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ABSTRACT The Online Neuro-Fuzzy Controller (ONFC) is a fuzzy-based adaptive control that uses a
very simple structure and can control nonlinear, time-varying and uncertain systems. Its efficiency and
low computational cost allowed applications in several industrial plants successfully. However, none of
the previous works on the ONFC provided a design procedure endowed with formal guarantees of robust
closed-loop stability. In this paper, some conditions for ONFC robust stability, considering system polytopic
uncertainties, are presented using the Lyapunov method. A new adaptation rule is proposed that dynamically
varies the adaptation gain and incorporates the dead-zone technique to ensure robustness to the noise
measurement. A reference model is also introduced, in order to allow a direct specification of the closed-loop
dynamics. Simulation results show that the new design conditions present good performance in the control
of several types of systems.

INDEX TERMS Adaptive control, fuzzy control, ONFC, robust stability.

I. INTRODUCTION
The fuzzy control is typically seen as adaptive. It usually deals
with nonlinear dynamics using weighted interpolation, either
considering local models or simply combining controllers for
different operational points. However, some structures based
on fuzzy systems bring the capability of recursive adaptation
as a tool to manage nonlinearity, uncertainty, and parametric
variation [1]–[3]. Neuro-fuzzy networks combine fuzzy logic
with neural networks and are widely used in the context of
adaptive control [4], [5]. Due to their feature of universal
approximators [6] they are powerful tools in the areas of iden-
tification, control, and especially adaptive systems [7]–[9].
Nevertheless, in order to control nonlinear systems, a neuro-
fuzzy controller usually has a large number of fuzzy sets in
the antecedents or consequents. This reduces interpretability
and renders the stability analysis rather complex.

Stability is a central problem in adaptive control, as an
implicit feedback loop performs the automatic tuning of
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the controller parameters. This dual feedback makes the
closed-loop system nonlinear and time-varying. In the case
of Neuro-Fuzzy controllers the stability analysis is usually
complex, in spite of its known simplicity of design. When
stability conditions are found, they are sometimes so restric-
tive or complex that adaptive control is discouraged when the
problem is solvable by simpler techniques [8].

Several works deal with different approaches for adaptive
control based on fuzzy systems. For instance, [10] presents
a state-feedback fuzzy controller for a flexible robotic arm.
In that work, an explicit fuzzy model of the plant is built,
and the robust stability is established via Linear Matrix
Inequality (LMI) conditions. More recently, [11] presents
an adaptive fuzzy output-feedback controller for switched
nonlinear systems. That work deals with unknown dynam-
ics using fuzzy systems for performing approximations, and
an observer for performing state estimation. The Lyapunov
method is employed for establishing the closed-loop stability.
The reference [12] studies the issue of model uncertainties
introduced by communication failure in networked systems.
The control design is an output feedback dissipative tracking

193768 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-6016-9025
https://orcid.org/0000-0003-0814-6314
https://orcid.org/0000-0003-3278-9395


E. D. S. Oliveira et al.: Online Neuro-Fuzzy Controller: Design for Robust Stability

controller of T-S fuzzy systems with a reference model, and
the corresponding design conditions are given in the form
of LMIs.

This paper is concerned with a new version of the ONFC
controller (Online Neuro-Fuzzy Controller), a fuzzy con-
troller which has a much simpler structure than most of the
recently proposed fuzzy controllers. The first ONFC con-
troller has been proposed in [13] as an adjustable parameter
controller that uses the output error information to tune its
consequents. This kind of technique is known in the adaptive
control literature as a direct adaptation method (does not
require model identification). This is a significant advantage
in the context of fuzzy systems as it reduces the universe of
discourse to themaximum error value and not to the operating
range. Indeed, ONFC is capable of being applied to systems
with wide operating ranges using only two rules and it needs
no expert knowledge to create the initial structure.

Despite the simplicity of ONFC, its efficiency in solv-
ing complex problems is noticeable. In general, control
engineering problems involving non-linear plants or with
uncertain models are significantly common in practice. The
ONFC has its strongest potential in those problems. Using the
gradient method to determine the parameter adaptation law,
Gouvea et al. applied it to the control of induction
motors [14]. The ONFC low computational cost expands its
application potential, and several authors have used it in var-
ious practical control problems. ONFC has been successfully
applied to plants such as a two-wheeled robot, a coupled
tank level control and industrial applications, including the
temperature control of a cooking plant in a Brazilian oil
industry [15]–[19].

Some authors have proposed significant modifications to
the original ONFC that have improved it in some respects.
Pires [20] has shown the equivalence of ONFC with an adap-
tive PI (Proportional-Integral) controller and applied sliding
modes for increasing closed-loop robustness. Reference [17]
proposed a modification for the treatment of parametric
drift that causes the undesirable increasing of consequent
values when operating in the presence of measurement noise.
Moreover, the authors added a derivative feature to ONFC.
References [16] and [15] proposed a version of ONFC
employing three inferential rules, obtaining improvements
in the control of nonlinear systems. Santos et al. [21]
performed a comparative study between the ONFC,
the PID (Proportional-Integral-Derivative) and PID-NN
(a PID-Neural Network), in the control of a two-wheeled
robot. The three controllers were implemented in an embed-
ded microcontroller with limited memory capacity and low
processing speed. That study showed that all those con-
trollers could be implemented easily in that situation of
hardware limitations, and the ONFC presented superior per-
formance. It should be noticed that several recently proposed
observer-based fuzzy controllers cannot be implemented on
that hardware. Finally, Gomes et al. [19] applied a variable
adaptation rate to increase the ONFC performance in a
coupled tank control problem.

Notwithstanding the many successful applications men-
tioned above, the ONFC controller lacks a formal analysis
of the conditions for robust stability. This makes the task of
evaluating which plants can be controlled by the ONFC diffi-
cult for the designer. In addition, in those former works there
are no design rules for choosing the adaptation parameters.
In general, this choice is performed in a heuristic way, largely
based on the designer’s prior knowledge.

This paper aims to develop formal robust stability condi-
tions for a generalized version of the ONFC controller which
employs a reference model, a new adaptation rule and a dead
zone technique. The discrete-time linear case with model
uncertainty, time-varying parameters and measurement noise
is considered here. The Lyapunov method is applied to
establish robust stability and to determine design conditions
that are stated as Linear Matrix Inequalities (LMI’s). This
generalized version of ONFC is a case of a Fuzzy Model
Reference Adaptive Control (FMRAC). Actually, [2] shows
that an FMRAC is superior to MRAC for some kinds of prob-
lems. Simulation results corroborate the conditions found
analytically.

Some specific contributions of this paper are:

• An enhanced version of ONFC controller is proposed.
This controller is now endowed with a mechanism for
the explicit specification of the closed-loop dynamics by
means of a reference model.

• There is a formal proof of robust stability of the
closed-loop for the proposed controller, which relies on
the boundedness of the difference between the actual
system dynamics and the model reference dynamics.
The stability condition is stated in terms of Linear
Matrix Inequalities (LMIs), allowing the choice of the
design parameters which ensure robust stability for
polytope-bounded system model uncertainties.

• Even in the case of few available information about the
plant model, the proposed ONFC controller can be put
in operation easily, because the design parameters have
simple interpretation and do not require a fine-tuning for
deployment on a real plant.

This paper is organized as follows. In Section II the
generalized ONFC controller is presented, with a new the
adaptation law, and Linear Matrix Inequalities (LMI) condi-
tions for robust stability are proposed. The proof of stabil-
ity based on Lyapunov analysis is presented in Section III.
Section IV sumarizes the proposed ONFC design procedure.
Simulation results are presented in Section V, highlighting
the theoretical results. Finally, some conclusions are drawn
in Section VI.

II. ONFC CONTROLLER
The ONFC controller can be seen as a Takagi-Sugeno Fuzzy
Inference System (TS-FIS) with zero order consequent (sin-
gleton) consisting of only two rules. The weights of the
consequents are adjusted to minimize the output error of the
closed-loop, as described below.
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Consider the following discrete-time system:

x(k + 1) = Ax(k)+ Bu(k)+ ξ (k)

y(k) = Cx(k)+ υ(k) (1)

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n are matrices with
constant coefficients, u(k) is the control input, ξ (k) and υ(k)
are external disturbances with zero mean whose sumCξ (k)+
υ(k + 1) is limited by the open interval (−ξ0, ξ0), and y(k) is
the measured output. The following assumptions are required
here:

(A1) the matrix C is precisely known and the pair (A,B)
is uncertain, and belongs to a convex polytope with
np known vertices (Ai,Bi):

(A,B) =
np∑
i=1

βi(Ai,Bi)

βi ≥ 0 ,
np∑
i=1

βi = 1 (2)

(A2) the triple (A,B,C) is output stabilizable for all
instances of the unknown system within the
polytope;

(A3) C · Bi > 0 ∀ i ∈
{
1, . . . , np

}
. For simplicity, only

the case C · Bi > 0 is considered in this paper.
By analogy, the construction for the case C ·Bi < 0
is trivial.

(A4) The signals |ξ (k)| and |υ(k)| are bounded, and the
respective upper bounds are known.

The first step of the controller design involves the choice,
by the designer, of a stable and time-invariant referencemodel
given by:

xm(k + 1) = Amxm(k)+ Bmr(k),

ym(k) = Cxm(k) (3)

where r(k) is any limited reference signal, Am ∈ Rn×n is
Schur, and Bm is defined so that the reference model system
has unitary gain. The ONFC controller will be defined in
order to enforce the plant closed-loop dynamics, given by:

x(k + 1) = (A− BCK1)x(k)+ BK2r(k) (4)

where K1 and K2 are appropriate scalars, to approximate the
reference system dynamics (3).
Definition 1: If there are values of K1 and K2 that satisfy:
(1) Am = A− BCK1
(2) Bm = BK2

then the matching conditions are met. �
The control problem is defined as the problem of synthesis

of a bounded signal u(k) such that the error ey given by

ey(k) = y(k)− ym(k) (5)

becomes bounded by

|ey(k)| < ε, (6)

for a given ε > 0 and for all k > k0, with k0 a finite integer.

Let the output error er (k) be defined by:

er (k) = r(k)− y(k) (7)

The ONFC controller illustrated in the diagram of Fig. 1 is
defined by the following rules:

1. IF er is Z1 THEN u is u1 = w1.
2. IF er is Z2 THEN u is u2 = w2.

The sets Z1 and Z2 are the antecedents of the inference system
represented in Fig. 2 and the scalars w1 and w2 are the con-
sequents. The degrees of membership of the error er to fuzzy
sets Z1 and Z2 are given by µ1 and µ2 functions, respectively,
which are complementary functions to each other, defined by:

µ1(k) =


1, if er (k) ≤ −EM
EM − er (k)

2EM
, if − EM < er (k) < EM

0, if er (k) ≥ EM

(8)

µ2(k) = 1− µ1(k). (9)

where EM is a fixed parameter. Since µ2(k) + µ1(k) = 1,
the u(k) control action, which is given by a weighted average
(according to the Takagi-Sugeno method), becomes:

u(k) = µ1(k)w1(k)+ µ2(k)w2(k). (10)

The u(k) control action at time k as a function of error is
illustrated by Fig. 2. The adaptation law of the weight w1
and w2 is designed to decrease the ey(k) error in order to

FIGURE 1. ONFC controller scheme.

FIGURE 2. Membership functions and output controller at instant k .
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enforce the output of the closed-loop model to approximate
the reference model output. This adaptation law employed
here is given by:

w1(k) = w1(k − 1)− γ ey(k)µ1(k − 1)

w2(k) = w2(k − 1)− γ ey(k)µ2(k − 1) (11)

where γ is the update rate and has the same signal of the plant
loop gain.

Define3 as the maximum value of scalar CB in the uncer-
tainty polytope:

3 = max
i=1,...,np

C · Bi (12)

The following adaptation rule for γ is defined:

γ =


α

3[µ2
1(k)+ µ

2
2(k)]

, if |ey(k)| > ξ0

0, if |ey(k)| ≤ ξ0
(13)

where 0 < α < 2. The design constant ξ0 is defined such
that:

ξ0 > max(|Cξ (k)+ υ(k + 1)|) (14)

The value of ξ0 should be as small as possible, so an accurate
estimate ofmax(|ξ (k)|) andmax(|υ(k)|) is desirable. In addi-
tion it is desirable for practical purposes that ξ0 � ε.
Now, consider the matricesMi defined by:

Mi =

[
Qi STi
Si Ri

]
(15)

with the submatrices:

Qi = ATm[P+ αC
TC/3]Am − ρ1P

Si = ATmPBi − A
T
mC

T (ρ2 − α)

Ri = BTi PBi−CBi(2ρ2 − α)+ 1− ρ2 (16)

for i = 1, . . . , np and ρ1, ρ2 ∈ (0, 1).
Within the interval er (k) ∈ {−EM ,EM }, the ONFC con-

troller is stable according to the following Theorem:
Theorem 1: Consider the system (1) for which assump-

tions (A1) to (A4) hold, with output feedback defined by the
control law (7), (8), (9), (10), and the parameter adaptation
law given by (3), (5), (11), (12), (13), (14). Suppose that
there exist a symmetric matrix P and three scalars ρ1, ρ2 ∈
(0, 1) and α ∈ (0, 2) such that the following Linear Matrix
Inequalities hold:

P > 0

Mi < 0 ∀ i ∈
{
1, . . . , np

}
(17)

with the matrices Mi defined by (15) and (16). Then the
closed-loop system is stable for that value of α and for any
instance of the plant within the uncertainty polytope (2), and
|ey(k)| converges to the interval (0, ξ0) in finite time. �

The proof of this theorem is presented in Section III.

III. PROOF OF STABILITY
To perform the stability analysis by the Lyapunov method,
it is necessary to obtain the model of the augmented error of
the controlled system. The output error ey(k) defined by (5)
may be rewritten as:

ey(k) = Cex(k), (18)

where:

ex(k) = x(k)− xm(k) (19)

is the error between the system and the reference model state
variables.

Consider (19) on time k + 1, the term Amx(k) is added and
subtracted, leading to:

ex(k + 1) = x(k + 1)+ Amx(k)− Amx(k)− xm(k + 1)

(20)

Substituting (1) and (3) in (20) and considering (11), it fol-
lows that:

ex(k + 1) = Amex(k)+ (A− Am)x(k)
−Bmr(k)+ Bu(k)

w1(k + 1) = w1(k)− γ C ex(k + 1)µ1(k)
w2(k + 1) = w2(k)− γ C ex(k + 1)(1− µ1(k))

(21)

This model describes the dynamics of closed-loop system
error relative to the reference model (3), considering the
variables r(k), u(k), x(k) andµ1(k) as exogenous inputs. Any
point of equilibrium of the system (21), defined by: ex(k + 1)

w1(k + 1)
w2(k + 1)

 =
 ex(k)
w1(k)
w2(k)

 =
 e∗x
w∗1
w∗2

 (22)

must satisfy:

|Ce∗x | ≤ ξ0 (23)

Condition (23) is necessary for the equilibrium because,
according to (21), w1(k + 1) = w1(k) and w2(k + 1) = w2(k)
either when γ = 0, which occurs when |Ce∗x | ≤ ξ0, see (13),
or whenCex(k+1) = 0, which is also included in (23). Notice
that the possible values of w∗1 and w

∗

2 are not unique.
It should be noticed that (1) (with ξ (k) = υ(k) = 0)

implies that for any fixed u(k) = u∗, there will be a fixed point
x(k) = x∗ and (3) implies that for any fixed value r(k) = r∗

there will be a fixed point xm(k) = x∗m. This means that, given
u∗ and r∗, there will be an ex(k) = e∗x that represents a fixed
point of the first equation of (21). The issue to be shown in
this proof is the stability of the fixed point indicated in (22).

Define the matrices 0A(k) ∈ Rn×n and 0B(k) ∈ Rn×1 such
that the closed-loop system is represented by:

x(k + 1) = (Am + 0A(k))x(k)+ (Bm − 0B(k))r(k)+ ξ (k),

y(k) = Cx(k)+ υ(k) (24)

Under this definition, the part of the system dynamics which
represents the difference from the system to the reference
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model can be represented by a new variable ν(k) which
includes the external disturbance:

ν(k) = 0A(k)x(k)+ 0B(k)r(k)+ ξ (k) (25)

In an equilibrium point, the following relations hold:
Am + 0∗A = A+ B

(w∗2 − w
∗

1)

2EM
C

Bm − 0∗B = B
[
(w∗2 + w

∗

1)

2r∗
−

(w∗2 − w
∗

1)

2EM

] (26)

in which 0∗A and 0∗B correspond to the equilibrium of 0A(k)
and 0B(k).
In order to verify the stability of the fixed point, the point

(22) is subtracted from both sides of system (21) and the
relationship (26) is assumed. Defining w̃j = wj − w∗j , and
ũ = u− u∗, the following model is obtained:

ex(k + 1) = Amex(k)+ Bũ(k)+ 0A(k)x(k)
+0B(k)r(k)

w̃1(k + 1) = w̃1(k)− γ ey(k + 1)µ1(k)

w̃2(k + 1) = w̃2(k)− γ ey(k + 1)µ2(k)

(27)

in which:

ũ(k) =


w̃1 −

(w∗2 − w
∗

1)

2EM
(er + EM ), if er ≤ −EM

µ1(k)w̃1 + µ2(k)w̃2, if − EM < er < EM

w̃2 −
(w∗2 − w

∗

1)

2EM
(er − EM ), if er ≥ EM

(28)

Equation (27) represents the dynamics of the state error ex
relative to the equilibrium point. Since w∗j is a constant, then
w̃j(k + 1)− w̃j(k) = wj(k + 1)− wj(k).
To evaluate the stability of closed-loop system (1), consider

the complete dynamic model of the error ex :

ex(k + 1) = Amex(k)+ Bũ+ ν(k), (29)

where ν(k) is given by (25), and the following candidate
Lyapunov function:

V (k) = ρ1eTx (k)Pex(k)+
ρ2w̃2

1(k)

γ
+
ρ2w̃2

2(k)

γ
(30)

where P = PT > 0, γ > 0, and ρ1, ρ2 ∈ (0, 1).
The system will be stable if, for all k > 0:

1V = V (k + 1)− V (k) < 0 (31)

Define:

1V = 1Ve(k)+1Vw(k) (32)

where:
1Ve(k)
ρ1

= eTx (k + 1)Pex(k + 1)− eTx (k)Pex(k)

=
[
Amex(k)+ Bũ(k)+ ν(k)

]T P[Amex(k)
+Bũ(k)+ ν(k)]− eTx (k)Pex(k) (33)

and, consider the interval er (k) ∈ {−EM ,EM } where ũ(k) =
µ1(k)w̃1(k)+ µ2(k)w̃2(k):

1Vw(k)
ρ2

=
w̃2
1(k + 1)

γ
+
w̃2
2(k + 1)

γ
−
w̃2
1(k)

γ
−
w̃2
2(k)

γ

= −2ey(k + 1)[µ1(k)w̃1(k)+ µ2(k)w̃2(k)]

+γ e2y(k + 1)[µ2
1(k)+ µ

2
2(k)]

≤ −2[CAmex(k)+ Bũ(k)+ ν(k))+ υ(k + 1)]ũ(k)

+
α

CB
{C[Amex(k)+ Bũ(k)+ν(k)]+υ(k + 1)}2

(34)

where α is a constant that sets the velocity of adaptation
according to (13).

Applying in (33) the relationship:

XTY + Y TX ≤ aXTX +
Y TY
a
, (35)

∀a > 0, it comes that:[
Amex(k)+ Bũ(k)

]T P[ν(k)]+ [ν(k)]T P[Amex(k)+ Bũ(k)]

+ [ν(k)]TP[ν(k)] ≤
1

1− ρ1
[ν(k)]TP[ν(k)]

+
1− ρ1
ρ1

[
Amex(k)+ Bũ(k)

]T P [Amex(k)+ Bũ(k)]
(36)

with 0 < ρ1 < 1, then

1Ve(k) ≤
[
ex(k)
ũ(k)

]T [ATmPAm − ρ1P ATmPB
BTPAm BTPB

] [
ex(k)
ũ(k)

]
+

ρ1

1− ρ1
[ν(k)]TP[ν(k)] (37)

Applying the relationship (35) in (34), it follows that

1Vw(k)
ρ2

≤ −2C[Amex(k)+ Bũ(k)]ũ(k)

+
α

ρ2CB
{C[Amex(k)+ Bũ(k)]}2 +

1− ρ2
ρ2

ũ(k)2

+

(
α

CB
+

2ρ2
1− ρ2

)
× [Cν(k)+ υ(k + 1)]T [Cν(k)+ υ(k + 1)]

(38)

with 0 < ρ2 < 1, then

1Vw ≤
[
ex(k)
ũ(k)

]T [ α
CBA

T
mC

TCAm
(α − ρ2)CAm

(α − ρ2)ATmC
T

1− ρ2 + [α − 2ρ2]CB

] [
ex(k)
ũ(k)

]
+

(
αρ2

CB
+

2ρ22
1− ρ2

)
[Cν(k)

+ υ(k + 1)]T [Cν(k)+ υ(k + 1)] (39)
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Thus, consider (32), (37), and (39):

1V ≤
[
ex(k)
ũ(k)

]T
M

 ex(k)
ũ(k)

+ ρ1

1− ρ1
[ν(k)]TP[ν(k)]

+[Cν(k)+ υ(k + 1)]TW [Cν(k)+ υ(k + 1)]

(40)

where

M =
np∑
i=1

βiMi, (41)

and

W =
np∑
i=1

βiWi, (42)

with βi given by (2), the matrix Mi defined by (15) and the
scalar Wi defined by:

Wi =
αρ2

CBi
+

2ρ22
1− ρ2

(43)

for i = 1, . . . , np.
The analysis of (43) shows that Wi > 0 for i = 1, . . . , np

and therefore, the last terms of (40) are positive definite.
However, additional conditions can guarantee stability even
in the presence of disturbance or uncertainty.

Consider a strictly positive function f (ex(k), ũ(k)) such
that:

f (ex(k), ũ(k)) < ex(k)T ex(k)+ ũ(k)T ũ(k) (44)

and an unknown constant ν0 such that:

ν0 >
ρ1

1− ρ1

λmax(P)
‖λmax(M )‖

max(νT (k)ν(k))

+
max(W )
‖λmax(M )‖

max([Cν(k)+ υ(k + 1)]T

[Cν(k)+ υ(k + 1)]) (45)

with λmax(P) and λmax(M ) the largest eigenvalues of all P and
M , respectively, andmax(W ) the largestWi for i = 1, . . . , np.
Assuming thatM is negative definite, it comes that:[

ex(k)
ũ(k)

]T
M
[
ex(k)
ũ(k)

]
< −‖λmax(M )‖[ex(k)T ex(k)+ ũ(k)T ũ(k)]

< −‖λmax(M )‖f [ex(k), ũ(k)] (46)

where λmax(M ) is the largest eigenvalue of M . Then, from
(45), it follows that:

ν0‖λmax(M )‖ >
ρ1

1− ρ1
νT (k)Pν(k)

+W [Cν(k)+ υ(k + 1)]T

× [Cν(k)+ υ(k + 1)] (47)

Therefore, from (40), (46), and (47):

1V < ‖λmax(M )‖{−f [ex(k), ũ(k)]+ ν0(k)} (48)

Thus, a sufficient condition to ensure that 1V (k) < 0 is:

f [ex(k), ũ(k)] > ν0(k) (49)

This shows that the signals eTx ex and ũT ũ are bounded and
converge to a closed set.

We can even observe the following. Consider an f for
which the condition (44) assumes the form:

f [ex(k), ũ(k)] = ũ2(k) ≤ ex(k)T ex(k)+ ũ(k)T ũ(k) (50)

Due to the implicit integration involved in the definition of
w1(k) andw2(k), in the adaptation law (11), ũ(k) is dependent
on the sum of ey and f (ex , ũ) just stops increasing when
ey(k) < ξ0. Therefore, the rule (13) ensures that, when f >
ν0, the norm of themodel output error converges to ξ0 in order
to make ũ(k) bounded.

In spite of this, in the presence of measurement noise,
the weights w1 and w2 could increase indefinitely if the
adaptation law remains active for ey(k) < ξ0, which could
lead those parameters to drift [17]. In this way, the parameters
w1 andw2 do not change when |ey(k)| < ξ0, and start to adapt
when |ey(k)| exceeds ξ0. The adaptation rule (13), known
as the Dead Zone Modification technique, guarantees the
boundedness of the weights under measurement noise. �
The values of ρ1 and ρ2 can be adjusted to minimize

the eigenvalues of Mi, and thus the system requirements.
However, this may increase the eigenvalues of Wi, the norm
of ν0 and the maximum absolute value of ex . In the design
stage, ρ1 and ρ2 are chosen arbitrarily close to 1.0 when the
matching condition is satisfied or when only the output error
needs to be minimized, without the need of guaranteeing the
convergence of the closed-loop dynamics to the reference
model.

IV. CONTROLLER DESIGN PROCEDURE
The design procedure for the ONFC controller may be stated
as follows:

1) Choose the reference model matrices Am and Bm;
2) Choose EM ' max‖y(k) − r(k)‖, ρ1, ρ2 ∈ (0, 1), and

ξ0 according to (14);
3) Consider matrix M given by (42). Choose α such that

the following LMIs are satisfied:{
lP > 0

Mi < 0 , ∀ i = 1, . . . , np

Thematrix definitions are repeated here for convenience:

Mi =

[
Qi STi
Si Ri

]
Qi = ATm[P+ αC

TC/3]Am − ρ1 P

Si = ATmPBi − A
T
mC

T (ρ2 − α)

Ri = BTi PBi−CBi(2ρ2 − α)+ 1− ρ2

4) The controller implementation follows (8), (9), (10)
and (11), with γ given by (13). Those formulas are
repeated here for convenience:
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The reference model:

xm(k + 1) = Amxm(k)+ Bmr(k)

ym(k) = Cxm(k)

The error signals:

er (k) = r(k)− y(k)

ey(k) = y(k)− ym(k)

The adaptation rule:

γ

=


α

3[µ2
1(k − 1)+ µ2

2(k − 1)]
, if |ey(k)| ≥ ξ0

0, if |ey(k)| ≤ ξ0
w1(k)

= w1(k − 1)− γ ey(k)µ1(k − 1)

w2(k)

= w2(k − 1)− γ ey(k)µ2(k − 1)

The control signal computation:

µ1(k) =


1, if er (k) ≤ −EM
EM − er (k)

2EM
, if − EM < er (k) < EM

0, if er (k) ≥ EM
µ2(k) = 1− µ1(k)

u(k) = µ1(k)w1 + µ2(k)w2

V. NUMERICAL RESULTS
In this section, some simulation results are presented in order
to evaluate the performance of ONFC controller.

A. UNCERTAIN PLANT
The first simulations consider the following uncertain
discrete-time system subject to measurement noise:

x(k + 1)=

 0.88 −0.25 −0.10
0.06 0.39 −0.09
−0.49 −0.12 0.69

 x(k)+
 0
b1
b2

 u(k)
y(k) =

[
0 0 1

]
x(k)+ υ(k)

where υ(k) is a Gaussian measurement noise with variance
σ 2
= 0.1 and the uncertain matrix B is such that b1 ∈ [0.8, 1]

and b2 ∈ [0.6, 0.8]. The chosen referencemodel has the form:

xm(k + 1) =

 λAm 0 0
0 λAm 0
0 0 λAm

 xm(k)+
 0

0
bm

 r(k)
ym(k) =

[
0 0 1

]
xm(k)

where |λAm| ∈ (−1, 1) and bm is defined in such a way that
the gain of the reference model is unitary.

In order to illustrate the feasibility of the LMI prob-
lem (17), 10,000 combinations of λAm ∈ [−1.0, 1.0] and
α ∈ [0, 4.0] are evaluated, with the antecedent parameter
EM = 15. To compare, the LMI problem (17) is solved

employing the same previous parameters and considering two
situations: a) ρ1 = ρ2 = 0.98 and b) ρ1 = ρ2 = 0.75. The
Fig. 3 shows the region of the λAm × α plane that exhibits
feasibility of the inequalities M < 0 and P = PT > 0 over
the whole B polytope.

FIGURE 3. Region of feasibility of the LMI problem of Theorem 1 for the
example system ρ1 = ρ2 = 0.98 (larger area) and ρ1 = ρ2 = 0.75 (smaller
area). If the combination of α and λAm is within the highlighted areas,
the closed-loop stability is guaranteed.

As expected, the LMI feasibility requires 0 < α < 2.
The control law (10) is implemented using the dead zone

technique (13) with the parameters α = 0.4, EM = 15,
and ξ0 = 0.8. The initial conditions are defined as w1(0) =
w2(0) = 1.0, x(0) = [0, 0, 0]T and the parameters of the
reference model are chosen as λAm = 0.5 and bm = 0.5.

Note that in this case it is not possible to meet the matching
condition. The signals y(k) and r(k) are shown in Fig. 4.a.
It can be observed that the controller is able to conduct the
plant response to the reference model, despite the presence
of noise. Fig. 4.b shows the evolution of the consequents ω1
andω2 over time. It is noticed the robustness of the adaptation
algorithm concerning the presence of measurement noise and
parametric uncertainty, preventing the consequent weights to
grow indefinitely. Adaptation Law (13) turns off the variation
of w1 and w2 when the system is in a steady state, to avoid the
drif of the consequents due to noise.

The initial conditions w1(0) and w2(0) affect the perfor-
mance and the final values of the consequents (w1(∞) and
w2(∞)). To show this phenomenon, some simulations are
performed for different initial conditions of w1 and w2 close
to the curve defined by (51):

w∗2 + w
∗

1 =
2 r∗

C(I − A)−1B
(51)

This curve defines a constraint for the possible values of the
fixed points w∗1 and w

∗

2.
The design parameters, in all cases, are λAm = 0.5, EM =

15, and α = 0.6. The evolution of the consequents for those
different initial conditions is shown in Fig. 5.

The signals w1 and w2 converge to an equilibrium curve.
Each pair of initial condition values evolves differently and is
attracted to a different point on the curve. For unstable sys-
tems, it is even possible that initial conditions excessively far
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FIGURE 4. Simulation of a system with noise disturbance. (a) Output
from the controlled system. (b) Variation of consequents. (c) Dynamic
adaptation rate of parameters w1 and w2.

FIGURE 5. Evolution of variables of a stable system. (o) Initial Condition,
(*) Equilibrium, (-) Trajectory, (- -) Curve (51).

from the equilibrium curve lead the error to diverge before the
system properly adapts the values ofw1 andw2. Furthermore,
when er � EM the controller loses the guarantees of stability
and the error may diverge.

B. TIME-VARYING PLANT
Another test to evaluate the ability to adapt to a time-varying
plant is implemented as follows. Consider the linear system
with a time-varying parameter:

x(k + 1) =
[
0.5 0.1
0.4 a(k)

]
x(k)+

[
0
1

]
u(k)

y(k) =
[
0.5
1

]
x(k)+ υ(k)

where a(k) is an entry of A matrix whose time variation is
shown by Fig. 6.c and υ(k) is a disturbance with variance

FIGURE 6. Control of a system with parametric variation. a) Output
signals of the reference and system models. b) Evolution of consequents.
c)Variation of system parameter.

σ 2
= 0.1. The design parameters are chosen as α = 0.7 and

EM = 5 and the initial conditions are defined as w1(0) =
w2(0) = 0 and x(0) = [0, 0, 0]T . Over time, a(k) makes the
open-loop system to switch between a stable and an unstable
format. In this example, the following reference model is
used:

xm(k + 1) =
[
0.4 0
0 0.4

]
xm(k)+

[
0
0.6

]
r(k)

ym(k) =
[
0.5
1

]
xm(k)

The signals of the controlled system are shown in Fig. 6.a
and 6.b. The system output y(k) remains close to the reference
signal ym(k) even under abrupt changes in parameter a(k).

VI. CONCLUSION
Adaptive controllers are especially useful for solving control
problems involving nonlinearities, uncertainties, and para-
metric variation. One of the main challenges in their design is
the issue of robust stability, as the interdependence between
parameters and states results in a time-varying nonlinear
system. This task becomes even more complicated when
using the so-called intelligent adaptive controllers, due to
their complex structures.

This paper proposes an extended version of the ONFC
controller for SISO discrete-time linear systems, which can
be seen as a direct adaptive reference model control, imple-
mented as a zero-order Takagi-Sugeno system. This con-
troller includes a reference model which can be used for the
specification of the closed-loop dynamics. LMI conditions
for the stability of the closed-loop system are derived, allow-
ing the assessment of robust stability for plant models with
polytope-bounded uncertainties.
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The most important advantages of the ONFC controller are
the simplicity of design and low computational cost. Those
advantages still hold for the proposed extended ONFC con-
troller, since no fine-tuning is needed for the design of control
parameters. The control design procedure is rather intuitive,
being performed on a trade-off between the adaptation rate
and the size of the stable bounded convergence region.

Future works by the authors include: the examination of
the sigma modification (a smooth rule) for replacing the
dead-zone in ONFC, the usage of predictors within ONFC
for dealing with dead time processes, the extension of ONFC
for MIMO linear systems, and the evaluation of the computa-
tional resource requirements (memory and processing time)
of ONFC in comparison with other recent adaptive control
methods.
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