mono or stereo visions; this case happens
with majority of the existing DAS systems, which might also correspondingly increase the DAS’s sensitivity towards
FP and FN cases.

FIGURE 2. (a) consists of input left/right images. (b) Is the final output generated by the proposed DAS
which consists of proximity alerts along with corresponding navigation suggestions(**Danger!
slow-down!! 2-wheeler in left** —>Better to be towards center Alert!! 2-wheeler in center Alert!!
2-wheeler in right). Refer to Figure 22, Figure 24, Table 4, Table 5 for more results on live traffic data.

adaptive masks are then post-processed for road spatial anal-
ysis based on their surrounding environments within the field
of view range (θ0FOV ) (13) to calculate proximity triggers and
essential parameters required for framing robust navigation
suggestions (refer to Tables 4 and 5 for sample results).
Here in this proposed system, dense depth maps on input
monocular 1650 panoramic images are generated only during
special cases (if all the l, c, r-FOVs in the host’s front-view
are blocked), The generated depth map is then processed to
estimate essential parameters for framing precise navigation
suggestions even in the above ambiguous states. Based on
the above calculated object-proximity values/triggers, param-
eters & values of both front-rear views, final proximity alerts
along with corresponding navigation suggestions are framed
for the end user to ensure safer driving. The framed alerts,
suggestions are shown to the user by displaying output on
screens (used in this paper), through voice assistants, prede-
fined vibrations, and FPGA probe signals [7], [6], etc.

The research in our proposed method contributes to the
existing literature, and serves to the technology of driving
assistance systems and autonomous systems by proposing
novel AMMDAS. The presented research contribution has
thoroughly surveyed many existing DAS trends and has iden-
tified several disadvantages and feature incapacities among
them, to tackle those disadvantages we have brainstormed
for various implementation features and have introduced
several novel architectures & methods. Based on these fea-
tures, architectures & methods, the proposed research work
(‘‘AMMDAS’’) is framed and presented. The novelties &
contributions of this proposed research are:

• We have proposed a novel adaptive mask generation &
processing architecture for designing explicit proximity
alerts and corresponding navigation suggestions.

• A novel pipeline is proposed which consumes homo-
geneous left, right stereo feed parallelly to generate an
overall intuitive wide view for advanced driving analysis
& assistance.

• We have proposed an extensive multi-threaded mutual
analysis operation for 2300 ultra-wide FOV analysis on
combined left, center, right & rear field-of-views.

• We have introduced a new custom-built,4 live traffic
dataset (‘‘Left, right synchronously stereo paired Indian
on-road traffic dataset’’), which will be open-sourced in
the future. The proposed method requires an ensemble
of a custom-built dataset, and multiple public datasets
(MS_COCO, PASCAL-VOC, CU-Lane, KITTI) for
training, validation, and testing of our proposedmethods
and architectures.

• We have proposed a novel encoder-decoder CNN (i.e
D.S.E.D network) for advanced lane-modeling, along
with corresponding custom-built loss functions.

• The proposed D.S.E.D network is an ensemble of 2 sep-
arate mini-ED & main-ED networks.

• The proposed mini-ED is used for a deep pre-processing
mechanism, and the main-ED is used for external lane &
FOV segmentation and analysis.

4Our custom built dataset ‘‘Left,right synchronously stereo paired Indian
on-road traffic dataset’’ is liscenced and is subjected to no-objection during
capturing under govt. permission and regulatory.
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• An adaptive polygon modeling strategy for deep FOV
analysis is introduced in D.F.O.V.M.

• An extra supportive depth-map analysis sub-module is
proposed, to automatically handle uncertain ambiguous
traffic conditions.

• This research has proved its effectiveness and supe-
riority of our proposed AMMDAS, by evaluating its
performance under multiple test wild case scenarios
(section 5). Moreover, a series of qualitative and quan-
titative benchmarking analysis was performed on each
internal sub-module and proposed method/architecture
with other alternative state-of-the-art models.

The rest of the paper describes, illustrates, and evaluates
the previously mentioned novel methods and research con-
tributions. Section 3 describes our thorough research anal-
ysis performed on other existing alternative DAS systems.
Section 4 details about our proposed research’s methodology
(in a stage/sub-module wise description). Section 5 demon-
strates our proposed AMMDAS performance on live traffic
conditions (including several wild case scenarios), more-
over, section-5 also contains a detailed benchmarking anal-
ysis on each of our proposed methods & sub-modules.
Section 6 includes the limitations faced by our proposed
method and our future to overcome these limitations.
Section 7 concludes our proposed AMMDAS’s research
work.

II. ABBREVIATIONS & ACRONYMS
ADAS: ‘‘Advanced driving assistance systems’’;
AMM-DAS: ‘‘Adaptive Mask Modeling Driving assistance
system’’; BOL: ‘‘Bitwise-AND object lane’’. 2D-Conv:
‘‘2-Dimensional Convolution operation’’; 2D-De-Conv:
‘‘2-Dimensional De-Convolution’’; D.F.O.V.M: ‘‘Dynamic
Field of View Modeling’’; DSED: ‘‘Dual Sequential encoder
decoder’’; DMAS: ‘‘Driver management assistance system’’;
DNN: ‘‘Deep neural networks’’; DSSD: ‘‘De-Convolutional
SSD’’; ED: ‘‘Encoder-Decoder’’ networks; FOV: ‘‘Field
of View’’; FPN: ‘‘Feature pyramid network’’; FP: ‘‘False
positive’’; FL: ‘‘Feature Layer’’; FN: ‘‘False negative’’; K:
‘‘==l or r or c(represents a specific side of FOV)’’; FM:
‘‘Feature Map’’; l: ‘‘left’’; c: ‘‘center’’; r: ‘‘right’’; l, c,
r: ‘‘left, center, right’’; OMM: ‘‘Object Mask Modeling’’;
PDF: ‘‘Probability Distribution Function’’; POI: ‘‘person of
interest’’; ROI: ‘‘region of interest’’; R,G,B: ‘‘Red, Green,
Blue’’; HSV: ‘‘Hue, Saturation, Value’’. RPN: ‘‘Region Pro-
posal Network’’; SRV: ‘‘spatial relief value’’; SSD: ‘‘Single
Shot Detector’’; SVD: ‘‘Singular value decomposition’’; TP:
‘‘True Positive’’; TN: ‘‘True Negative’’; YOLO: ‘‘You Only
Look Once’’.

III. RELATED WORK
Current DAS systems use simple camera vision [4]–[7], [13],
[15], [16], [18], based approaches or use multiple sen-
sors like radars, LIDARs, high frequency GPS, proxim-
ity sensors etc [9]–[11]. There are methods & papers
which utilized the above mentioned hardware on bottom

bases and have shown some significant contribution towards
DAS systems. Some methods take the input feed and
process either in 2D [3]–[5], [7], [13], [16], 3D point
cloud [6], [11], [14], [17], [18] format or in dense disparity
depth maps each of the methods implemented show both
advantage & spike in productivity along with disadvantages
& increased production costs for their respective implemen-
tations. Moreover, some methods concentrate only on object
flow [3], [4], [9], [13] and behavior analysis, some are biased
towards a specific class [3], [4], [11] to identify proximity,
and many methods analyze the correlation and occurrence
between the objects present in FOV with respect to host
source using 2D/3D image processing, disparity map pro-
cessing techniques and some by implementing DNNs. Here
H. G. Jung et.al [6], proposed a stereo vision-based obstacle
detection and distance measurement method. By introduc-
ing traveling lane-based ROI establishment, peak detection
by threshold-line, and edge feature correlation based veri-
fication, they were able to overcome the problems of the
previous disparity histogram-based method and extend their
applications to highway collision warning. Their paper had
less FP, FN cases compared to their competitive papers. How-
ever, that performance gain required additional computation
load. They were able to verify the improvement of dispar-
ity histogram-based obstacle detection by implementing a
basic lane detection method; generally to create practical
applications advanced lane detection methods are required
(section 4.C). Furthermore, commercialization requires the
FPGA implementation [6], [7], [18] of a core algorithm such
as stereo matching, edge-feature correlation, and disparity
histogram generation. This research work did not concentrate
on identifying the type of Objects which are in proximity
and their detection results showed sensitivity towards wild
conditions (i.e improper lighting conditions (Fig. 24(d), (i)),
shadows (Fig. 24(a), (j)), etc.). In Quin Long et.al. [14],
Proposed a new methodology for identifying small objects
in the roadway based on stereo vision. They used a multi
path viterbi algorithm to obtain dense depth data of stereo
images. From the generated depth information, the highway
or roadway surface can be detected. Objects on the road
can be mapped to the 3D space to determine their size and
location. It can generate denser results, lower error rate, and
faster speed compared to the native stereo matching algo-
rithms which are widely used in intelligent vehicles’ soci-
ety. Besides, the developed research work did not consider
broader and generalized FOV for spatial analysis and didn’t
frame any suggestions, this paper mainly has concentrated on
detecting small objects which are in immediate proximity to
the subject.

Work in Josip Cesic et.al. [9], proposed/addresses track-
ing & Detection of objects in motion within the context of
ADAS [8]. They used a multi sensor setup consisting of radar
and a stereo camera mounted on the vehicle’s roof. They
proposed to model the sensor’s ambiguity in polar coordi-
nates on Lie-Groups and apply the object’s state filtering on
Lie groups. To solve the multi target tracking issues, they
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used a joint integrated probabilistic-data-association filter
and presented necessary modifications to use on Lie groups.
The proposedmethodwas tested in live real-world data which
was collected based on the above describedmulti sensor setup
in urban traffic scenarios. The Limitation of this paper is that
it mainly focuses on object detection and motion tracking,
but does not concentrate on lane analysis and road spatial
analysis to frame alerts and suggestions. The FPS achieved
by this method is low to be in live. On the other hand
S.Decker et.al. [10], Proposed amethodology based on fitting
the model of a vehicle contour to both stereo depth image and
radar readings by Concerning radar and stereo vision inte-
gration. First, the algorithm fits a contour from stereo depth
information and finds the closest point to the contour with
respect to the vision sensor. Second, it calculates the closest
point of the radar’s observation and fuses both radars, vision’s
nearest points. By translating the initially fitted contour to
the fused the closest point, the resulting contour is located
and obtained. Over and above this experiment has very
restricted FOV for proximity alerts and the proposed algo-
rithm is the best suitable for stationary vehicles with a pre-
defined object flow and overall cost involved is more. As in
Alberto Broggi et.al. [18], presented an Obstacle detection
system and was successfully employed during VIAC (VisLab
Intercontinental Autonomous Challenge), effectively negoti-
ating a wide variety of scenarios. This approach was proven
effective even in the presence of steep climbs and off-road
areas. At the end of the expedition the algorithm has been
further enhanced by the introduction of a high performance
SGM implementation for the depth mapping stage. Calibra-
tion still remains a critical issue. To get good performance on
obstacle-segmentation, the optical flow could be employed
and an efficient implementation needs to be found in order
to maintain processing time under control even on conven-
tional hardware. This research [18] work includes a few
problems: this method doesn’t propose driving suggestions
for safer navigation and does not consider surrounding the
complete front, rear, left, right FOV and this method might
fail to detect miniature & lower-scale objects in proximity
and moreover it requires a higher configuration hardware
setup. A.Howard et.al. [11] describes an integrated system
for real-time detection and tracking of pedestrians [4] from
a moving object. This paper used stereo vision as the primary
sensor, and showed that this sensor has numerous practical
advantages compared to monocular vision. These include the
capacity to quickly identify ROI in an image, classify identi-
fied regions based on shape, and track detected pedestrians
in 3D-real world coordinates. This system can also utilize
monocular appearance based algorithms, using regions-of-
interest with known scale to increase speed and reliability.
Finally, stereo vision permits the creation of fast algorithms
to detect independent motion in a scene. Compared with
radar & LIDAR, the main weakness of stereo vision is its
relatively poor range resolution. Moreover, this experiment
is restricted to pedestrian analysis. Bihao Wang, et.al. [15],
proposed an on-road object detection system and a strategy

in obstacle extraction from U-disparity. Then, a modified
particle filtering is suggested for multiple object tracking.
Besides, multiple cues, such as obstacle’s size verification
and combination of redundant detections, are merged into the
system to improve its accuracy. This experimental findings
demonstrate that the proposed system is effective and reliable
when applied to other multiple traffic video sequences from
a public database. Nevertheless, the use of 2D coordinates
has a certain limit for further localization and tracking of the
obstacles and lane [12], FOVmodeling isn’t performed so this
paper’s method might fail and trigger false alarms to objects
which aren’t really in proximity when tested in curved roads.

The above discussed papers show sensitivity towards wild,
noisy conditions, and do not consider a wide field of view
([3], [5]–[7], [9], [13]–[16]). Either in some papers, the input
is a stereo feed where they merge the feed for their imple-
mented algorithm to process (to create disparity or depth
maps etc) [3], [5]–[7], [11], [15], [16], [18], by considering
a single camera or stereo merged feed we can not capture
the entire spatial surrounding in a single epoch for the algo-
rithm to process. This may lead to feature incapacity when it
comes to high sensitivity fault tolerant and reliable systems
(see Fig. 1). Generally, let us consider input feed through
ordinary cameras or existing DAS vision input approaches,
where their FOV range is 800-900, this limited field of
vision may lead to a false negative or false positive case for
proximity alerting or during navigation suggestions when an
object approaches from the extremities in the FOV (1300-
1650& 00-150) Fig. 1(b). The proposed system tries to solve
these issues, disadvantages & incapabilities (Fig. 25) which
were identified with the existing DAS systems, by imple-
menting several robust and reliable features & methods. The
below mentioned features, and the modules/stages which
will be discussed in future(section 4), are built based on
the proposed research’s contributions and novel architec-
tures/methods(section 1).

Features Implemented in this proposed system
(AMM-DAS):
• Precisely specify the type or class of objects which are
in proximity.

• Considers Dynamic left-right-center & fixed rear FOVs.
• Correlative driving suggestions for safer navigation
along with proximity alerts.

• The Proposed pipeline’s architecture ismodeled as a par-
allelized sub-modular processing architecture, to reduce
the overall latency of the system without compromising
in accuracy and robustness.

• FPS achieved by our method is suitable for on-live run.
• Wider 1650 panoramic view as input, to overcome the
FOV restrictions.

• Objects within the range are identified accurately to
trigger proximity alerts precisely with low FP, FN rate
even during wild external environments.

• A reliable adaptive Lane and FOV modeling system
that generates appropriate FOV frontiers even in wild
conditions.
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FIGURE 3. Overall system architecture of the proposed AMMDAS, which considers input from the front view’s left, right stereo camera feed along with
rear view’s monocular camera feed. Now, the input is processed according to the above illustrated pipeline to dynamically output proximity alerts along
with corresponding navigation suggestions.

IV. IMPLEMENTATION DETAILS ALONG WITH STAGE
WISE DESCRIPTION
In this paper, the proposedDAS implements a unique pipeline
of several sub modules that execute concurrently, according
to Fig. 3. The proposed pipeline consists of several novel and
best performing sub-modules/stages (in terms of accuracy
and latency), to create an overall reliable and fault tolerant
system. The proposed pipeline includes proprietary sub mod-
ules along with some corresponding research derivative sub
modules. The derived sub-modules were brainstormed and
benchmarked with other relevant methods (refer to section 5)
so that the performance: latency-time trade off is robustly
maintained. In this proposed DAS the entire pipeline consists
of 5 stages, where each stage has its significant contribution
in overcoming the challenges mentioned above. Pipeline’s
uniqueness lies in dynamically generating adaptive masks by
processing and analyzing a wide input field of view (thus
the proposed DAS is named as AMMDAS). Here Stage-1,
3, 4 are our proprietary, and stage-2, 5 are built from the
inspiration of other research methods. The five stages which
were included in the pipeline are:
• Stage-1: Panoramic view wrapping
• Stage-2: OMM module (object mask modeling)
• Stage-3: D.F.O.V.M module (Dynamic field of view
modeling)

• Stage-4:Mask post-processing and logic decision mod-
ule

• Stage-5: Dense depth generation and analysis module
The proposed system processes both front and rear views
parallelly. In front view processing all 5 stages mentioned
above are necessary and for rear view processing only stage-
2, 4 are required, but final output alerts & suggestions are
heuristically generated by considering both views. For the
front view, temporal synchronous left and right input (left
& right) images are fed to Stage-1 to generate a panoramic
image (Fig. 4). The constructed panoramic image covers a
whole sum of 1650 wide field of view in a single step (Fig. 1),
this stage helps to stitch a wide view of the surrounding

environments so that bias towards a specific FOV is avoided,
tomake the overall correlation analysis in later stages perform
better by involving more number of factors while framing
navigation suggestions and proximity alert triggers, etc. After
stage-1, the panoramic image is sent to Stage-2(OMM) and
stage-3(D.F.O.V.M) simultaneously to generate object masks
(Fig. 7) and left, center, right FOVmasks (Fig. 12). By imple-
menting OMMmodule, we can identify objects, POI in prox-
imity with their respective class/type with high accuracy, i.e
very low FP, FN cases, the sampling rate/FPS achieved by
our implemented method is ∼2 which is optimal for live
inferencing. D.F.O.V.M module generates adaptable FOV
masks dynamically using a dual-sequential encoder-decoder
network(DSED), the FOV masks are generated heuristically
by considering surrounding objects and lanes present (left,
right, center (Figs. 1 and 12)), so that the proximity alerts and
navigation suggestions are framed on logically broad insight.
Dimension/shape of a polygon(1le) present in l, r-FOVmasks
is a function of lane-offset-value (Figs. 12 and 21); 1le in l,
r-mask= f (l, r offset). The object mask and FOVmasks from
both front and rear view are merged to form Bitwise-and-
object-lane(B.O.L) masks (Fig. 14), these post-processed
masks are pixel & histogram analyzed, so that the Stage-4’s
logic module triggers proximity alerts and frames better log-
ically correlated driving suggestions. An extra sub-moule
i.e Stage-5 (Dense depth module) is added to the proposed
pipeline when the system enters into a dilemma state (if all l,
c, r-FOVs are blocked by vehicles). In this case, a dense
depth map is generated from the panoramic image by a
Monocular-depth estimation network (Fig. 15). A deep spa-
tial analysis is performed on the generated Dense depth map
to frame navigation suggestions. As stated above, in rear view
analysis the input monocular camera feeds are sent directly to
Stage-2: OMMmodule to generate Object Masks, now based
on these generated object masks we perform Bitwise image
anding with Fixed rear FOV masks to generate rear-view’s
BOL masks(B.O.L), The values extracted from this rear-
view’s B.O.L masks (i.e Object proximity triggers, spatial
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relations) are concurrently sent with Front view generated
values to Stage-4 to create insightful final proximity triggers
and left, right, center, rear correlated navigation suggestions
as discussed above. The proposed DAS operates on an overall
2300 external FOV (combining front and rear view) to gener-
ate reliable navigation suggestions and reduce the sensitivity
of error margin even during ambiguous situations. Now all
the alerts and suggestions generated are sent to the end-user.

Sub modules/Stages (stated above) implemented in this
paper require huge diverse, quality rich data for training
and testing. The importance of high data requirement is to
make the proposed DAS generate alerts and frame navigation
suggestions in real time with minimal errors in multiple
geographic locations with minimal initial calibration. Stage-1
requires our in-house proprietary dataset for camera cali-
bration and metadata aggregation for effective wrapping of
panoramic images. Stage-2 requires MS-Coco [19], Pascal-
VOC [20], and our custom-built dataset for training and
testing. Stage-3 requires Our custom-built Dataset, CU-Lane
Dataset [21], KITTI [22] (modified these datasets to suit
our requirements). Stage-5 requires KITTI [23], [24] dataset
only for inferencing and tuning of generated-depth maps. Our
custom-built dataset is made from videos recorded by left,
right stereo paired cameras. Our dataset consists of: 1) rames
extracted from left and right recordings; 2) Panoramic images
stitched from left, right extracted frames using Stage-1;
3) plus raw traffic recordings from both cameras. The
recorded videos are shot at 10 different geographic loca-
tions with a total of 200+ minutes (110 Kms). Extracted
Left, right frames are of 1920*1080 Resolution with a
total of 2,67,300+ images. The methods, DNNs, algorithms
present in their respective stages in the pipeline architecture
feed on the available data to process them and generate transi-
tional outputs and parameters, which knits the entire pipeline
to work in one to generate reliable navigation suggestions.
Stages from 1-5 are discussed in detail below.

A. STAGE-1: PANORAMIC VIEW WRAPPING

Gσ1 (x, y) =
1(

2πσ 2
1

)e− x2+y2

2σ21 ;

DoG ∼= Gσ1 − Gσ2

∼=
1

(2π)

(
1
σ1
e
−
x2+y2

2σ21 −
1
σ2
e
−
x2+y2

2σ22

)
(1)

The 2 synchronous left and right frames are taken as input
(Fig. 4(b), Fig. 16), and relevant features, keypoint patterns
are refined and highlighted by applying the Difference of
Gaussian(DoG) algorithm [25] ((1)). In DoG the original
image is subtracted with a blurred version of it with a spe-
cific σ value, the blurred version is generated by convolving
the original image using a Gaussian kernel. B(x, y)= w*O
(x, y), here w is a Gaussian kernel which follows a Gaussian
function property, Gσ1(x, y) is a Gaussian function with
σ1 standard deviation, by using this function the center pixel
in the kernel gets higher weightage and the distant pixels gets

negligible weightage with respect to the convolving pixel the
kernel coverage depends upon σ value specified. g1(x, y) -
g2(x, y) = Gσ1 * f(x, y) - Gσ2 * f(x, y) = (Gσ1 - Gσ2) *
f(x, y) = DoG * f(x, y). In the DoG algorithm [25] we get
a new feature enhanced image DoG(x, y) (1) by subtracting
2 Gaussian blurred images g1,2 (x, y) (g1(x, y) = Gσ1(x,
y)*f(x, y)) with different standard deviations(σ1, σ2).
As Feature enhanced left-right images are generated from

DoG, these images are now used to find left and right key
points and detect Local invariant descriptors using the Har-
ris Corner Detection(HCD) [26] algorithm (Fig. 16(c), (d)).
In this proposed paper, HCD [26] is used rather than
SIFT [27] because, the raw & processed input images are
of same dimension (and resembles to same scale) and these
both images captured are under similar physical conditions,
so a generalized lite-Feature-Descriptor algorithm is picked,
to make the panoramic image stitching operation execute
on-live with optimal time & space complexity. So, based on
the above factors [27] HCD algorithm is used. HCD algo-
rithm [26] finds corresponding contours, edges in the input
images. In HCD, corners of contours, shapes are identified
in the image where there is a significant change in intensity
function (2) in all possible directions.

f (4x,4y)=
∑

(xk ,yk )∈W
(I (xk , yk)−I (xk+4x, yk+4y))2

(2)

f(1x, 1y) is the intensity change value between the spec-
ified neighborhood (N-8 [28] which is represented by W),
if f(1x, 1y) is near to 0 then that region/surface is of same
intensity and if f(1x, 1y) is of a larger value then a corner
at that point is identified. The intensity differences along x,
y-axis are calculated by using second order Laplacian differ-
ence [28], Ix is the intensity difference along x-axis and Iy is
intensity difference along y-axis. Ix = DoGxσ1,2 ∗ I ; Iy =
DoGyσ1,2 ∗ I ; Using these Ix , Iy values Ix2,y2,xy ∈ Ix2 = Ix .Ix ,
Iy2 = Iy.Iy, Ixy = Ix .Iy are calculated. The above stated I
values which were calculated across neighborhoods are also
used to calculate (3) M (structure tensor) matrix.

M =
∑

(x,y)∈W

[
I2x IxIy
IxIy I2y

]
=

[ ∑
(x,y)∈W I2x

∑
(x,y)∈W IxIy∑

(x,y)∈W IxIy
∑
(x,y)∈W I2y

]
(3)

Here, W is the neighborhood considered. Using M matrix,
Corner Response value which is R=Det(M)-K(Trace(M))2

is calculated. This calculated R value is solely dependent
on the Eigenvalues(λ1, λ2) of The Structure-Tensor(M), The
R value is large if a corner is identified in the Neighbor-
hood W, R value is -ve in an edge and small in plain
& flat regions. To finalize the key Descriptors in the
image for image mapping, the R value is calculated for
every pixel and now thresholding with a specific limit is
applied so that all flat regions, edges are eliminated. After
thresholding Non-Maximal-Suppression [29] is applied so
that only thick-relevant, confident descriptors remain. Using
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the Key Descriptors identified in both Left, Right images
(Fig. 16(c), (d)) now map these both left, right input image’s
descriptors and combine themwith the help of parameters and
homography matrix.

Algorithm 1 RANSAC (Random Sample Consensus) Algo-
rithm for H Homography Matrix Calculator
1. RANSAC(a,b- Key point pairs matched using

K-d-Tree+HCD ):
Input: all the N {a,b} K-d Tree matched key point
pairs.
Output: H homography matrix parameters.

2. For i = 0 to N do
3. Select ‘n’-random {a,b}-Key-point pairs
4. Compute homography H parameters(using

S.V.D & Direct Linear transform) based on
{aibi} keypoint pairs

5. Generate plausible inliers with a conditional
restraint of
if S.S.D(p|i,H .pi) < R then

Estimate the pi, p
|

i; plausible inliers
else

continue
end if
where R is a specified range Constant through the
process, and H is homography matrix, pi, p

|

i are
points on their respective images

6. Generate a registry of inliers with respect to
ith-iteration.

7. end for
8. Now, Re-compute the least-squared error H

estimate(‖pi
∗H -p|i‖) of all N terations’s inliers

generated above, Here least squared error H-estimate
acts as a performance evaluation error metric.

9. return H-homography matrix
10. end

The homography matrix and parameters are generated
using the RANSAC algorithm [30]. The Feature Key-points
between the images are matched using Arc-Similarity/
Euclidean Distance(d(a, b) = (6[ai − bi]0.5)) using the dis-
tance similarities, the robustness of the matched Key-points
aren’t reliable as the dimension of the key-points are very
large, so Neighborhood-matching strategies like (N.N.D.R),
K-D Tree [31] are considered. N.N.D.R is a distance ratio
(d1,d2) between the nearest neighbors of respective points
(= (d1/d2)), if N.N.D.R value is small then the 2 points
are said to be similar. N.N.D.R is a computationally over-
loaded operation as it bruteforce the distance ratio calcu-
lation between all possible points; the optimal method for
Key-point matching is to use the K-D tree algorithm [31].
Now using the optimized [29] matched set of Key-points
between the L, R input images, the left and right images
are projected to a Projective (combine input-images) plane
using a Homography-matrix(H) (Fig. 4(a)), the parameters
in the H-matrix are calculated using the Ransac Algorithm.

FIGURE 4. (a) a, a’ are the input stereo images which are being projected
into A(P.T) plane using R, t transformations. (b) input left, right stereo
images are being mapped into a final 1650 panoramic image.

RANSAC is an N-iterative random method which generates
robust fault tolerable parameters so that they best fit the input
mathematical-model.

Using the H matrix parameters and Keypoints, the images
are now affine/projective-transformed [28] onto a perspective
plane. a = C.[Rt].A, a| = C|.[Rt].A|, C is a real-plane
projection parameter, a, a|are key-points in images which are
mapped to A in P.T(projective transform) plane. So by using
keypoints, H(H = C|.R|.C−1.R−1) is calculated and deter-
mined using SVD. Using P.T(projective transform) plane
and H parameters the panoramic and calibration parame-
ters are determined. Using P.T plane, H, panoramic and
calibration parameters as inputs, a multi-resolution image
registration [32] is performed. Image-tuning is done to the
registered PT plane image using above calibration parameters
to minimize the distortion artifacts, exposure variances and
chromatic aberrations. Final wrapping of the overall view
is done to compost [32], [28] the image into a mono
RAW-wide view. To generate the final 1650 panoramic
view (Fig. 16(e), (f)) poisson-blending [33] + interpolation-
fit [34] is applied to the mono RAW-wide view.

B. STAGE-2: OMM(OBJECT MASK MODELING MODULE)
The panoramic output from stage-1 is passed as input
in this stage. This module is inspired from faster-RCNN
with the Feature Pyramid Network(FPN)] [35] as backbone.
In overview the input panoramic image is passed to thismodel
and Bounding Box(BB) values along with respective class
id [36] are generated, now using these generated class-id &
BB values dynamic Object masks are generated. For fea-
ture extraction backbone, FPN [35] is chosen because small
objects at different resolution scales which are in the input
field of view should be detected (Fig. 18(u), (w), Fig. 7(e)),
no object must be skipped in detection so that proxim-
ity alerts and suggestions are correlated better (refer to
Fig. 17 for performance comparison). FPN network [35] is
a multi scale, pyramid architecture where it extracts fea-
tures & patterns of every scale. FPN outputs multi res-
olution Feature Maps, where at each specific resolution,
objects of a specific scale are identified with higher confi-
dence (Fig. 7(e)). FRCNN+FPN [35]–[37] is designed using
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multi-pyramidal-scale feature extractor & RPN(region pro-
posal network) with accuracy and speed as concern. Using
a general FRCNN single scale Feature-maps(FM) [36] are
generated for Region-Proposal-Network(RPN) so by consid-
ering this single scale feature-map, objects (especially small
and very big) aren’t identified and FP cases arises as there
wouldn’t be any consensus of that specific object at a dif-
ferent view. To overcome this FRCNN+FPN is implemented
to generate Multi-Scale-feature-maps. A FPN [35] consists
of both Bottom-up and Top-down path proceeding or flow
(Fig. 6). Generally the Bottom-up flow is a Convolution Neu-
ral Network(CNN) which is pre-trained on IMAGENET [38],
this CNN is used to extract Featuremaps from the input image
given. In general CNNs aswe go deep into a network, Shallow
Features at first becomes more semantically concentrated
later at deeper layers, and the overall resolution of the image
decreases as we apply convolution [39] & Max-pooling [40]
multiple times at multiple layers (by going deep/bottom-up
resolution decreases and Semantic concentration increases).
In object detection both Feature refinement with semanti-
cally condensed patterns and feature-resolution are impor-
tant for good predictions and results. When shallow layers
are considered, resolution is good but feature refinement &
semantic values are compromised, and therefore no. of FP
cases rise [41]. If deep layers are considered, the feature
resolutions are low but features are semantically rich and
therefore low resolution objects are neglected, and no of FN
cases rise [41]. FPN implemented in this paper combines both
bottom-up and top-down pyramidically [35] so that an even
composition of semantic-value and resolutions at different
scales are generated. In a Top-Down flow higher resolution
feature layers are reconstructed and interpolated from Dense
semantic-value feature-maps of bottom-up flow. Here as the
input images are up & down sampled during bottom-up
and top-down flows the spatio-temporal integrity between
the feature maps and original image is lost. To overcome
this problem Lateral-connections between these two flows
are established (Fig. 6). These lateral connections help to
maintain the Spatial correlation between the Corresponding
Feature Maps (in bottom-up flow) to the respective recon-
structed layers (in top-down flow). In Bottom-up flow, any
Deep-CNN [37] pre-trained on imagenet [38] can be used.
Here in this paper ResNet-101 network [37] is used.

This ResNet-101 [37], [35] consists of 5 clustered
Residual-Blocks(Ci), where the output from each clustered
residual-block is a set of intermediate-feature maps labeled
as Ci(i ∈ 1-5). Each residual block consists of many
2D-Conv + ReLU + B.N+ Max-Pooling operation layers.
2D-Conv layers [39] are used to extract high-concentration
features from the input features. ReLU [42] is used to main-
tain integrity and to introduce Non-Linearity among the Fea-
tures, Batch-Normalization(B.N [43]) is used as the FPN has
skip/residual connections between top-down and bottom-up
layers therefore feature normalization must be performed
after adding a skip/residual connection [35] for normaliz-
ing the features and preventing the FPN from overfitting.

Max-Pooling [40] is used for dimensionality reduction. For
every Ci Residual block the dimension of feature decreases to
its 1

2 and respective-convolution stride increases. Ci generated
in Bottom-up is laterally connected to the Mi in top-down
path. In top down 2D-1*1-Conv(FM(x, y, d)) = FM1(x, y,
d1) = M5 is applied, to reduce the depth of C5 to 256-d,
the corresponding result after this 1*1-conv operation yields
M5. M5 is the first layer of output-scale feature-maps (P5).
As we proceed deep in top-down flow, lateral connections
from bottom-up flow and previous Mi are concatenated. Here
(i ∈ 4, 3, 2, 1).

Pi = 2D− 3 ∗ 3− Conv(Upsamp (Mi−1)

+ 2D− 1 ∗ 1− Conv(Ci)) (4)

Mi−1 is up-sampled (Upsamp) by 2x factor for each Pi
((4)) to match the dimension while concatenating. A final
2D-3*3-Conv is applied to a concatenated Feature layer to
nullify aliasing effects which occur due to up-sampling. Gen-
erally for FPN in an object detection module only P5, P3,
P2, P4 are considered because P1 has high spatial dimen-
sion and lower feature, semantic values (same as features
at shallow layers in DNN), due to this FP/false predictions
may occur [41]. The above generated multi scale(pyramid)
feature maps(P5,4,3,2) are now fed to Region Proposal Net-
work(RPN) [36] to find out ROIs of objects present in an
image. RPN consists of Conv layers + anchor-proposals
(Fig. 5), These anchor proposals define ROI of objects,
patterns. ROIs act like attention mechanisms that tell the
FRCNN [36] to look for patterns, objects. In RPN a sliding
window is hovered throughout the Pi Pyramid-scale Fea-
ture maps. Each sliding window is sent to 2 FCN [44]
(Softmax-classifier and ROI regressor). These 2-FCN [44]
layers generate multiple possible ROIs using anchors [36]
(similar to SSD, YOLO etc.) Anchors help to predict mul-
tiple regions in a single window so that the resulting ROI
orientations can be of any format & scale. Here in this
paper multi-scale-anchor boxes are implemented so that
regions, objects of multiple scales can be identified in a
window, Generally a Softmax-classifier and ROI Regres-
sor outputs 4K-BB parameters and 2K-class scores (class
∈ 1||0; object||not-object), where K is max number of
proposals(anchors), K∞Scale&Aspect-Ratio [36]. Scale &
Aspect-ratios used in this paper are mentioned below. ROIs
in this FRCNN-FPN [35], [36] can be of multiple scales,
sizes and orientations within a single instance. RPNs can
be optimized by implementing an efficient loss (5) function
(L({Pi},{Ti}) [36]). While training; pi represents the proba-
bility score whether the respective ith ROI is an Object or not.
Ti represents the boundaries(BB) of the ithROI. Ncls(∈256),
Nreg(∈∼ 2400) are normalization parameters. λ(∈10) is a
balancing constant. Lcls is a log loss [-(klog(p) + (1-klog(1-
p)) ∈ 1||0-classification] and Lreg (==Lδ) is a robust loss (5),
Where ’a’ is the difference between the IOU of ti, t∗i , δ is a
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FIGURE 5. Architecture overview(steps/methods & execution) of OMM module with
FRCNN+Resnet-101_FPN [35], [36] network as an object detector.

FIGURE 6. FPN architecture [35] illustrates top-down, bottom-up architectures, and corresponding
lateral connections between them. Where an input image is fed to the FPN network to output
multi-resolution feature maps(Pi) respectively.

tolerable range of difference in (5) (further detailed in [36]).

L ({pi} , {ti}) =
1
Ncls

∑
i

Lcls
(
pi, p∗i

)
+ λ

(
1
Nreg

∑
i

p∗i Lreg
(
ti, t∗i

))

Lδ (a) =


1
2
a2, for |a| ≤ δ

δ(|a| −
1
2
δ), otherwise

(5)

Each of the ROIs are generated with respect to a specfic
pyramid-scale feature-map. Based on the size of an ith ROI
a specific pyramid scale level(K); K = [K0{ ∈ 4} +
Log2((w.h)

0.5/224)] is assigned. [35] Here, K represents
scale offset value used in Pk -ROI pair tagging, w & h are
respective width and height of a ROI (i.e if a ROIwith specific
width, height value gets k = 2, then that ROI is tagged
along with P2 (4)). After mapping ith ROI (k==j) with Pj,
these {ith-ROI and Pj} pairs are sent to the ROI-Pooling
layer where respective Feature-patches are generated. These
Feature-patches from ROI-pooling are sent to Fully con-
nected layers [36], [44] to get a specific object-class present in

that respective feature-patch with Bounding Box(BB) around
it. The Bounding Box is refined via BB-regressor so that
the IOU with respect to ground truth is maintained optimal
during predictions. During training each feature-patch is sent
to FC layers and BB-regressor units, to calculate optimal
Class-id and BB-coordinates. BB-regression is performed by
minimizing the cost-function (between [tx , ty, tw, th] & [t∗x,
t∗y, t∗w, t∗h]) [36], x, y are center coordinates of a specific
Bounding box and w, h are their respective width, height.
In (6), tx,y,w,h are predicted Bounding box parameters and
t∗x,y,w,h are ground truth values. So from the above formula-
tion and discussionwhen an image is given as input respective
object classes alongwith BBs are generated, but the generated
Bounding Boxes are redundant, so we apply Non-Maximal
Suppression [29] to extract final Bounding-Boxes for object-
classes(o∈ O) to make the object detention network’s predic-
tions more reliable. So when an input image (Fig. 7) is given
to the FRCNN+Resnet-101_FPN network [35]–[37] for pre-
diction, respective pyramid-scale feature-maps are generated
by the FPN, and similarly relevant ROIs are proposed with
the help of RPN. Now, a pooling operation is applied on
the above generated Pyramid-scale-feature-maps and ROIs,
to generate optimal feature patches, and these feature patches
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FIGURE 7. (a) is the input panoramic image given to the OMM module,
and (b), (d) are the stage-2’s final output object masks, and (c), (e) are
intermediate object detection results generated by our object detector,
FRCNN + Resnet-101_FPN [35]–[37].

are sent to FC layer [44] and BB-regressors((6)) to output
final Bounding-box coordinates (Fig. 7(c), (e)) along with
corresponding object-classes present in it.

Based on the Object-classes (o∈O with respect to Table 2)
and bounding boxes generated on a specific input, an Object-
Mask(Fig. 7(b), (d)) with predefined color coding (mentioned
in Table 2) is generated.

tx =
x − xa
wa

, ty =
y− ya
ha

, tw = log
(
w
wa

)
,

th = log
(
h
ha

)
, t∗x =

x∗ − xa
wa

, t∗y =
y∗ − ya
ha

,

t∗w = log
(
w∗

wa

)
, t∗h = log

(
h∗

ha

)
(6)

In an Object Mask the area (with respect to ith BB
coordinates) under a specific ith-object is filled with the
respective oth object-class’s color, and rest of the background-
region, space left is colored in Black (Fig. 7(b), (d), Fig. 18).
FRCNN+Resnet-101_FPN network [35]–[37] is trained on
i7-9th gen CPU coupled with 1-GTX-1070 GPU. In this
paper, MS-Coco [19] + Pascal-VOC [20] pre-trained FPN
& RPN networks are taken, and these pre-trained [19], [20]
models are stitched to a FRCNN to form FRCNN+Resnet-
101_FPN network, and this complete network is trained
iteratively(∼15K steps) on our custom dataset (with 7-object-
classes(O)) to detect traffic-specific-objects. During train-
ing, we have maintained these hyper-parameters accordingly
(lr=0.0001, momentum=0.9, weight-decay=0.0005 and
Sliding window-scales = [128, 256, 512] with [1:2, 1:1, 2:1]
aspect ratios for anchor ROI-proposals).

C. STAGE-3: D.F.O.V.M (DYNAMIC FIELD OF VIEW
MODELING MODULE)
In this stage(D.F.O.V.M) adaptive field of view masks are
generated dynamically by analyzing external surroundings
(lanes, objects etc) of the host. Extent of field of view
covered by the D.F.O.V.M is given by 2FOV

0(explained
later in this stage (13)). Generated FOV masks are
dependent on a Lane-Segmented embedding image. This
Segmented-embedding image (Fig. 12) is heuristically gen-
erated by our Dual-sequential Encoder-Decoder network.
Dynamic field of view modeling module(D.F.O.V.M) takes
input from stage-1, to process and output FOV masks. The
D.F.O.V.M and stage-2(OMM) will always run in parallel.

The main elements of D.F.O.V.Mmodule are Dual-sequential
Encoder-decoder network (an encoder-decoder CNN [45]),
Lane-point clustering algorithm [46], adaptive l-r offset pre-
diction operation and Dynamic l, c, r-FOV modeling [28]
module. Each element mentioned above executes in a sequen-
tial order by consuming respective outputs of previous ele-
ments as their input (Fig. 8). The overall flow followed in
D.F.O.V.M is, a 1650 panoramic image is given as input
to the Dual-Sequential-ED network (Fig. 8) to output a
lane-segmented Embedding image which has similar dimen-
sions and spatial relations to that of the input image. This
output lane-segmented embedding image is passed to the
Lane-point clustering algorithm [46] for analysis & post-
processing, so that it generates essential parameters, which
are then passed to l-r offset prediction method to heuris-
tically calculate adaptive l-r offset values, so that these
offset values can be consumed by the FOV modeling mod-
ule to output final Left, center, right FOV masks (Fig. 12).
These FOV masks are the final outputs generated by the
entire Stage-3(D.F.O.V.M) module. Now let’s discuss each
element present in the D.F.O.V.M module in detail which
were discussed above. Dual sequential Encoder-Decoder net-
work has 2 components present in it, which are mini-ED
(Fig. 10) and main-ED (Fig. 11). mini-ED is used for thor-
ough pre-processing and fine-tuning of raw input images
(Fig. 9). When an input image is given to the mini-ED net-
work, it tries to eliminate (blurs or fades-out) all unneces-
sary patterns & regions in the image, and highlights only
essential parts & patterns in the image (Fig. 9(d), (e), (f)),
which helps in boosting the overall performance & accuracy
of the DSED network. In naive terms mini-ED acts as an
attention model where it highlights contexts, feature-spaces
which belongs to both lanes & objects-on roads (or roads
themselves; Fig. 9 (d), (e), (f)). This pre-processed input is
then fed to the main-encoder-decoder (main-ED) to output
the final lane-segmented embedding image (Fig. 12), where
segmentation is done with respect to a fixed color coding in
which the dataset (refer toTable 2) is prepared for training and
testing (Fig. 9(g), (h), (i)).

BN (xi) = x̂(k)i

=

x(k)i − ( 1m
m∑
i=1

x(k)i )

( 1m
m∑
i=1

(x(k)i − ( 1m
m∑
i=1

x(k)i ))2 + ε)
(7)

Main operations performed in DSED network are
2D-Conv [39], 2D-Deconv [47], Batch-Normalization [43],
ReLU [42], Max-pooling [40], Feature-Concatenation and
softmax function. Batch-Normalization(BN) [43] is used for
normalization and to deal with co-variance shifts, so that
integrity and stability are maintained during forward and
backward passes of trainig iterations. This is done by normal-
izing the feature layer by adjusting the weight/activation units
with respect to an input batch according to (7). k ∈ [1, d] and
i ∈ [1, m], d is the dimension of the feature space/vector,
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FIGURE 8. Architecture overview(steps/methods & execution) of Dynamic field of view modelling module
(D.F.O.V.M).

and i is the size of the batch in that iteration/epoch. y(k)i =
γ (k)x(k)i + β(k) so x(K )

i is replaced by y(K )
i ; (y

(K )
=

BNγ,β (x(K ))). 2D Convolution(conv [39]) or De-convolution
(de-conv [47] ) (H1

=W∗H =
∑

i∈N W (i) .H (i)) operations
are used for feature extraction process(H1) by convolving a
kernel/filter(W) on an input feature layer/maps(H). When
multiple input units (∈ N; neighborhood in W) have to
be mapped to a single output unit(down-sampling) then
Conv [39] operation is performed, and when a single input
unit has to be mapped to multiple output units(up-sampling)
then De-conv [47] is applied. Here Convs extract/produce
higher semantic valued & concentrated feature maps.
De-convs are used in Decoder parts [45] to extract higher
level spatial & categorical features and also to increase the
resolution of the respective input feature maps. ReLU [42]
(max[0, x]) introduces non-linearity among the output feature
maps, to make weights/activations more suitable and stable
(tackles vanishing gradient) for optimization [48] during
back propagation. Max-pooling [40] (max{Wi} [i ∈ n*m; n,
m= dimensions of neighborhood]) is a sample Discretization
method, which is used to extract sharp and smooth features,
and also to reduce dimensions of the input features, so that
the chances of overfitting are minimized. It picks the max
value present in the neighborhood of non overlapping regions
(stride= n, for n*n-max-pooling operation). Feature concate-
nation operation is used when 2 feature maps/layers should
be merged together into one, the dimension of features which
are to merged should be same, to maintain integrity among
dimensions cropping and applying 1*1 convs are done.

Softmax is used to normalize the distribution of input
feature vectors (logits of feature activations) into a proba-
bility distribution((8) pd(x)), N is the depth of input feature
maps/feature layers, aK is the activation unit value in the Kth

feature layer at xth pixel location, pd(x) is the probability
distribution of xth pixel location among n-depth feature lay-
ers. Based on the above discussed base-functions, the entire
DSED network is built.

pd (x) =
expak (x)

K∑
k1=1

expak1(x)
; k ∈ [0,N ] (8)

Overall Mini-ED network has 8-feature layers. mLi rep-
resents ith feature layer. I’, O’ are the input panoramic

FIGURE 9. These are the sample ground truth labeled images present in
the training data of the DSED(mini-ED+main-ED) network. (a), (b), (c) are
the sample raw input images present in dataset. (d), (e), (f) are the
sample ground truth images for training the mini-ED network, and (g), (h),
(i) are the sample ground-truth lane-segmented images for training the
main-ED network.

image and output embedding image respectively with
H*W*3 dimensions. mL-1 consists of 96 feature maps
(depth), and is generated by applying 2D-5*5-conv(I’) [39]
followed by BN [43], ReLU [42] & 2*2 Max-pooling
operations; and mL2,3 are of 256, 1024 in depth and
are generated by applying 2D-5*5-conv(mL1,2) + BN +
ReLU + 2*2Max-pooling operations. mL1,2,3 belongs to the
encoder network [45] and mL4,5,6 belongs to the decoder
network [45] (Fig. 10). In decoder network, the highly
semantically condensed feature maps of mL3 are decon-
volved to increase & extrapolate its spatial resolution &
condensed feature maps for reconstructing an output image,
with similar dimensions to that of the input image. Logical
inter-correlation & co-occurrence between the current & pre-
viously extracted features/patterns is maintained intuitively
throughout the decoder network. As we go deep into the
decoder network,resolution of a respective mLi feature-map
increases correspondingly by reducing its features-depth.
mL4, mL5 &mL6 have 256, 128 and 64 feature maps respec-
tively which are generated by performing mL i = 2D-5 ∗
5-De-conv(mLi−1) + BN + ReLU operations. We apply
2D-1*1-Conv operation (to condense 64 FMs to 3 RGB chan-
nels) to mL6, to convolve through the feature layers to output
O’ feature layer (Fig. 10). This O’ is passed to main-ED net-
work for processing and to generate the final lane-segmented-
embedding image. Conv and De-Conv [47] are convolved on
feature maps with auto-padding and 1-stride, and the ker-
nel/filter dimensions are 7*7 throughout the entire mini-ED
network so that smooth & cogent feature maps are gen-
erated. We follow a 2-phase training mechanism for the
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FIGURE 10. Mini-ED architecture, this proposed encoder-decoder network takes HXW
panoramic input(Il ), and outputs pre-processed intermediate embedding image(Ol ) with same
HXW dimensions, here mL-i represents ith feature-layer of the mini-ED network, where mL-1 to
mL-3 belong to the encoder network, and mL-4 to mL-6 belong to the decoder network.

FIGURE 11. Main-ED architecture, this proposed encoder-decoder network takes HXW pre-processed image from mini-ED(I), and outputs final lane
segmented embedding (O) with same HXW dimensions, here L-i represents ith feature-layer of the main-ED, and C-i represents ith lateral connection
from the encoder network(L-1 to L-13) to the decoder network(L-14 to L-27).

entire DSED network, where mini-ED is initially(phase-1)
trained separately, and then mini-ED+main-ED networks
are trained together(phase-2) with custom & predefined loss
functions. While training the mini-ED network in Phase-1,
we calculate(Lsqe) per pixel-wise Squared error loss {(Lsqe =∑N∗M

i | |OPi − GTi| |2); N, M ∈ dim(G.T, OP)} between
the output(OP) and Ground Truth(GT) images, and this
calculated penalizing value is optimized using SGD opti-
mizer [48]. mini-ED network is trained on 15,000 images
(labelled according to Fig. 9(d), (e), (f) format); these
15K images are fragments of our custom-built dataset.
The pre-processed image O’ (output of mini-ED) is now
passed to the main-ED network. Main-ED is a deep con-
volutional encoder-decoder network [45] with lateral con-
nections between the encoder and decoder networks. This
network has 29 layers with L12,13 feature-layers serving
as a bottleneck(latent feature maps) between encoder and
decoder networks. Li represents ith feature-layer. I is input
pre-processed image(output of mini-ED) & O is the final
lane-segmented image, these both I, O images share same
dimensions (H*W*3). To explain main-ED we split the

entire network into encoder-network and Decoder-network
(Fig. 11) parts. In the encoder-network(L1−13), depths of
Feature-Layers gradually increase and simultaneously their
respective feature resolutions also decrease, and the extracted
features become more concentrated and semantically/feature
rich. Encoder network has 13 Conv encoding layers with
multiple filter sizes, where each 2D-conv operation [39]
is followed by Batch-normalization [43] and 2*2 max-
pooling [40] operations, For some 2D-conv layers a lateral
connection(Ci) is given to the decoder network. L1 feature
layer is obtained by performing 2D-1*1-conv operation to
map the input image of 3 RGB layers to 64 feature-maps
(Fig. 11). L1-FL operation is essential in main-ED network
because, the features in the input images will be distributed
accordingly into sparse feature layers withmore depth, so that
feature extraction per layer when convolved further will be
more pattern specific and distributed. Both of the L2,3 FLs
have 128 Feature Maps(FMs) and are generated by applying
2D-11*11-Conv(L1) + BN + ReLU + 2*2-Max-pooling and
2D-7*7-Conv(L2) + BN + ReLU operations respectively.
Generally to get any Feature map in the encoding network
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we apply the same equation(9) but with different filters/kernel
dimensions.

Li = fN ,M (Li−1) = 2D− N ∗M

−Conv (Li−1)+ BN + ReLU;

{N ,M ∈ dim (kernel) & i ∈ [1− 13]} (9)

L4,5, L6,7,8, L9,10,11, L12,13 have 256, 512, 1024, 2048 feature
Maps(FMs) respectively. Each layer(Li ) is generated by
applying the above mentioned sequence of operations((9))
on Li−1 with respective kernel dimensions at specific lay-
ers. L4 = f7,7 (L3), L5,6 = f5,5 (L4,3) and L7to13 =
f3,3 (L6 to 12) respectively. Now a 2*2-max-pooling opera-
tion with 2-stride [40] is applied only on L1,3,5,8,11 lay-
ers to get L2,4,6,9,12, so that L2,4,6,9,12 FLs have smooth
and distinctive features, and also to minimize the chances
of overfitting (dim(L2,4,6,9,12) = dim(L1,3,5,10,11)/2) while
training the entire D.S.E.D network. Based on the above dis-
cussed operations at each layer, a complete encoder network
is constructed. In the Decoder-network, the bottleneck fea-
ture layers(L12,13) along with lateral connections(Ci,) from
the encoder network are processed & mapeed together to
generate Ot (Final lane-segmented embedding image). The
Decoder network consists of 14 convolutional reconstruction
layers; from L14 to L27 the resolution of each feature layer
gradually increase and their respective depth(i.e no of FMs)
gradually decrease, as we apply De-conv operation at each ith

layer. There are 2 sequences of operations((10) g1, (11) g2)
applied here in this decoder network.

Li = g1N ,M
(
Li−1,Cj

)
= 2D− 1 ∗ 1

−Conv(Cj ⊕ 2D− N ∗M − De− Conv(Li−1))

+BN + ReLU (10)

Li = g2N ,M (Li−1) = 2D− N ∗M

−Conv (Li−1)+ BN + ReLU (11)

⊕ is a Feature concatenation operation where Lith layer from
the encoder network is appended to Deconvoluted features
layers of Li-1th decoder network. In g1(), Cj (j ∈ 1, 2, 3,
4, 5) represents a lateral connection from Lthi (i ∈ 1, 3, 5,
8, 11) encoder network’s layer. A 2D-Deconv operation is
applied on Li (i ∈ 13, 16, 19, 22, 23) and the resulting feature
layers are concatenated (⊕) with Cj, after concatenation a
2D 1*1-conv is applied to condense the depth of FLs to
half. The condensed features are batch normalized [43],
and then ReLU activation [42] is applied (10) to out-
put Li (i∈ 14, 17, 20, 23, 24). Unlike in Segnet [49] or
De-convnet [50], [47] we do not store max-pooling indices
to perform Up-Sampling+De-conv operations, because by
reconstructing an output image only from bottleneck features
(generated by an encoder network and also by sampling spa-
tial indices(i.e switch keys)), we miss minor, dull & broken
lane lines in a 1650-wide panoramic input image.
To support the proposed use-case and to perform robust

during on-live-traffic inference, we need a network that

considers features of all resolutions and semantic concen-
trations. Therefore, during decoding the bottleneck feature
maps(i.e decoder network of main-ED) we parallely add
features with similar resolutions thrown from the encoder
network via Cj, similar to U-net [51]and FPN [35]. Here
in this proposed main-ED network, we don’t crop feature
layers which are to be concatenated, instead we merge the
features as it is, and perform 1*1conv mapping to condense
the depth of feature-maps so that the border lanes& necessary
patterns aren’t affected, and also co-occurrences and spatial
relations between features are maintained homo-geneously
throughout the network. L14 has 1024 FMs and is gener-
ated by g13,3(L13,C5), and L15,16 also have 1024 FMs and
are generated by g23,3(L14,), g23,3(L15) respectively. Sim-
ilarly, L17,18,19 = g13,3(L16,C4), g23,3(L17), g23,3(L18)
respectively with 512 FMs; and L20,21,22 = g15,5(L19,C3),
g25,5(L20), g25,5(L21) with 256 FLs. L23(g17,7(L22,C2))
and L24(g17,7(L23,C1)) have 128 and 64 FMs respectively.
After L23,24, multiple 2D-Conv operations [39] are applied to
L24 to generate L25,26,27, because at L23,24 low level features
are appended from the encoder network, these lateral connec-
tions have higher spatial resolutions and low feature/semantic
values & density. So multiple feature extraction operations
have to be performed so that these concatenated shallow
features become more refined & semantically concentrated
with relevant features extracted. All L25,26,27 Feature layers
have 64 feature Maps (g27,7(L24,25,26)), and a 2D-1*1-Conv
is applied to L27 so that all 64 activation-values/units in ith(i∈
[0-n*m; n, m=dim(L-26)]) pixel location at respective layers
are mapped (pd(x)) and fed to multi-label softmax classi-
fier (K=7 {no of classes=7}) to classify features vectors
accordingly (lane classes are mentioned in Table 2), to finally
generate an output lane segmented image(O) with H*W*3
(input1650-panoramic image) dimensions. Main-ED is com-
bined with phase-1 pre-trained mini-ED to form a complete
DSED network. For training this complete DSED (phase-2 of
training), we have used our custom-built dataset along with
CU-Lane [21] dataset. KITTI road lane dataset [22] was used
only for validation and testing. Our custom built dataset con-
sists of 2,67,300+ live traffic images. Out of these 2,67,300+
images 95,000 images (fragmented part of our data, spe-
cially used for this module) are considered for training and
5000 images for validation. Ground truth labeling & segmen-
tation of the training and testing data is done according to
Table 2 color format. DSED network takes panoramic images
with resolution of ∼(2400X900*3) as input and generates
a lane segmentation map with similar dimensions. Using
the above prepared data (100K(custom data) + 10K(CU-
Lane)+ 0.5K (KITTI road lane dataset)) we train our network
with lr=0.0001, momentum= 0.99. Per pixel Cross-entropy
(LCE = −

∑N∗M
j=0

∑K
i=0 yi,j. log(pi,j); {K ∈ no of classes==

7, N, M = dim(L27 )}) with respect to generated Semantic
map based on softmax-classifier prediction & ground truth
is calculated, so that this loss value(LTotal) is minimized by
using Adam optimizer [48], [49]. To converge this network to
a optimal loss value(1.059 in our case) it took 11,500 epochs.
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FIGURE 12. (a) Input panoramic image from stage-1, (b) is the final-Lane
segmented embedding image generated by the DSED network. (a) input
panoramic image consists of right, immediate right and left lanes, so the
output embedding image(b) contains semantic segmentations (color
coding mentioned in Table 2) based on the respective lanes identified by
the DSED network. (c) is a pie representation of the clusters formed by
the lane-point clustering algorithm [46], when a lane segmented
embedding image is given as an input. (d), (e), (f) are the left, center and
right FOV masks, and these l, c, r-FOV masks are D.F.O.V.M’s final output.
White contours present in l, c, r FOV masks are the polygons which are
modeled based on calculated l, r-offset values.

A batch size of 32 is maintained during the entire training
phase, and data augmentation is performed for every batch
during epoch iterations. This network(D.S.E.D) is trained
multiple times (with minor tweaks in hyper parameters and α,
β values; best performing values were mentioned above) and
the best performer on validation data is considered. During
every epoch, the entire D.S.E.D network is penalized based
on LTotal loss value.

LTotal = α.Labs + β.LCE (12)

where {α, β = [1.5, 1] for 500th epoch and α, β =
[0.1, 1] for rest of the epochs}, LTotal (12) is optimized
by Adam optimizer [48] iteratively. This custom cost func-
tion calculates absolute error between the ground-truth lgt ,
rgt -offset values and predicted lpred , rpred offset values,
Labs = ||(lgt − lpred ) + (rgt − rpred )|| {l ∈ left-offset
value, r ∈ right-offset value}. These l, r- offset values are
predicted using parameters generated by a post-processing
operation applied (which is done by Lane-point clustering
algorithm) on the final lane-segmented image (Fig. 12). The
Final lane-embedding image generated by the DSED network
trained on CULane [21], custom-dataset is now sent to the
Lane-point clustering algorithm(by K-means [46]). Here we
cluster the (R, G, B) pixel colors of the final lane-segmented
embedding image (each pixel’s RGB color, value refers to
predicted lane-class), into 5 clusters (Fig. 14(c)) to deter-
mine the quality, type of lane lines present and identified.
The centroids of 5-clusters are R, G, B-lane segmentation
colors (white, green, olive green, red, purple shade) which
are used in G.T Dataset preparation for training and vali-
dation processes (refer to Table 2). The set of 5 centroids
along with their respectively clustered pixels (Fig. 14(c)) are
sent to the next element in D.F.O.V.M to predict l, r-offset
values (Tables 4 and 5). Using these parameters we predict
adaptive l, r offset values. The l, r offset values are functions
of a lane-class present in an i-th cluster, and number of
pixels which belong to that specific cluster. Initially l, r offset
values are assigned to 0, and then we iteratively update the l,
r values accordingly for every cluster present in the resulting
set (output of Lane-point clustering algorithm [46]). If an

ith cluster ∈ white(right-lane, [255, 255, 255]) then l-offset=
l-offset + 1.5 + P(pxwhite) and r-offset remains unchanged.
Similarly, a cluster ∈ red(left-lane, [255, 0, 0]) then
r-offset = r-offset + 1.5 + P(pxred ) and l-offset remains
unchanged. Now if ith cluster ∈ green (immediate right-lane,
[0, 255, 0]) then r-offset = r-offset + 0.75 + P(pxgreen)
and l-offset = l-offset + 0.25, and if a cluster ∈ olive-
green(immediate left-lane, [20, 50, 25]) then l-offset =
l-offset+ 0.75+P(pxolive−green) and r-offset= r-offset+ 0.25.
Here P(pxi)= ((no. of pixels in ith cluster / total no of pixels)).
The role of P(px) in FOV mask modeling is, if an object is
present in a respective ith lane area then the no-of pixels con-
tributing to that ith cluster class will be less, resulting to small
P(pxi) value, and if no objects are identified in an ith lane
area then the no-of pixels in that specific cluster class will be
more so P(pxi) value will be large. Based on this analogy if a
respective lane has no object in it, then we span more FOV
towards that lane (large l/r-offset value because respective
P(px) is large) to search for objects more comprehensively,
so that alerts and suggestions will be framed on a larger FOV
for safety & robustness.

Similarly, if a lane has an object present, then we con-
sider less FOV towards that lane, as we would like to avoid
the host to get in close proximity towards that object, and
give more emphasis for other alternative FOVs to frame a
safer suggestion for navigation. Using these l, r offset val-
ues we now construct dynamic FOV masks for left, center,
right views. The center FOV mask always consists of a
constant polygon, and left, right FOV masks have adaptive
polygons (an obtuse angled triangle) whose areas/shapes are
dependent on l, r-offset values. The base of 1le in Left
FOV mask = Base_span*l-offset, and base of 1le in Right
FOV mask = Base_span*r-offset. Upon various experimen-
tations, we have fixed Base_span value to 150pixels and
Height_span value to 450pixels for optimal performance. The
position of polygons in Left, center and right FOV masks
(Fig. 12(d), (e), (f)) are placed according to the position of
lanes in the Lane-segmented embedding image. In this paper
we have coined a FOV range parameter named (2FOV

0),
whose value corresponds to the overall FOV/surroundings
range covered by the generated adaptive left, center, right
FOV masks. 2FOV

0 (13) is the overall instantaneous FOV
range(in0) covered by the AMMDAS (Figs. 22 and 24) to
adapt & analyze its external factors so that robust results and
suggestions can be generated. Fig. 12(d), (f) images repre-
sents left and right FOV masks respectively, and Fig. 12(e)
represents center FOV mask. White region/contour present
inside each FOV mask, indicate adaptive polygons which are
drawn&modeled [28] based on base and height values calcu-
lated above (using l, r offset values). L, r masks are spanned
according to host’s external surroundings. In Fig. 12(f) the
polygon present inside the right FOV mask is large com-
pared to the polygon inside left-FOVmask because, evidently
in Fig. 12(a) there is more space & leniency towards the
right FOV side (i.e there are immediate-right, right-lanes
present). So we consider more FOV towards right side to
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comprehensively search for objects and simultaneously ana-
lyze right-FOV’s external surroundings to heuristically gen-
erate navigation alerts and suggestions. Moreover, left side
is restricted because only immediate-left lane is present.
So based on the above considerations we span less FOV
towards the left and give more emphasis towards cen-
ter & right FOVs, for logically better and robust results.
More results and experimentation of D.F.O.V.M module is
described in Figs. 22 and 24, Tables 4 and 5 of section 5.

θ0FOV = (tan−1
(
150× l − offset

450

)
+ tan−1

(
150× r_offset

450

)
+ 55)0 (13)

Algorithm 2 LANE-POINT CLUSTERING Algorithm
1. LANE-POINT CLUSTERING) {Oi,j}; i ∈ n, j ∈ m;

n,m = dim(O)):
Input: Final lane segmented image Onxm
Output: {PXij} j represents any of the cluster
center(i.e nearest lane class GT RGB-color),
i ∈ [0,N]

2. Group N pixels(px) according to R,G,B intensity values
where N = n ∗m

3. Initialize number of clusters k = 5
4. While True do
5. if Ci

th centroid == C(i-1)
th centroid then

6. break
7. end while
8. else
9. Assign 1 cluster center per class(in5) at random

order. So that we get 5-centers
10. for i = 0 to N do
11. Assign PXi; to the closest cluster center(C)

using
L2-nomi/ Euclidean distance L2-norm∑k

j=1
∑k

i=1 (RGB (px
j
i − cj))

0.5,
RGB(px-C) = R(px)-R(C))2

+(B(px)-B(C))2 + (G(px)-G(C))2

12. end for
13. end if
14. Calculate centroid for N pixels in K clusters.
15. return {pxij: i ∈ N, j ∈ Kth cluster, px is RGB pixel

in O image}.
16. end

D. STAGE-4: MASK POST-PROCESSING AND LOGIC
DECISION MODULE
Object masks from Stage-2 (Fig. 14(b)) along with left, cen-
ter, right FOV masks (Fig. 14 (f), (g), (h)) from Stage-3
of both front and rear view are taken as input in this
stage(Fig. 13) for post-processing [28], and to generate prox-
imity alerts along with corresponding navigation sugges-
tions. These framed suggestions are logically-correlated by

passing the input for post-processing, and then to an inter-
nal logic-module for analyzing the interdependent spatial
attributes & correlating the patterns & parameters between
left, center, right FOVs. The post-processed masks are gen-
erated by performing perpixel-image anding [28] between
respective kth-FOVmask and object mask. K-Post_processed
mask = IKN∗M∗3, where IK is a Kth pre-processed FOV
image with N-width, M-height and (r, g, b) planes; IK [i,
j] = k-FOV-mask[i, j] & Object-mask[i, j] i ∈ [0, N], j ∈
[0, M] and ‘&’ refers to bitwise AND [28]. K refers to
the left, right and center field of views, as stage-4 takes l,
c, r FOV masks from Stage-3 as input to post process
them [28]. IKN∗M∗3 (K Post_processed masks) are referred
to as Bitwise-and-object-lane (B.O.L) masks in this paper
(Fig. 14 (i), (j), (k)). These l, c, r-BOL masks are color his-
tograms analyzed [28] to determine required parameters for
the internal logic-module to frame proximity alerts and nav-
igation suggestions. The parameters which are determined
immediately after post-processing and histogram analyzing
a specific [28] K-BOL mask are grouped together, as a list of
several sets of pixels{PXo}, which are calculated using (14).
Where each set contains a group of pixels belonging to a
specific Oth RGB color code; and the overall list consists of
‘‘i’’ number of pixel sets where i represents objects identified
in that respective K-BOL mask (Fig. 14(c), (d), (e)).

PXOi =
|K − BOL|2i,o

WhK
; i ∈ Oth [R,G,B] color&WhK

= |K − FOV |I(I≥230,230,230) (14)

In Equation (14), | |1 is the cardinality of a set of pixels
in K-FOV which belong to white color I (K-FOV[i, j]) =
(r, g, b) >= [230, 230, 230], (I is intensity of i, jth pixel in
K-FOVmask). | |2 represents the cardinality of a specific ith

pixel-set in the entire K-BOL’s parameter-list, i∈ Oth object
predefined (R, G, B) color code used in Stage-2, O has 7 dif-
ferent object classes each with a unique r, g, b-color scheme
(refer to Table 2). Based on the above discussion a total of 2
sets are calculated, one set for front view and another for rear
view, now these both sets are passed as inputs to the internal
logic module. Where each set consists of 3 vectors/pixel-sets
(∈ left, center, right), and each vector consists of 7-parameter
values ([PXO],O ∈ [1 − 7]) which belongs to a respec-
tive K-BOL mask. Initially in the Logic module pruning of
input sets is done to yield better outputs. Pruning operation
consists of trimming unnecessary values/parameters, here in
this case all zero-valued parameters are pruned and only
non-zero parameters in a vector are considered (V1,2,3 ∈
[PXO], PXO! = 0) for further processing (analysis of pruned
vectors in sets). Here the vectors in a set are processed to
yield final compounded l, c, r parameters. These compounded
l, c, r parameters of each set(front and rear) are analyzed
mutually to generate final proximity triggers along with
corresponding navigation suggestions. Here the final output
is generated only after logically correlating all of its input
FOVs. Each parameter(PXO in (14)) in the pruned vectors of
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FIGURE 13. Architecture overview(steps/methods & execution) of Mask post-processing and logic decision module.

FIGURE 14. (a) is stage-1 output, and (b) is stage-2’s final output when
(a) is given as an input. (c), (d), (e) are pixel and hist distribution of l, c,
r-BOL masks. Based on these distributions pruning, mutual analysis and
thresholding [28] operations are performed to calculate compounded l, c,
r-parameters, and (f), (g), (h) are l, c, r-FOV masks generated by D.F.O.V.M
when (a) is given as input, and (i),(j),(k) are stage-4’s internally generated
left, center, right-BOL masks when (b), (f), (g), (h) are fed as input.

each front & rear view sets are categorized into three classes
by thresholding them to a specific value(Th==0.25). The
categorized classes are ‘‘no-alert’’, ‘‘alert’’ and ‘‘danger’’.
If an ith PXO >=Th, then ithPX is classified into ‘‘danger’’
or to ‘‘alert’’ if value is 0.05<=PXO <Th and if PXO < 0.05
then it is categorized into ‘‘no-alert’’.

After categorization, a copy of pruned sets containing vec-
tors of both views is made, so that the copied version consists
only of each parameter’s category (no-alert(-1), alert(0), dan-
ger(1)) at their respective places. Now these 2 sets (one
with parameter values and another one with category classes)
of a single view are sent for processing to yield respective
compounded l, c, r parameters. Generally a compounded l, c,
r parameter is a dictionary with K-FOV (left, center, right) as
keys, where each key’s(K) value consists of a subset of {float-
valueK & a sub-list}. Here, float-valueK = (max{PXj}; j O),
O represents the distribution of total object classes(7 classes)
as mentioned in Table 2, and j is a specific object class
identified in each K-BOL mask (Fig. 14(c), (d), (e)). Sub-list
consists of object-classes identified in its respective K-BOL
along with their respective parameter’s category(-1, 0, 1). The
generated compounded l, c, r parameters are now analyzed to
generate a final suggestion. In our paper only Front view’s
l, c, r-compounded parameters are Mutual analyzed and the

rear view’s compounded parameters are just checked only for
proximity triggers & alerts. Logically, end users only need
to know objects’ proximity alerts from the rear view so that
they can steer and move accordingly while moving forwards.
So based on this logic front view’s FOVs are very crucial, and
they must be analyzed deliberately, therefore mutual analysis
is performed only on the front view and rear view is just
used for triggering proximity alerts. In mutual analysis of
compounded l, c, r parameters, each parameter belonging to
a K(left or right or center) is simultaneously analyzed with
other FOVs(∈ K) of the same set. We will now detail steps
involved while framing suggestions and proximity alerts to
the end user; Consider front view’s compounded l, c, r param-
eters in which, if a K-key’s value has all -1(‘‘no alerts’’) in its
sub-list then we just simple append ‘‘Nothing in K FOV’’ to
the Final suggestion. On condition that if a left or right FOV
key is skipped in the front-view’s compounded parameters,
we then append ‘‘Please keep towards K1-FOV’’ to the final
suggestion (K1

= left if right FOV is skipped and vice versa,
K1 /∈ K). If a parameter(PXj) belonging to a sub-list of
K’s value is of 0(‘‘alert’’) category then we append ‘‘Alert!!
{jthclass object} in K FOV’’. Now if a parameter(PXj) in
K-sub-list belongs to 1(‘‘Danger’’) class then we mutually
analyze which Q-FOVs (K/∈ Q) have less object density
comparatively, by checking the mini of Q-keys float-values
(QX = min(Q1-max{PXj}, Q2-max{PXj1}); j, j1 O), Q1,2
belongs to either of l, c, r FOVs other than current K FOV(K
Q1,2 = {left, center, right}). Based on the above mutual
analysis we append ‘‘Danger! slow-down {jthclass object}
in K FOV; Better to be towards QX FOV’’ to the Final
suggestion (Figs. 22 and 24). For rear view, simple proximity
alerts with respect to K FOV are appended to Final naviga-
tion suggestion, i.e if a sub-list present in K key’s value of
rear-view’s l, c, r-compounded parameters has a PXj which
belong to 1-‘‘Danger’’ category then we append ‘‘Danger!!
{jthclass object} behind in K-FOV’’ to the final sugges-
tion. Generally the final navigation suggestion is heuristically
framed by appending processed results of every K-Key’s
values present in respective l, c, r compounded parame-
ters of both views (see Tables 4 and 5 for final outputs),
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The proposed method was able to achieve robustness [41]
because, each and every parameters in k-key’s value is col-
lectively analyzed and processed intutively. Final navigation
suggestions generated from this Stage-4 consists of, object’s
proximity triggers (which were identified in the host’s total
FOV range(2FOV

0)) along with navigation suggestions for
the end user to help in avoiding fatal damages & accidents
during driving. Sometimes Stage-4 enters into a dilemma
state, when parameters of all K-keys values present in the
front-view’s compounded parameters consist of 1(‘‘Danger’’)
category (Fig. 23), so performing mutual analysis operation
in these cases is an illogical decision as every FOV is blocked
with an object’s proximity or due to high traffic flow. So,
to tackle the above case (all FOVs blocked) we introduce an
extra submodule(Stage-5), where the input 1650 panoramic
image is directly consumed in order generate a dense depth
map [11], [14], [17]; and robust navigation suggestions are
framed by processing these dense depth maps.

E. STAGE-5: DENSE DEPTH MAP GENERATION AND
ANALYSIS MODULE
This stage is optional, and is entered only when all the left,
center, right FOVs trigger proximity alert above a speci-
fied threshold, otherwise the end-user gets final navigation
suggestions framed by the Stage-4. In this stage a custom
post-processed [28], [52] dense depth map (Fig. 15) is gen-
erated using a network inspired from this paper [53], which
generates a dense depth map(Monodepth2) by self super-
vising a monocular vision. In Monodepth2 [53] they over-
came the limitation of requiring per-pixel ground truth data
by implementing a self supervised model, and they have
proposed 3 architectures (depth, pose & full-res-multi-scale)
with custom loss functions which are auto-masking loss
and min-re-projection loss. These custom loss functions are
used to handle and optimize occlusions and camera-motion
assumptions. Monodepth reduces image artifacts by using a
high resolution-multi scale sampling mechanism the overall
method described is trained on a trino image (I0, I1, I−1) set
of the KITTI dataset [23], [24], and has achieved a bench-
marking performance compared to other depth generation
networks (Table 1). In monodepth2 [53] the current frame of
the trino set is sent to the depth network to create a depth
map. Depth network, CNNs, shared-encoders are pretrained
on Imagenet (they have achieved SOTA performance even
with pretrained models). Previous & next frame(I1, I−1) are
sent to CNNs and pose network (pose network consists of
encoded which encodes I1, I−1 separately). The output from
pose network(Tt t ′ ) and the depthmap generated from depth
network(Dt ) are sent to appearance loss (min-re-projection &
auto-masking losses) & full-res-multi scale sampler units to
generate a final dense depth map (Fig. 15(b)) with minimal
occlusions and artifacts [28]. For this paper we chose Mon-
odepth2 because they have SOTA depth generation method-
ology and high performance(Fβ ) [41] with minimal loss
values, when benchmarkedwith other depth-estimationmeth-
ods on multiple datasets (KITTI-Odometry [22]–[24] depth

TABLE 1. Make-3D [58] benchmarking(Abs Rel, Sq Rel, RMSE, log10) on
different depth map estimation methods.

prediction, Make3D etc), Monodepth2 [53] has RMSE loss
of 4.701 which outperformed other depth-estimation meth-
ods [54]–[57] with a margin of 1.0+on Make- 3D [58],
Table 1 benchmarking analysis.

We have custom evaluated Monodepth2 [53] (Fβ = 0.98)
along with other methods on our custom dataset (Table 1)
by calculating Fβ -score(β = 2) [41] using (12). Our cus-
tom evaluation dataset consists of 100 images taken under
live traffic scenarios, where the host is subjected only to
higher object-flow scenarios with all l, c, r-FOVs blocked.
A common post-processing algorithm [28] is applied on all
the depth maps generated by different methods, the output of
the post-processing algorithm is either left or right. So based
on the classification results of different methods, a confusion
matrix is built to calculate Fβ -score [41]. Here left, right
classes are the input trigger parameters for framing logical
suggestions which tells the end user to follow a specific direc-
tion/side on road (or) in traffic for a safer navigation (Table 5).
We have used a pre-trained model of Monodepth2(M) [53]
(trained on KITTI [23], [24]) and the avg FPS achieved by
using Monodeth2 is ∼10.

Fβ =

(
1+ β2

)
.TP(

1+ β2
)
.TP+ β2.FN + FP

(15)

The Depth map (Fig. 15) generated by Monodepth2 is now
post processed for binary classification. In the post processing
algorithm the depth map is cropped (Fig. 15(a)) so that spatial
analysis is constrained only to relevant regions, so that logical
suggestions can be generated. FOV restriction/cropping is an
important operation because we avoid unnecessary regions
(i.e skies, very far objects (traffic lights, trees, city buildings,
etc)) in the generated depth-map. Moreover, relevant-FOV
extraction helps the over-all algorithm (Stage-5) to run faster
as analysis would be performed on a restricted part of image
rather than the whole image. In Fig. 15(a), the red marked
region is our interested cropped FOV in the entire input
panoramic image. After relevant FOV extraction we per-
form depth-map texture conversion & fine-tuning operations.
In texture conversion methods we convert the RGB-depth
map to HSV format [28] depth map (Fig. 15(c)); and
fine-tuning method involves a sequence of image dila-
tion and erosion operations (I1 = (((I2B) B) B) 2),
where 2=erosion, =Dilation operation) B is a 3*3 matrix
with all ones, except B[1,1](=2). These sequences of erosion
and closing operations [52] helps in strengthening borders
& patterns of objects, and also to cover up and link small
void-contours & edge gaps created during texture conversion
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FIGURE 15. (a) in an input panoramic image, (b) is a dense depth map
generated by the Monodepth2 network [53], and (c) is the HSV formatted
depth map, (d) is the left FTC image and (e) is the right FTC image [28].
(f), (g), (h) are histogram distributions of (c), (d) respectively. Based on
the analysis performed on (f), (g), (h) histogram distributions Red, Green,
YellowPDF values are calculated, and using these PDF values left, right
SRV values are determined.

operation. Image smoothing operation on I1 is performed
using a convolution Gaussian kernel (with σ = 3) [28]
to output a final fine-tuned cropped image(FTC). Now the
above generated FTC image is divided into 2 equal halves,
left FTC image (Fig. 15(d)) & right FTC image(Fig. 15(e)).
Generally in I1, Red spanned [i ∈ (255, 0, 0) -(220, 30,
30)] pixels resembles nearer pixels, Green spanned [j ∈
(0, 255, 0) -(80, 230, 80)] pixels resembles farther pixels
and Yellow spanned [k ∈ (255, 255, 0) -(235, 160, 160)]
pixels resembled middle range pixels. We perform histogram
analysis (Fig. 15(g), (h)) on left & right FTC images to cal-
culate respective R, G, B probability distribution functions,
i.e RedPDF (6iPDF(i)), GreenPDF (6jPDF(j)), YellowPDF
(6kPDF(k)). These PDF values are used to determine respec-
tive Spatial relief values using (16) for both left & right
FTC images. Based on the above discussed methods and
calculated parameters we suggest the end-users either to ‘‘be
towards left’’ if Left-SRV>Right-SRV, or to ‘‘be towards
right’’ if Left-SRV<=Right-SRV . Generally only navigation
suggestions are generated from stage-5 and the suggestions
usually start with ‘‘**All FOVs are blocked!! Suggesting
based on a calculated depth map**’’.

l, r − SRV = l, r − GreenPDF + 0.25× l, r − YellowPDF
− 1.15× l, r − RedPDF (16)

Each of the stages-1, 2, 3, 4, 5 which are discussed in
detail above are built and trained(only stage-2, 3) separately.
The details of training methods, loss functions, hyperparam-
eters used are discussed above at each respective stage’s
description. Training, testing and inferencing5 of our pro-
posed system is done on Intel i7 9th-gen CPU coupled
with Nvidia GTX-1070 GPU. Different Training methods
used above include, 1) Transfer learninig of imagenet pre-
trained [38] F-RCNN+Resnet-101_FPN [35], [36], [37] on
our custom-built dataset along with other traffic datasets
(Udacity, KITTI [23], [24]); the ensembled training data
consists of O=7-object classes (Table 2). 2) In Stage-3,

5Memory space occupied by our proposed method during on-live infer-
ence is <1.4 GB this includes loading all the required meta-data, DNN
weight files, algorithm pre-inputs, storing previously calculated internal
parameter values etc.

we have implemented 2-phase training methodology for the
DSED network to learn & predict on our custom-built &
CUlane datasets [21]. Custom(LTotal)+ Pre-built Loss func-
tions (LCE , LMSE,SE , Lp−t , Lδ) were used during training to
optimize these networks using optimizers (Adam, SGD) [48].
Optimal hyper-parameters for stage-2, 3 were picked man-
ually by checking performance of each tweaked parameter
values calculated using Bayesian hyper-parameter optimiza-
tion technique. Stage-1,4 were built completely using algo-
rithms (ransac [30], DoG [25], HCD [26] etc) and CV
techniques(blending [33], parameter calculations, mask gen-
eration & processing [28] etc). In Stage-5 a dense depth
map is generated using a self supervising network (Mon-
odepth2 [53]) to generate navigation suggestions. These
separately built stages are executed concurrently accord-
ing to the proposed Fig. 3 pipeline during inference phase,
so that the proposed AMMDAS can dynamically generate
robust real-time proximity alerts of objects identified within
adaptive FOV range (θ0) along with corresponding naviga-
tion suggestions (Tables 4 and 5) to ensure safety of the
end-user.

V. EXPERIMENTS, RESULTS & DISCUSSION
We have tested and experimented the proposed system in live
traffic recordings, where an initial setup of 2 smart-phones
or web-cams are mounted to a stand separated by 120cm
distance, the left and right stereo feeds are processed
by stages 1-5 to output corresponding dynamic proximity
alerts along with relative adaptive navigation suggestions
(Tables 4 and 5). To evaluate the generalization and robust-
ness of the proposed DASwe have additionally experimented
on KITTI [24], Udacity6 datasets (Table 5). As dis-
cussed above our custom-built dataset consists of 200+
minutes(110Kms) live traffic recordings, with a total
of 2,67,300+ left-right video frames (1920*1080 resolution)
extracted from the live traffic recordings. Each stereo pair
is taken (Fig. 16(a), (b)) and passed to stage-1 to output
1650 panoramic views (Fig. 16(e), (f)). Stage-1 achieved
a throughput of 14fps during live traffic inferences, and
detailed implementation, methods followed for generating
a panoramic image are discussed above in section 4.A.
In our custom dataset, 2,67,300 left-right stereo pairs yielded
2,53,980 panoramic images, the drop in image count be-
tween input l, r images and output panoramic images is due
to the incapacity of DoG [25]+HCD [26] algorithm to detect
relevant features (Fig. 16(c), (d)) between the l, r images to
perform feature matching during wrapping operation [32],
as the features weren’t mapped to P.T projection plane the
entire panoramic view construction for that respective pair
will be discarded and skipped to next l, r pair. As the failure
rate is <5% this incapacity wouldn’t hinder the performance
of the overall DAS module.

Generated panoramic views are annotated respectively for
the training of stage-2, 3. The objects (O∈ 7-classes) present

6Open sourced at "https://github.com/udacity/self-driving-car"
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TABLE 2. The 1st, 2nd, 3rd columns consist of object classes and their respective labels in the training data of stage-2, along with their respective
segmentation colors in RGB format. Our custom-built data and KITTI [23], [24], Udacity datasets are labeled according to 1st, 2nd, 3rd formats, and
FRCNN+Resnet-101_FPN network [35], [36] is trained on this data. 4th and 5th columns contain lane classes and their respective labels used in D.F.O.V.M
training data, with their respective (R, G, B) segmentation colors. Our custom-built data + CU-Lane data [21] are labeled according to this 4th, 5th
columns format (Fig. 7) and the DSED network is trained on this data.

FIGURE 16. (a), (b) are input left, right stereo images, (c), (d) are
intermediate feature descriptors identified using DoG+HCD algorithms on
(a), (b) inputs respectively; (e), (f) are the final 1650 panoramic view
stitched stage-1’s output (with exposure & artifacts compensated).

in the front view’s panoramic images and rear view’s input
frames are all together annotated based on the color-code
of that respective object’s class present (see Table 2) in
the respective image. These annotated images are used to
train the imagenet pre-trained FRCNN+ResNet-101_FPN
network [35]–[37].

Similarly, 1,00,000 panoramic images are taken, and
the lanes present in these images are annotated accord-
ing to the color code (see Table 2) for that respective
lane-class (Fig. 9(g), (h), (i)) for training the DSED net-
work (Figs. 10 and 11), 5,000 images out of 1,00,000 are
considered for testing and validation, 15,000 panoramic
images(12K for training and 3K for testing, validation)
are processed to convert the input panoramic image into
Fig. 9(d), (e), (f), in which irrelevant surroundings are blurred
and masked [28] to a black background for training mini-ED
network (Fig. 10). In section 4.C (stage-3), 2-phase training
method is implemented, in the 1st phase 15,000 annotated
images are used to train the mini-ED of the DSED net-
work, and in the 2nd phase, main-ED+ step-1 pre-trained
mini-ED are together trained on 1,00,000 custom dataset
+10K CU-Lane [21] +0.5K KITTI [22] images to output
final lane segmented embedding image (Fig. 12(b)). Robust
objects/l, c, r-FOV masks are constructed based on param-
eters/images generated by inferencing the trained stage-2,
3 networks (DSED& FRCNN+Resnet-101_FPN [35], [36]).

In section 4.B (Stage-2), FRCNN+Resnet-101_FPN net-
work is chosen based on REL_ES score (Fig. 17) and

FIGURE 17. Reliability score plot(orange dashed line) of different object
detection methods mentioned in Table 3. Reliability score is calculated
using REL_ES function. The reliability-estimated-score is an inhouse
determined metric(not used for generalized benchmarking), which
generally indicates robustness and dependability of a specific
object-detector when included in the STAGE-2 of AMMDAS.

performance comparison with other object detection
networks (SSD [59], DSSD [60], Center-Net [61], ours, reti-
nanet [62], Yolo [63]–[65]) during benchmarking and experi-
mentation on [19] MS-COCOtest , our custom-traffic datasets.
To measure the performance of each network (in Table 3)
we took 5 parameters (4 parameters are detailed in Table 3,
and 1 parameter in Fig. 17) into consideration mAP [36],
FPSI , FPSO, TPR (true positive rate= #{objects detected
by a respective method}/#{objects in ground truth image}),
FPR(false positive rate= #{False positives detected by a
respective method}/#{objects in ground truth image}) and
REL_ES. mAP is mean average precision with 0.5-IoU-
threshold on the COCO-2017 dataset [19] with 80 classes,
FPSI is ideal frames per second/throughput achieved by a
method (stated in their paper) on respective test datasets
(i.e, KITTI, PASCAL-VOC [20], COCO [19]), FPSKO is
the overall throughput or inference time of our AMMDAS
when Kthmethod is used in stage-2 for Object mask gen-
eration (Fig. 7). TPR, FPR are common evaluation met-
rics [41] to estimate robustness(TP) and accuracy(FP) of
a particular method, here we have calculated the TPR,
FPR of each method on a common test set containing
100 live frames of traffic recordings (custom dataset).
REL_ES is reliability estimate score, which is calculated
using ith-object detector’s mAP, FPSO, TPR, FPR values,
these values are passed as input to REL(Obj(mAP, FPS, TPR,
FPR)) function (REL(obj)= ((mAP+TPR)*FPSO)/FPR)
to estimate final reliability-estimate-score. Based on
bench-marking results (Table 3, Fig. 17), Yolo-V3 [64]
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TABLE 3. Performance of various object detectors on COCO dataset [19]
with 0.5-IoU.

has the highest FPS when compared to all other methods
and Retina-net [62], FRCNN+FPN-Resnet_101, (imple-
mented method [35], [36]) have highest mAP, accuracies +
robust-ness (high TPR, low FPR), [36], [41]. Retina-Net [62]
has the least FPS when compared to other methods, making
it infeasible for live application and detection. Our imple-
mented method (FRCNN+Resnet-101_FPN) has ∼highest
mAP, low-FPR, high-TPR scores [41] with greater FPSI ,O
when compared to Retina-Net [62] (refer to Table 3 for
scores), making it possible to infer in a live environment,
moreover our implemented method has the highest reliability
score with a value of 129 followed by Yolo- V3 with a
score of 102.8. Other methods Yolo-V2 [63], Center-Net [61]
has low performance scores and SSD [59], DSSD [60],
FRCNN [36], Yolo-V3 [64] have decent ac curacy scores and
FPS values, but low TPR values of these methods indicate
their inability to detect all available objects present in a
surrounding, so this results in higher failure rate for trig-
gering proximity alerts, difficulty and insufficiency in fram-
ing robust navigation suggestions as some necessary object
parameters will be missed out during mutual analysis of l,
c, r -BOL masks(stage-4). Fig. 18 illustrates SSD513 [59],
Center-Net [61], YOLO-V3 [64] network’s output object
masks on some of the samples present in the benchmarking
test-set. Center-Net [61] has least the TPR values followed by
YOLO-V2 [63], as it is evident in Fig. 18(e), (k) that center-
net [61] wasn’t able to detect any objects which were present
in the input FOV. SSD513 [59] has the highest FPR value
as it produced the highest FP cases [41] compared to other
methods.

In Fig. 18 (a), (d), (m), (p), SSD513 [59] misclassified
detected objects. Moreover, Yolo-v3 [64] in Fig. 18(f), (l), (r)
wasn’t able to detect every object present in FOV but the
detection results were better when compared to Center-
Net [61], DSSD [60] and SSD513 [59], so YOLO-V3 [64] has
low FPR and better TPR values. FRCNN+Resnet-101_FPN
was able to detect every object present in the FOV and
generated least FP cases [41], in Fig. 18(t), (v), (x) every
object including persons on 2-wheelers (Fig. 18(u), (w)) and
heavy vehicle (Fig. 18(s)), traffic warnings (Fig. 18(x)) etc
were detected. SSD513 [59], Yolo-V-2, 3 [63], [64], Center-
Net [61] misclassified a heavy-vehicle in Fig. 18(s) as a car,
but Retina-net [62], DSSD [60], FRCNN+FPN(our OMM
method) networks were able to classify accurately. Based

FIGURE 18. Object detection results of multiple object-dectectors on our
sample test data, here we compare the results(refer to Table 3 for scores)
of Center-net,YOLO-V3, SSD513, FRCNN+Resnet-101_FPN, (a), (g), (m) are
object detection results of SSD513 with bounding boxes marked around
the respective detected objects; and (d), (j), (p) are object masks
generated by OMM_SSD513. (b), (h), (n) are object detection results of
Center-Net, and (e),(k),(q) are object masks generated by
OMM_Center-net; and (c), (i), (o) are Yolo-V3’s object detection results
and (f), (l), (r) are Object masks of OMM_YoloV3 module. (s), (u), (w) are
object detection results by our implemented
method(FRCNN+Resnet-101_FPN) and (t), (v), (x) are object masks
generated by the proposed OMM module.

on the performance and reliability analysis with accuracy,
throughput and REL_ES values as criteria from Table 3,
Fig. 17 we were able to conclude that FRCNN+resnet-
101_FPN network [35]–[37] was the most suitable to be
included in Stage-2 (refer to section 4.B) for generating
dynamic object masks.

DSED network (of D.F.O.V.M) implementation and train-
ing details are discussed in detail at section 4.C, the final
output of the DSED network is a lane segmented embed-
ding image and this output is further passed to lane point
clustering algorithm [46] to generate respective lane clusters
so that l,r parameters can be calculated to adaptively model
the polygons present in l,r FOV masks (final D.F.O.V.M’s
output) [28], polygons present in center FOV masks are
constant under any scenario (Fig. 21(i)). We evaluate the
performance of stage-3 and DSED network by measuring
the average of deviation between calculated l, r offset val-
ues (refer Fig. 20) and ground truth l, r offset values under
different traffic/object-flow and lane visibility conditions.
Different scenarios (Figs. 19 and 20) which were consid-
ered during D.F.O.V.M evaluation are 1: Low-Lane Visi-
bility, 2: Moderate-Lane Visibility, 3: High-Lane Visibility,
4: Low-Traffic flow, 5: Moderate-Traffic flow, 6: High-traffic
flow. The l, r deviation between predicted and ground truth is
calculated on a total of 2500 test-set samples (Figs. 19 and 20)
using (17). Images present in the test-set consider different
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FIGURE 19. (a), (c), (e), (g), (i), (k) are different input scenarios given to
the D.F.O.V.M module during performance analysis test, where each input
image belongs to different scenarios i.e based on visibility of lane
markings and object flow present in the outside environment. Different
scenarios are detailed in Figure 22; and (b), (d), (f), (h), (j), (l) are the final
lane segmented embedding images generated by the DSED network when
respective input scenarios are fed to it. The lane segmentation in the final
embedding images is performed according to the color codings (with
respect to ith-lane class) mentioned in Table 2.

levels(lowmoderate, high) of traffic flow and lane-visibilities
for evaluation.

Where N = ∼400 images are sampled for each scenario,
so that there wouldn’t be any bias towards a specific scenario
during 1N l, 1N r, 1NO calculation. Based on the above
calculated values (Fig. 20) we can evaluate the robustness
& accuracy of our AMMDAS in adapting to the outside
surroundings under different scenarios. The feed from rear
view isn’t modeled because we follow a fixed FOVwhichwill
be followed throughout the execution in multiple stages, here
fixed FOV refers to constant shape (Fig. 21(i), (j), (k)) of the
polygons present in l, c, r FOV masks. Stage-3 performs very
phenomenally well in High, moderate-Lane visibility & low,
moderate-traffic flow conditions with a normalized deviation
of less than 0.1 with respect to ground truth (refer to Fig. 20).

4
l
N =

1
N
×

N∑
i=0

(
4
l_offset
pred,GT

)
4
l_offset
pred,GT = l_offsetpred − l_offsetGT ;

4
r
N =

1
N
×

N∑
i=0

(
4
r_offset
pred,GT

)
4
r_offset
pred,GT = r_offsetpred − r_offsetGT ;

4
O
N =

1
N

N∑
i=0

(
4
l
i +4

r
i

2
) (17)

Let’s discuss the performance (1 values are mentioned
in Fig. 20 for different Figs. 19, 22 and 24 scenarios7) and
outputs of D.F.O.V.M in Fig. 19 sample cases. Fig. 19(a), (k)
have high lane line visibility and our DSED network gener-
ates lane segmentation maps (Fig. 19(b), (l)) close to ground
truth in these cases and Fig. 19(i), (g), havemoderate lane vis-
ibilities and even in these cases our DSED network generated
lane segmentation maps (Fig. 19(j), (h)) close to ground truth
and Fig. 19(c) have low-lane visibility and in this case, our
DSEDnetwork outputs (Fig. 19(d)) an embedding imagewith
slight distortions near lane segmentations. These distortions

7Diffrent scenarios in this very respective benchmarking analysis refer
to 1:Low-Lane Visibility, 2:Moderate-Lane Visibility, 3:High-lane Visibility,
4:Low-traffic flow 5:Moderate-traffic flow, 6:High-traffic flow.

FIGURE 20. Performance benchmarking of the proposed method
D.F.O.V.M under different external scenarios, where the scenarios are
picked based on different lane visibility and object flow. Here we measure
the deviations of left, right-offset values (1N l(blue colored line), 1N
r(orange colored line), 1N O(green colored line)) between DFOVM’s
predicted and ground truth values under these different scenarios.

are caused due to the miss-classification of main-ED’s L27
softmaxlayer in DSED, this misclassification happens due to
dull lanes markings or due to large breaks in lanes, so feature
maps extracted on these particular patches/image areas will
be of low quality and these, low quality feature-maps raise FP
cases [41] during L27 softmax classification leading to distor-
tions and irregular lane thickness, patches in lane segments.
These distortions and disturbing patches cause irregularity
in lane clusters generated by the LPC algorithm therefore
leading to small deviations in 1 values from G.T values.
Fig. 19(a), (c), (g), (k) have low traffic flow and under these
environments our DSED outputs lane segmented embedding
image (Fig. 19(b), (d), (h), (l)) with highest IoU ( the high-
est similarity to ground truth images) values with respect
to ground truth images. In Fig. 19(e), (i) the traffic flow
is moderate and in these cases our DSED sometimes gen-
erates embedding images (Fig. 19(d)) with slightly bloated
lane segments leading to irregular thickness & structural
orientations, this happens because objects and vehicles in
FOV partially block the lane lines present on road leading
to incomplete input lane patterns during prediction for lane
segments in the final embedding image. When a lane is
partially blocked by objects in input, our DSED estimates
the blocked lane using an aggregated polynomial function
approximated from lane patterns of ground truth annotated
images (Fig. 9(g), (h), (i)), based on these estimated lane pat-
terns, DSED segments the extracted lane patterns according
to respective class’s RGB color code (Table 2) to output final
lane segmented embedding image. Incomplete Lane approx-
imation can yield reliable outputs if at least 30% of the initial
lane pattern is visible to the DSED network for prediction.
Therefore, in these moderate traffic flow scenarios the devi-
ation (Fig. 20, 1N O) rises from 0.01 to 0.15. In High traf-
fic flow (Fig. 23(a), (c), Fig. 18(s)) cases the deviation value
(Fig. 20) raises from 0.14 to 0.56 because the input lane lines
are completely blocked(<30%), therefore the DSED network

VOLUME 8, 2020 198769



V. S. Desanamukula et al.: AMMDAS: Multi-Modular Generative Masks Processing Architecture

FIGURE 21. (a) to (i) are front view’s adaptive left, center, right FOV
masks; and (m), (n), (o) are rear-view’s fixed left, center, and right FOV
masks. (a), (c), (e), (g) are left FOV masks where the
white-contour/polygon inside left-FOV mask is modeled according to the
left-offset value estimated by the DSED+LPC algorithm [46], (i) is the
center FOV mask and the contour/polygon inside center FOV remain
constant under any situation. (b), (d), (f), (h) are right FOV masks where
polygons inside r-FOV masks are modeled according to the r-offset value.
Based on the Contours/polygons present inside l, c, r-FOV masks, FOV
range (2FOV

0) in that particular scenario can be determined using (13).
Generally, the range of 2FOV

0 is in between 920-1450.

cannot deduce any polynomial relations for lane patterns to
estimate the incomplete lane lines in the final embedding
image, so the output consists of irregular lane segmentation
patterns with no proper correlations between them because
L27’s softmax layer receives final L26,27 -feature-maps with
no lane patterns extracted for prediction.

As discussed in section 4.C, l, r offset values are functions
of both lanes, vehicles present in the external environment.
So in high traffic flow scenarios the l, r offset parameters
are majorly dependent on objects, vehicle density rather than
lanes present outside, because LPC algorithm [46] tends to
generate improper clusters and parameterization on these
clusters leads to irregular semantic relations between the
centroids. Therefore, 1N O value raises during high traffic
flow as l, r offsets are calculated with major attention given
towards external vehicles rather than on-road lanes, even in
these cases, the generated l, c, r-FOVs were able to frame
logical suggestions with reliable proximity triggers. Gener-
ally, in most of the high traffic flow cases, stage-4 includes an
extra operational pipeline(as all l, c, r FOVs trigger proximity
values above threshold) to execute stage-5 where a dense
depth map [53] is generated to frame more robust navigation
suggestions, thereby reducing failure and F.P cases [41].
Fig. 21(a)-(i) shows front view’s l, c, r FOV masks respec-
tively and Fig. 21(j), (k), (l) are fixed rear view’s l, c, r FOV
masks. White colored contours present in l, c, r FOV masks
are the polygons which were modeled using respective l,
r offset values. Fig. 21(a), (i), (b) are stage-3’s output, when
panoramic images corresponding to Fig. 19(k), (i) were given
as input, here l, c, r offset parameters are 2, 1, 1 respectively,
l-offset spans to a value of 2 and r-offset only to 1 because
the host’s input environment has more space towards left
rather than the right side, so we model polygons accord-
ingly in l, r FOV masks to cover more area towards left
FOV so that more analysis [28] will be performed towards
left to frame robust and logical suggestions and proximity
alerts. Fig. 21(c), (i), (d) are outputs when inputs similar to
Fig. 19 (c) are passed to stage-3, here l, c, r offset values
are 1, 1, 2 (c-offset value remains constant(equals to 1) under
any situation (Fig. 21(i))) respectively this is because spatial

relief/space towards right side is more when compared to
left. Fig. 21(e), (i), (f) are l, c, r-FOV masks respectively
when Fig. 19(g) similar inputs are fed to stage-3, the l, c,
r offset values are 2, 1, 2 respectively, here both l, r offset
values are spanned to 2 because, left and right FOVs have an
equal area which should be analyzed and both of the sides
have an equal distribution of objects and spatial area so under
these cases l, r offset values will be spanned equal. When
stage-3 processes input scenarios which are in the nature of
Fig. 19(a), (e) it outputs Fig. 21 (g), (i), (h) as l, c, r-FOV
masks respectively based on l = 3, c = 1, r = 1 offset values,
and l-offset value is 3 in this case because to the left there are
2 lanes (immediate left, left/pedestrian-service), so to analyze
and process the entire left FOV we span the l-offset value to
maximum(3) so that the estimated overall FOV (2FOV

0 cal-
culated using (13)) adapts dynamically according to the host’s
external environment. FOV range may vary from 920-1450

accordingly, minimum FOV range(920) when l, c, r offset
values are 1, 1, 1 respectively, and when l, c, r are 3, 1, 3 then
the system covers a maximum FOV range of 1450.

The above generated front & rear view object and l, c,
r-FOV masks are cumulatively passed as inputs to Mask post
processing [28], [52] and logic decision module of stage-4,
to dynamically output proximity alerts and adaptively frame
robust navigation suggestions based on external conditions
and environments. Initially stage-4 post-processes [28] the
inputs (refer to section 4.B, 4.C) from previous stages to
output l, c, r-BOL masks, so that PXo

i parameters can be cal-
culated(using (14)) to generate compounded l, c, r parameters
for both front and rear views. These compounded parameters
are mutually analyzed to output final proximity triggers and
navigation suggestions. Detailed explanations of the steps
involved in stage-4 are mentioned in section 4.D.

Here in this section we would like to cover different real
time scenarios faced (Fig. 22 (a), (b), (c), (g), (h), (i), (j),
(k), (l), (m)) while inferring on live traffic recordings along
with performance & results((Fig. 22 (d), (e), (f), (n), (o),
(p), (q), (r), (s), (t)) of the proposed system (AMMDAS) in
these scenarios. Table 4, 1st column contains image_labels
of multiple scenarios in live traffic & [21], [23], [24], [66],
where each scenario contains either of the l, c, r FOV blocked
by vehicles/objects, these scenarios in Table 4 are general-
ized, i.e during a live inference in real world traffic most
of the input-frames, video-clip probably belongs to either
one of these scenarios mentioned in Table 4. Table 4 2nd
column consists of stage-3, 4 intermediate output parameters,
which are necessary for framing suggestion and proximity
triggers, 3rd column consists of final outputs. Each image
present in Fig. 22(a), (b), (c), (g), (h), (i), (j), (k), (l), (m)
resembles scenarios faced during a live traffic inference.
Fig. 22(a), resembles a situation in which left & right FOVs
are blocked by vehicles and center FOV consists of less
object density compared to left, right FOVs. Inputs similar to
Fig. 22(b) scenario has both right and center FOVs blocked
by vehicles present on road and left FOV has comparatively
less object concentration. Fig. 22(c), (i) both resemble left,
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FIGURE 22. (a)-(t) consists of sample input panoramic images along with
corresponding outputs which consists of framed proximity alerts and
navigation suggestions. (a), (b), (c), (g), (h), (i), (m) are front view’s
panoramic input fed to the AMMDAS, simultaneously with (j), (k), (l) rear
view’s input feed. Here (g, j), (h, k), (i, l) pairs belongs to the same
respective input instances. Adaptive left, center, right-FOV markings are
drawn along with bounding boxes around the detected objects, and the
AMMDAS’s final output proximity alerts and corresponding navigation
suggestions are also inscribed on these marked input panoramic images
to simulate the final DAS output illustrations ((d), (e), (f), (n), (o), (p), (t)).
Detailed description on the generated outputs is given in Table 4.

right FOVs blocked and right FOV containing low object
density scenario, but in Fig. 22(i) vehicles present in the
host’s FOV range have closer proximity when compared to
vehicles in Fig. 22(c). Input feed (Fig. 22(a), (b), (c), (m))
does not contain any proximity alerts from rear view so their
corresponding rear-view’s feed is ignored (in Fig. 22), but
Fig. 22(g), (h), (i) have proximity alerts from rear-view so
their respective rear-view input feed is shown in Fig. 22.
Fig. 22(g) has only left FOV blocked leaving right, center
FOV comparatively free, and Fig. 22(h) has right FOV com-
pletely blocked and the other two FOVs have less object
density compared to right FOV. Fig. 22(m) has proximity
triggers only from center FOV, as the other two l, r-FOVs
have lower object spatial concentration (i.e density) than the
threshold (detailed section 4.B). Fig. 22(j), (k), (l) are input
rear view’s feed for respective front view(Fig. 22(g), (h), (i))
input panoramic feed. Fig. 22(j) has left FOV blocked and
Fig. 22(k), (l) have both left & right FOVs blocked, in rear
view the FOVs are inverted, where left (in image) implies
right (in the real world) and vice versa this is because the
front-view capturing cameras and rear view capturing cam-
eras are placed in opposite directions (Fig. 1(a)) due to this the
views in rear view images appeared to be inverted from real
world view, and we output the proximity triggers+navigation
suggestions with respect to real world’s view/perception.
Table 4 2nd column contains l, r-offset valueswhich are stage-
3’s output for a respective 1st column input; based on these l,r
offset values2fb

FOV FOV-range(13) covered in that respective
jth 1st column scenario is also listed along with l, r offset val-
ues in 2nd column,2b

FOV is constant (650) under any scenario
but2f

FOV is function of l, r-offset values and varies adaptively

FIGURE 23. (a), (b), (c) are input images and (d), (e), (f) are corresponding
HSV formatted depth maps generated by the Monodepth2 network
[53]; [28] (red pixels represent the closest pixels and green represents the
farthest pixels and the intermediary distant pixels are represented by
orange and pink). (g), (h) are left, right FTC images generated for
(a) input; (i), (j) are l, r-FTC images generated [52] for (b) input; and (k),
(l) are l, r-FTC images generated for (c)-input. Based on histogram
distributions and analysis on (g)-(l) l, r-FTC images Red, Green, YellowPDF
values are calculated and, using these PDF values left, right SRV values
are determined.

based on the input & host’s external factors. Front/rear com-
pounded l, c, r parameters (stage-4’s intermediate outputs;
techniques, algorithms [28], [52], steps involved in calcu-
lating these compounded l, c, r-parameters are detailed in
section 4.D) of every 1st column’s input scenario are also
listed in 2nd column along with stage-3 outputs. These l, c,
r-compounded parameters are key-value maps (dictionaries)
with jth object’s (R, G, B) color code (which are in proximity)
as keys and that respective jth object’s PX as values. Table 4’s
3rd column contains(stage-4’s final output) final proximity
alerts for objects, vehicles which are in 2FOV range along
with corresponding navigation suggestions for respective 1st
column front+rear view input feed. In 3rd column, text under
‘‘ **normal** ’’ font indicates jth object’s proximity trigger
in K-FOV and text in ’’ italic+bold’’ indicate correspond-
ing navigation suggestions which were framed by mutually
analyzing respective parameters present in the 2nd column of
Table 4.

These proximity alerts and navigation suggestions
(stage-4’s output) are robust and are reliable in most of
the scenarios, but under some exceptions where the traffic
flow is very high or the host vehicle’s FOVs are completely
blocked (all K-FOVs are blocked by surrounding objects;
Fig. 23(a), (b), (c)) we include an additional Dense Depth
Map generation and analysis module i.e stage-5 in the
AM-MDAS inference pipeline. In Stage-5, input from
stage-1 is converted to a dense depth (Fig. 15(b)) map by
monodepth2 network [53]. We chose the Monodepth2 [53]
network based on benchmarking ((15) Fβ , RMSE) results
(Table 1) with other monocular and stereo dense depth
map generation modules [54]–[57]. This depth map is post-
processed [52] to generate It (Fig. 23(d), (e), (f)) and from
this It we extract left, right-FTC images (Fig. 23(g), (h), (i),
(j), (k), (l), Fig. 15(d), (e)) so that left, right-SRV values
can be calculated using R, G, BPDF (using (16)) values
of these l, r-FTC images(details are mentioned above in
section 4.E) to frame final robust navigation suggestions to
the end-user. Outputs from stage-5 contain only navigation
suggestions and does not include any proximity triggers
because stage- 5 is generally applied to inputs only when their
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available FOVs are blocked by outside vehicles, so triggering
proximity alerts in this case would lead to redundancy in
output alerts and cluttred navigation suggestions to the end
user. Outputs/suggestions from stage-5 start with ‘‘All FOVs
are blocked!! Suggesting based on a calculated depth map’’
followed by a navigation suggestion (suggesting either to
be towards left or right). Fig. 23(a) yields Fig. 23(d) as
HSV post processed [28] dense depth map when fed to
Monodepth2 network [53], and Fig. 23(g), (h) are corre-
sponding left, right FTC images and, here in this case the
left-SRV value is greater than right-SRV value, moreover
it is evident that Fig. 23(h) has less RedPDF , YellowPDF
when compared to Fig. 23(g), so the final suggestion in this
case would be ‘‘**All FOVs are blocked!! Suggesting based
on a calculated depth map** Better to be towards right’’.
For Fig. 23(b), (c) the resulting output HSV format depth
maps [28] are Fig. 23(e), (f), now from these Depth maps
respective left, right FTC images (Fig. 23(i), (j), (k), (l)) are
processed [52] and extracted, in both of the above cases(b,
c) left-SRV value is greater than right-SRV value, because
Fig. 23(i), (k) have greater GreenPDF values and lower
YellowPDF , RedPDF values when compared to Red, Yellow,
GreenPDF values of Fig. 23(j), (l); generally upon manually
analysis of Fig. 23(b), (c) it’s clearly evident that left side
FOVs are more clear and have less object densities when
compared to that of right side FOVs, So in these cases stage-5
outputs ‘‘**All FOVs are blocked!! Suggesting based on
a calculated depth map** → Better to be towards left’’.
The final outputs(Fig. 22(d), (e), (f), (n)-(t)) from Stage-4
& stage-5 are given to the end users in an interactive way,
this output interactivity is modular which includes display
on input panoramic feed, voice alerting, predefined-vibrating
formats FPGA probing etc. In this paper we follow display on
image format, where the outputs from stage-4, 5 are written
on stage-1’s panoramic image which is constructed from l,
r input stereo feed.

Further discussion and analysis would be based on outputs
and performance of the proposed system on different public
datasets (KITTI [24] andUdacity [66]). Fig. 24(a), (b), (c), (d)
and Fig. 24(i), (j), (k), (o) are input feed given to the proposed
system and Table 5 contains the details and outputs for these
Fig. 24 inputs. 1st, 3rd columns in Table 5 contain inputs from
both Udacity and KITTI dataset [24], [66]. 2nd, 4th columns
of Table 5 detail about the outputs (i.e proximity alerts along
with corresponding navigation suggestions) generated from
either stage-4 or stage-5 for a corresponding 1st, 3rd columns
input. Moreover, 1st, 3rd columns also include respective
Fig. 24 input’s stage-3 internal calculated parameters (l, c,
r-offset values, 2FOV ) Based on the qualitative results from
Tables 4 and 5 the proposed system/method was able to
generate robust navigation suggestions by adaptively adjust-
ing its FOV based on the external environment and also we
were able to trigger proximity alerts with very low FP cases
and high TP rate [41]. We have applied Bayesian optimiza-
tion [67] on thresholding parameters in stage-2, 3 with an
objective function to minimize the overall FPR value and to

FIGURE 24. Input Udacity [66]/KITTI [24] dataset images and their
respective outputs along with corresponding proximity alerts and
navigation suggestions. (a), (b), (c), (d), (i), (j), (k), (o) are KITTI/Udacity
dataset inputs fed to the AMMDAS. Adaptive left, center, right-FOV
markings are drawn along with bounding boxes around detected objects,
simultaneously the AMMDAS’s final output proximity alerts and
corresponding navigation suggestions are inscribed on these marked
input panoramic images to simulate the final DAS output illustrations (e),
(f), (g), (h), (l), (m), (n), (p). (a), (b), (c), (d) inputs belong to the Udacity
road dataset; and (i), (j), (k), (o) belong to the KITTI dataset. Detailed
description on the generated outputs is given in Table 5.

increase TPR value [41] on the sample test dataset contain-
ing ensemble of all the above used data, later we manually
tweaked threshold parameters in stage-4, 5 so that the final
output contains generalized robust navigation suggestions.
Fig. 24(a), (d) are underexposed and dark, Fig. 24(o) is over
exposed to light and some images contain heavy shadows
of respective objects/vehicles present outside(Fig. 24(a), (j));
even in these irregular lighting conditions and wild envi-
ronments our proposed stages were able to generate Object
masks, FOV masks and depth maps accurately and reliable,
and the proposed pipeline was able to calculate internal
parameters with robustness and minimal loss and, the result-
ing output to end user was very reliable.

In Fig. 25, the performance [41] of proposed AMMDAS
‘‘with’’ and ‘‘without ’’ crucial proposed methods & features
are measured for different scenarios. Different scenarios in
this performance analysis refer to different lane visibility and
traffic flow situations, different scenarios (x-axis) referred
these graphs are 1: Low-Lane Visibility, 2: Moderate-Lane
Visibility, 3: high-Lane Visibility, 4: Low Traffic-flow,
5: Moderate traffic-flow, 6: High traffic-flow, 7: wild/Noisy
conditions. These plots in Fig. 25 show the benefits and
performance gain (in terms of TPR and FPR values [41])
achieved by including our proposed methods, features in a
system. These proposed crucial methods, features are the
functionalities that bring uniqueness and robustness in perfor-
mance to our proposed AMMDAS. These features were com-
prehended and included upon brainstorming disadvantages
and back-drops involved in other relevant DAS & ADAS
systems.

The above mentioned crucial methods, feature are
1) processing wide panoramic feed (Fig. 25 top-left)
which is generated by stitching stereo left, right cameras
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TABLE 4. Description of the proposed DAS’s outputs (proximity alerts with navigation suggestions) along with intermediary stage wise internal outputs
i.e parameter values calculated in stage-3, 4 for respective Figure 22 inputs. 1st Column contains Figure 22 inputs, and 2nd Column contains stage-3,
4 internal calculated parameters (l, r-offset values, Front rear views l, c, r-compounded parameters) and 3rd Column contains the final proximity alerts
along with corresponding navigation suggestions for respective 1st column inputs.

feed, 2) Implementing Adaptive field of view modeling
(Fig. 25 top-right), 3) Mutually analyzing all the left, center,
right FOVs (Fig. 25 bottom-left) in both front and rear view
to generate intuitive proximity triggers and navigation sug-
gestions and 4) Not restricting FOV range during input and
processing + advantage of including monocular dense depth
analysis during ambiguous situations (Fig. 25 bottom-right).
Fig. 25 performance analysis is conducted on a testset with
6200 images, this test-set contains ∼1000 images per each
scenario(1-6) and ∼230 images for 7th scenario (wild/noisy
conditions) only. TPR, FPR values for ‘‘with’’ and ‘‘with-
out’’ systems are calculated according to the equation men-
tioned in Fig. 25 description. Generally ‘‘with’’ (orange,

brown plotted lines, refer to each plot’s legend in Fig. 25)
plots are ground truth, i.e our proposed AMMDAS’s per-
formance plot in these different 1-7 scenarios (x-axis).
In Fig. 25 top-left plot, the TPR values decrease & FPR
values [41] rise slightly for ‘‘with-out’’ system’s plot under
high & moderate traffic scenarios because the AMMDAS
wasn’t getting an insightful broader input view for processing
to generate final proximity triggers+navigation suggestions.
For Fig. 25 top-right plot, the FPR values for ‘‘with-out’’ plot
raise under high traffic flow and low, moderate-lane visibil-
ity scenarios and, TPR values of the same system drops at
low, moderate lane visibility and high traffic flow scenarios,
because when a DAS system performs adaptively modeling
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FIGURE 25. Performance True-positive(TPR), False-positive-rate(FPR) plots of the AMMDAS with and with-out crucial methods/features which were
introduced in this paper. Description and details of the plots are mentioned in legends, and in corresponding axis data. TPR and FPR values are
calculated using [TPR=#{True-positive [proximity triggers+navigation suggestions] framed on test dataset}/#{G.T proximity trigger and navigation
suggestions present in test dataset}], [FPR= #{False-Positive [proximity triggers+navigation suggestions] framed on test dataset}/#{G.T proximity
trigger and navigation suggestions present in test dataset}].

FOV it can increase the chance of capturing and processing
crucial objects, vehicles for generating final proximity alerts
and suggestion, which are omitted in general scenarios and
processing of these crucial objects increase the reliability
and performance of a specific system. In Fig. 25 Bottom-
left plot both TPR and FPR values [41] (of blue and green
plotted lines) of ‘‘with-out’’ show higher fluctuations from
‘‘with’’ plot (orange and brown plotted lines) in moderate and
high traffic flow scenarios because mutually analyzing each
available FOV will increase the reliability of compounded l,
c, r parameters calculated in stage-4, so that better logical
navigation suggestions can be framed in the final outputs.
Fig. 25 Bottom-right plot consists of ‘‘with’’ & ‘‘with-out’’
plots of both ‘‘restricted FOV’’ (blue and green line plots)
and ‘‘extra depth analysis’’ (violet and brown line plots)
features, in this plot; G.T plots i.e ‘‘with-out restricted-FOV’’’
and ‘‘with extra depth analysis’’ are plotted with orange and
red dashed lines, in this case FPR and TPR plots [41] of
‘‘restricted FOV’’ deviate from GT plots in every scenario
except high lane visibility, low-traffic flow scenarios, because
larger input FOV can give the system more attributes, crite-
rias, arguments during processing to frame internal param-
eters for generating broad insights on external surrounds to
frame much more correlated logical suggestions; TPR, FPR
plots of ‘‘extra depth analysis’’ deviate from GT only under
high traffic flow scenarios, because during high traffic flow
scenarios more objects, vehicles in external surroundings get

involved while estimating front-rear view compound param-
eters. So mutual or calculated parameters in these cases
generate inaccurate alerts and suggestions because we are
considering 2D areas of vehicles during K-BOL masks gen-
eration and internal parameter calculation, moreover as dis-
cussed above l, r offset parameters show higher deviations
(Fig. 20) from ground truth in high traffic flow scenarios,
therefore we have modeled our AMMDAS to enter depth
analysis mode (stage-5) automatically during these ambigu-
ous situations. So from the above benchmarkings, discussions
and results, it’s evident that the proposed system(AMMDAS)
generates promising results in most of the scenarios and live-
conditions. AMMDAS is a cost-effective DAS as it requires
input feed only from front & rear view cameras, with no
additional requirement of costly sensors (LIDAR, Radar etc.),
our DAS runs on live and generates very reliable proximity
alerts and suggestions in an interactive way to ensure the
safety of end user during navigation.

VI. LIMITATIONS AND FUTURE WORK
The Limitations of the proposed DAS are, we do not consider
extreme left & right field of views (FOV beyond 1650),
generally to cover this extreme left and right fields of view
we need to increase the FOV range to 3600, by doing so
extra computational cost is required, simultaneously increas-
ing the overall latency time. This proposed DAS fails to
produce accurate results in extreme wild and noisy scenarios,

198774 VOLUME 8, 2020



V. S. Desanamukula et al.: AMMDAS: Multi-Modular Generative Masks Processing Architecture

TABLE 5. Description of the proposed AMMDAS’s outputs (proximity alerts with navigation suggestions) on Public udacity [66] & KITTI
datasets [24], [23](Figure 24 inputs).1st, 3rd columns contains Figure 24 inputs along with corresponding DFOVM’s internally calculated parameters (l, c,
r-offset, 2FOV values); and 2nd, 4th Columns contains final proximity alerts with navigation suggestions for respective 1st, 3rd columns inputs.

i.e during heavy rainfall, very dull lights (nighttime with
no street lighting), irregular terrains with no roads, etc. Our
DAS system requires minimal manual calibration at the very
start to yield more accurate results. The framed suggestions
are sometimes lengthy with redundant structural repetitions
and irregular grammatical formations (we plan to include
NLP modeling in the future work for better interactivity).
Currently, we are not considering traffic-light status, warning
or caution symbols, pot-holes, and breakages [17] present
on the road as criteria for framing navigation suggestions.
Moreover, we mainly focus on spatial relationships between
objects present in the input feed, results can be more accurate
and reliable if temporal analysis between objects is also
included, but by doing so the latency time, computational
costs of a system increases. Moreover, we don’t alert the
driver or user under the proximity of any upcoming road turn-
ings, curvatures. Our current methodology considers only 2D
(w, h) object coordinates during stage-2, so plan to implement
object detection in 3D (l, w, h) coordinates [68], [69] for
stage-2. We also plan to introduce Advanced polygon mod-
eling in D.F.O.V.M by implementing curvatures in edges for
polygons in l, c, r-FOVmasks with respect to on road lane line
curvatures for extra robustness and reliability. The current
research work mainly focuses on proposed AMMDAS sys-
tem architecture and details about proposed sub-modules and
their respective implementations; generally, a complete end-
to-endDAS/ADAS systems require an on-premise bare-metal
deployment (i.e on custom-built processor & hardware units)
during live inferences. So, our future work includes details
about optimized MIMO-hardware-implementations [70] of
our AMMDAS on custom hardware units.

VII. CONCLUSION
This paper introduced a DAS which adaptively models its
FOVs according to external dynamic surroundings. Based
on the object’s proximity in the adaptive FOV (θ0FOV ) range,
proximity alerts along with corresponding navigation sugges-
tions were triggered to the end-user. This paper implemented
amulti-stage strategywhere each stage was built individually,
andwere concurrently executed together according to the pro-
posed pipeline during inference. This paper overcame some
of the major challenges & feature incapacities faced by other
DAS systems (refer to section 2, Fig. 25), and was able to
generate robust alerts and navigation suggestions even during
poor lane visibility, high traffic flow andwild conditions (out-
puts in Tables 4 and 5). Each Stage introduced in our proposed
pipeline tries to solve issues faced by existing vision based
DAS systems. Where the proposed stage-1 generates a 1650

wide panoramic view to create broader input FOVperspective
for the later stages to processes, and stage-2 generates object
masks for a respective input view using FRCNN+Resnet-
101_FPN network [35], [36] to accurately identify object
and vehicles (and their types) which are present in the input
FOV. D.F.O.V.M of our pipeline generates a lane-segmented
embedding image using the proposedDSEDnetwork to adap-
tively model its FOV based on external lanes and surround-
ings. Stage-4 processes all the previously generated masks
of both front and rear views to mutually analyze them, for
generating robust and reliable proximity alerts alongwith cor-
responding navigation suggestions. Stage-5 is elective, and is
operational only under special cases to guarantee extra safety
to the end-user by generating reliable navigation suggestions
during high traffic flow. Although significant challenges were
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handled in this paper, there will be a never ending quest for
improvements in any technology, therefore some of the future
enhancements we plan to include are mentioned in Section 6.
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