
SPECIAL SECTION ON TOWARDS SMART CITIES WITH IOT BASED ON CROWDSENSING

Received October 1, 2020, accepted October 15, 2020, date of publication October 23, 2020, date of current version November 12, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3033455

An Enhanced Extreme Learning Machine for
Dissolved Oxygen Prediction in Wireless
Sensor Networks
LIANG KUANG1,2, PEI SHI 3,4, CHI HUA1, BEIJING CHEN2, AND HUI ZHU5
1School of IoT Engineering, Jiangsu Vocational College of Information Technology, Wuxi 214153, China
2School of Computer and Software, Nanjing University of Information Science & Technology, Nanjing 210044, China
3Binjiang College, Nanjing University of Information Science & Technology, Wuxi 214105, China
4Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
5School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China

Corresponding author: Pei Shi (njxk_sp@sina.cn)

This work was supported in part by the High-Level Backbone Specialty Construction Project of Jiangsu Province under Grant 2017[17], in
part by the Natural Science Foundation of Jiangsu Province under Grant BK20131097, in part by the Jiangsu Province Higher Vocational
Education Industry Education Integration Platform Construction Project under Grant 2019[26], in part by the scientific research team in
Jiangsu Vocational College of Information Technology, and in part by the Natural Science Research in Jiangsu Universities in 2020.

ABSTRACT Water quality monitoring using Wireless Sensor Networks (WSNs) is essential in aquaculture
water quality management. In the field of water quality monitoring, dissolved oxygen (DO) is a key
parameter, and its prediction can provide decision support for aquaculture production, thereby reducing
farming risk. However, it is difficult to build a precise prediction model, and existing methods of DO
prediction neglect the importance of analyzing DO content. To address this problem, this study proposes a
hybrid DO predictionmodel, namedKIG-ELM, which is composed of K-means, improved genetic algorithm
(IGA), and extreme learning machine (ELM). This model is based on edge computing architecture, in which
data acquisition, processing and dissolved oxygen prediction are distributed in sensing nodes, routing
nodes and server respectively. Sensing technique and clustering operation are applied in the process of
data acquisition and processing. Meanwhile, an optimized extreme learning machine is implemented for
DO prediction. We evaluate the efficiency and accuracy of proposed prediction approach in a practical
aquaculture on massive water quality data. Experimental results show that the hybrid model achieves
significant prediction results and can meet the needs of practical production and management.

INDEX TERMS Sensor networks, dissolved oxygen prediction, edge computing, water quality monitoring,
extreme learning machine.

I. INTRODUCTION
In recent years, the development of WSNs has promoted
the progress of smart fishery. More and more smart devices
have already been put in production of smart fishery.
To reduce the data transfer volume and bandwidth caused
by these smart devices, edge computing provides guidance
and strategy [1]–[3]. As a special application of WSNs,
the study of water quality monitoring has become an impor-
tant tool for sustainable development of smart fishery [4]–[6].
Based on edge computing architecture [7]–[9], water quality
monitoring using WSNs can monitor and analyze culture
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environment information and provide guidance for improving
fishery efficiency in aquaculture.

Dissolved oxygen (DO) concentration is a critical water
quality parameter in aquaculture, which needs to be moni-
tored in real time in intensive aquaculture [10]. Generally,
when DO content is less than 3 mg/L, it will has great impact
on healthy fish [11], because the prolonged hypoxia will
even lead fish to death from suffocate. Thus, it is critical to
makeDOprediction in the cultivation process, which can help
managers making decision. However, the DO prediction is a
complex process involving many factors, and it also has the
characteristics of dynamic and nonlinearity [12]. Accurate
and effective prediction of dissolved oxygen plays an impor-
tant directional role in production, which can also produce
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enormous economic benefits. Hence, DO prediction becomes
a prominent issue in water quality monitoring using WSNs.

In technical literature, DO prediction methods can be cate-
gorized into two types: single parameter prediction [13]–[16]
and multi-parameter prediction [17]–[25]. In the former type,
the prediction of DO just considers the change law of histor-
ical dissolved oxygen data. Although different methods are
used in single parameter prediction, it is different for them
to obtain extra information about DO content. Therefore, this
kind of prediction is inaccurate and inflexible, especially for
dynamic and complex prediction of DO.On the contrary, con-
sidering the correlation between DO and related environment
parameters, these parameters are operated as input to forecast
future DO content in the latter prediction type. Actually,
when the weather changes suddenly, water will change due to
meteorological effect. Meanwhile, DO content also changes
with other water quality parameters, such as pH value and
water temperature. Hence, this kind of prediction is reliable
and feasible for DO prediction.

Unfortunately, multi-parameter prediction of DO have sev-
eral drawbacks: (1) Redundant input data. Although there
is correlation between DO content and related environ-
ment parameters, redundant input parameters also reduce
the efficiency of prediction and don’t help improving accu-
racy. (2) Neglect the importance of DO characteristic. Most
multi-parameter prediction methods pay more attention to the
related environment parameters, and neglect the importance
of DO characteristics. Actually, there are many DO charac-
teristics that can be utilized in forecasting DO, such as the
dynamics of DO in daytime and nighttime [27]. However,
very fewworks study this issue combining DO characteristics
with environment parameters.

To tackle these limitations, in this paper we propose a new
multi-parameter DO prediction method, named KIG-ELM,
which is based on edge computing to improve prediction
accuracy and efficiency. In order to grasp the characteristics
of DO varied with weather condition, K-means method is
adopted to cluster DO data and capture the characteristics of
these nonlinear data according to the weather index. Extreme
learning machine (ELM) is a very efficient and simple learn-
ing algorithm for overcoming DO prediction problems with
low generalization, nonlinear samples, low efficiency and
accuracy [28]. The improved genetic algorithm (IGA) is uti-
lized to obtain the optimal initial parameters of ELM, avoid-
ing premature convergence and chattering problems in the
process of optimization. Thus, this hybrid prediction model
consists of K-means method, IGA and ELM. KIG-ELM is
verified and compared with the counterpart algorithms using
real monitoring data in aquaculture tanks. The experimental
results show that the performance of forecasting model is
improved in efficiency and precision.

The rest of this paper is organized as follows:
Section 2 presents a brief review on the previous works. The
study area, data acquisition, custom weather index, and the
construction of the hybrid prediction model are outlined in
Section 3. Section 4 provides the steps of developing the

hybrid dissolved oxygen prediction model are introduced.
The accuracy and efficiency of the forecasting model are
demonstrated in Section 5. Section 6 concludes this study
and points out our future works.

II. RELATED WORKS
A. SINGLE PARAMETER PREDICTION
Single parameter methods forecast the future DO by captur-
ing the changing trends of historical DO data. Due to the lim-
itation of unstable prediction performance, few studies have
used such methods. In [13], the back-propagated (BP) neural
network is used to predict the changing trend of DO using
historical monitoring data. Liu et al. [14] utilized the wavelet
analysis method to de-noise and decompose the original
DO sequences, and proposed the hybrid WA-CPSO-LSSVR
for DO content forecasting. Although this study uses the
multi-scale decomposition method to help get high precision,
it is also time-consuming. Rahman et al. [15] presented an
approach that can predict dissolved oxygen multiple time
stamps for long term prediction. And this approach requires
a higher window of past observations, which may limit
the number of time steps ahead prediction it can make.
Olyaie et al. [16] utilized three different AI methods to pre-
dict the DO content in Delaware River located at Tren-
ton, USA. In these methods, the number of input can be
single or multiple. However, the comparison of estima-
tion accuracies of various intelligence models indicates that
the accuracies of multiple parameters prediction are higher
obviously.

B. MULTI-PARAMETER PREDICTION
Multi-parameter methods forecast the future dissolved oxy-
gen using several related parameters as the input, and the
dissolved oxygen content as output. These parameters include
water quality parameters and meteorological parameters.
Many studies have been conducted at present [17]–[27].

Liu et al. [17] systematically discussed and compared
the application of the attention-based RNN method in dis-
solved oxygen prediction using two water quality parame-
ters, two soil parameters and six meteorological parameters.
Liu et al. [18] proposed a prediction model based on sup-
port vector regression (SVR) to solve the aquaculture water
quality prediction in modern intensive river crab aquaculture
management problem. Yu et al. [19] developed a new hybrid
dissolved oxygen content forecasting model based on the
radial basis function neural networks (RBFNN) data fusion
method and least squares support vector machine (LSSVM)
with an optimal improved particle swarm optimization
(IPSO). Wu et al. [20] established a new model of dissolved
oxygen prediction based on sliding window, particle swarm
optimization (PSO) and BP neural network. A dissolved
oxygen prediction model based on fuzzy neural networks
is proposed in [21]. And genetic algorithm was utilized
to optimized fuzzy neural network. Heddam and Kisi [22]
attempted to estimate dissolved oxygen concentration using
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FIGURE 1. System architecture diagram.

four different ELM models without water quality variables.
The components of the Gregorian calendar are used as input
in these ELM models.

Although these studies have considered the impact of
related parameters, they still face some prominent problems,
such as lacking efficient processing of DO data and ana-
lyzing the changing characteristics of DO content. In [23],
the ensemble empirical mode decomposition (EEMD) is
adopted to capture the multi-scale features of DO in the pro-
posed hybrid model. Although this study uses the multi-scale
decomposition method to help get high precision, it is also
time-consuming. Huan et al. [24] applied the EEMD in the
proposed EEMD-LSSVM prediction model to decompose
the DO time series into a group of relatively stable sub-
sequences. This prediction model is good, but there is one
problem. If the added white noise and iteration times are not
appropriate, the false component will appear after decom-
position. Shi et al. [25] adopted K-medoids to group the
dataset into different clusters according to its characteristics
in CSELM dissolved oxygen prediction model, but there
exists redundant input of CSELM. Cao et al. [26] presented
a prediction of dissolved oxygen in pond culture based on
K-means clustering and Gated Recurrent Unit (GRU) neural
network. In [27], discrete wavelet transforms (DWT) with
different wavelet functions are compared in de-noising diel,
daytime and nighttime dynamics of DO. Based on de-noising
results, multiple non-linear regression (MNLR) models are
adopted to predict DO. These works just focus on how to
decompose the DO or optimize prediction model whereas
leaving a gap between the characteristics of DO that varies
with the weather condition in daytime and nighttime. It is
necessary to study a new multi-parameter algorithm which
can plug this gap andmeet the needs in real world aquaculture
production.

In this paper, our aim is to develop a DO prediction algo-
rithm based on edge computing architecture in aquaculture,
which can capture the characteristics of DO and maximize
the prediction accuracy and efficiency.

III. MATERIALS AND METHODS
In this section, we present our materials and methods of
prediction.We first present the study area and the architecture
of data acquisition system. Then we introduce the weather
index variable and utilize it to realize the operation of similar
time slot clustering. We finally present the prediction method
and optimization procedure.

A. STUDY AREA
The experimental base of this study is located in Wuxi city,
Jiangsu province (E 120.18◦ N 31.34◦). There are four tanks
(about 9×3 m2 for each) built in the aquaculture pond (about
110× 45 × 1.5m3). There are 2,000 black basses cultured
in each tank with the initial size about 3 cm. Circulating
waters cultivation technology is used in this high-density
tank. Meanwhile, the micro-pore aeration and airlift water
push device are used for aeration.

B. DATA ACQUISITION
In this study, a remote monitoring system platform, which is
developed by the freshwater fisheries research center, is used
to collect water quality data and weather station data in inten-
sive aquaculture. The system architecture diagram is shown
in Fig.1.There are two aquaculture monitoring areas dis-
tributed in Wuxi city and Changshu city. We can obtain data
from these aquaculture bases including dissolved oxygen,
pH, water temperature, humidity, temperature, atmospheric
pressure, carbon dioxide, illumination intensity, photosyn-
thetically active radiation, radiance, wind speed and direction
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through the online monitoring system. Water quality sen-
sors are placed in 0.5 meters underwater and meteorological
sensors are integrated in the weather station. All data are
collected from sensor nodes and transferred to the cloud
server through routing node. Meanwhile, data are processed
in routing node and stored in the cloud server. When the
dissolved oxygen predicted value is lower than threshold
value, the routing node will sent the urgent message to the
control center. This helps users make the response strategy in
advance and drive the bottom controller.

C. WEATHER INDEX
There are many weather factors related to the dissolved oxy-
gen, including temperature, humidity, atmospheric pressure,
wind speed and wind direction, etc. Dissolved oxygen con-
centration changes periodically during the day and night and
varies greatly under different weather conditions. In order
to capture the change rule under similar weather conditions,
a custom weather index variable is used to characterize the
weather conditions at different times.

Factor analysis (FA) is a multivariate statistical analysis
method [28]. The basic idea is to classify the multi-variables
according to the correlation level, and extract various vari-
ables as common factors. Then, the score function of common
factor is obtained through the cumulative variance contri-
bution rate of common factor and the variance of common
factor. Thus establish the comprehensive evaluation index.

Let X = [X1,X2,. . . , Xi,. . .Xp] be a set of p objects,
m common factors Fj (j = 1,2,. . . , m)(m<p) are extracted
fromX . ei(i = 1,2,. . . , p) is the other factors. And the ith index
Xi can be expressed with factor analysis method as (1).

Xi = ai1F1 + ai2F2 + ai3F3 + . . .+ ainFm + ei (1)

where aij denotes the component matrix, which reflects the
dependence of Xi on common factor Fj.

Based on (1), we calculate the score coefficient of
i th common factor as (2).

Fj =
∑

bjixi (i = 1, 2, . . . , p; j = 1, 2, . . . ,m) (2)

where bji is the score coefficient of ith index in jth common
factor, xi represents the data after normalization.

D. SIMILAR TIME SLOT CLUSTERING BASED ON WEATHER
INDEX
To avoid the problem of low accuracy and efficiency in pre-
diction caused by the difference between characteristics of the
data stream, we use the weather index to cluster the historical
samples at different time slots firstly. Then, the dissolved
oxygen prediction model is constructed in each sub-cluster.

The K -means method is a widely used clustering
method [29], where K represents the clustering number of
data streams, and means represents the clustering center of
cluster. Euclidean distance is used to measure the similarity
between different elements. Error square is used to evaluate
the clustering effect. The detail process of standard K -means
can be summarized as follows [30].

Step 1: Randomly initialize the K cluster centroids in the
given K objects.

Step 2: Assign each object to the group with the closet
centroid. Use Euclidean distance to measure the minimum
distance between the data object and each cluster centroid.

Step 3: Recalculate the cluster centroid vector using (3).

cj =
1
nj

∑
∀ datap∈Sj

datap (3)

where cj is the centroid vector of the cluster j, nj is the number
of data vectors in cluster j, Sj denotes the subset of data
vectors from cluster j, and datap represents the pth data vector.
Step 4: Repeat step 2 until these centroids do not change

anymore in the predefined number of iteration or a maximum
number of iteration has been reached.

In this paper, the samples in one day are divided into two
data sets of day and night. Each data set contains 72 samples,
and each weather index value evaluates a data set. Thus,
the matrix of each data set is shown as

fi = [f1i, f2i, . . . , fii]T (4)

where fi is the ith data set, and t is the monitoring time.
The Angle Cosine is used to replace Euclidean distance

and calculate the similarity between data set and the center.
The clustering results of K -means are obtained based on
the similarity of weather index. The similarity calculation
formulas of Angle Cosine can be defined as

Dfifj =
1
T

T∑
t=1

ftiftj√
f 2ii f

2
tj

(5)

where fti and ftj reprensent the values of sample fi and sample
fj at time t, respectively, T = (1,2,. . . , t ,. . . ,72).

E. IMPROVED GENETIC ALGORITHM
The Genetic algorithm (GA) is a random and parallel search
optimization method based on natural selection and natural
genetic mechanism [31].Through the genetic operations of
selection, crossover and mutation, the population can finish
the generational evolution until the terminating conditions of
evolution are met. In traditional GA, mutation is operated
based on crossover. The crossover and mutation operations
utilize the randomness of chaotic sequence, and both opera-
tions are performed separately [32]. In order to avoid prema-
ture convergence in optimization, we propose the IGA based
on new crossover and mutation operations.

1) CROSS OPERATION
Different from the traditional single-point crossover, the
crossover operation is based on the principle of ‘‘door-
to-account pairing’’. The parent individuals are sorted accord-
ing to the fitness function values. So the small fitness value is
paired with the small one, large fitness value is large. We use
the randomness of chaotic sequence to determine the location
of crossing, thus completing the operation of crossing terms.
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Take the logistics chaotic sequence as an example, if we pair
the genes on chromosomes (O1,O2){O1 = o11, o

1
2,. . . , o

1
p,

O2 = o21, o
2
2,. . . , o

2
p}, it is necessary to use the logistics

chaotic sequence x(m+1) = 4x(m)[1−x(m)] to generate a
positive integer a between 2∼ p − 1. Then take a as the
crossing point to finish the single crossing of genes on chro-
mosomes (O1, O2). Finally, we get the new chromosomes
(O1
′, O2

′ ), O1
′
= o11, o

1
2,. . . , o

2
a,. . . , o

1
p,O2

′
= o21, o

2
2,. . . ,

o1a,. . . , o
2
p.

2) MUTATION OPERATION
In this paper, two positive integers c and d between
2∼ p− 1 are randomly obtained according to given mutation
rate. Then wemutate the genes at the corresponding positions
on chromosomes and use chaotic sequences to replace genes
at the positions of c and d with new gene values. Thus,
we obtain new chromosomes.

The IGA algorithm keeps the mutation operation and the
crossover operation apart, so that the two operations are per-
formed independently and in parallel. In IGA, chaos sequence
is introduced to determine the crossing point. The low mod-
ification of single point cross operation is utilized to weaken
and avoid the chattering problem in GA optimization. The
process of multi-gene mutation in chromosome is completed
by using chaotic sequences to avoid premature convergence.

F. EXTREME LEARNING MACHINE
The ELM is a feed-forward neural network learning algo-
rithm with nice global searching capability [33]. Once the
parameters are set, there is no need to adjust in training.
Compared with other machine learning algorithms, ELM
has the advantages of high learning efficiency and excellent
generalization performance, etc.

Given a data set (xi, yi), i = 1,2,. . .N , where xi =
[xi1, xi2,. . . , xiu]T ∈ Ru is the ith sample, yi = [yi1, yi2, . . . ,
yim]T ∈ Rm is the actual tag of the ith sample. The ELMneural
network with L hidden layer nodes and activation function
g(x) are mathematically modeled as follows:

L∑
j=1

βjg
(
wjxi + bj

)
= yi, i = 1, 2, . . . ,N (6)

where wj = [wj1,wj2, . . . , wju]T denotes the weight vector
between the jth hidden node and the input node, bj is the
threshold value of the jth hidden layer node, βj = [βj1, βj2,
. . . , βjm]T is the weight vector between the jth hidden node
and the output node.

G. EXTREME LEARNING MACHINE
In ELM, the weights and bias vectors are randomly obtained.
When the weights and bias vectors are special values, the hid-
den layer nodes will fail, thus reducing the accuracy in train-
ing and testing [34]. In order to reduce prediction error, it is
necessary to adopt an intelligent algorithm to optimize the
parameters. The main steps can be expressed as:

Step 1: Create a new ELM network and initialize the
population. In GA, we need to initialize population firstly,
and then encode the weight and bias of ELM neural network.
Finally, the structure of ELM network is determined with
input variable X = [x1,x2,. . . ,xu]T and the output variable
Y = [y1, y2,. . . , ym]T.
Step 2: Determine the fitness function. In ELM neural

network, set the fitness function of network, the size of initial
population and the maximum evolution generations maxgen.
The fitness function can be expressed as

fun =
1
n

n∑
t

(
yi(t)− y′i(t)

)2 (7)

where n is the number of samples, yi(t) denotes the real
observe value at time t , y′i(t) is the predicted value at time t .

Step 3: Compute the optimal fitness value. According to
individual fitness value, selection, improved crossover and
mutation operations are performed on individuals randomly
to obtain the global optimal fitness value Fitnessbest .
Step 4: Get the optimal weight and bias. The optimal fitness

value is used to obtain the corresponding population individ-
ually. Finally, we obtain the optimal input weight matrix abest
and bias bbest of ELM.
Step 5: Determine the hidden layer output matrix. In ELM

neural network, we calculate the output matrix H of hidden
layer by abest and bbest .

H (a1, · · · , aL , b1, · · · , bL , x1, · · · , xm)

=

 g (a1 · x1 + b1) · · · g (a1 · x1 + bL)
· · · · · · · · ·

g (a1 · xm + b1) · · · g (a1 · xm + bL)


m×L

(8)

Step 6: Compute the connecting weight between hidden
layer and output layer. The least square algorithm is used to
calculate the output weight β between the hidden layer node
and the output node. Based on the output weight, we can get
the predicted value and terminate algorithm. The calculation
of output weight is shown as

β̃ = H+Y (9)

whereH+ denotes theMoore-Penrose inverse of hidden layer
output matrix H , H+ = (HTH )−1HT .

IV. THE HYBRID PREDICTION MODEL BASED ON
K-MEANS AND IGA-ELM
The dissolved oxygen data streams have different features
in day and night. K -means method can explore the periodic
change patterns of data streams, and ELM is suitable for
capturing data characteristics in nonlinear system with high
learning speed. Thus, this paper constructs KIG-ELM predic-
tion model to forecast the dissolved oxygen content in bass
culture. The implementation process of prediction is shown
in Fig.2. The prediction model consists of three parts: data
preprocessing, similar time slots clustering and modeling.
Data preprocessing includes data standardization and data
reduction. After data preprocessing, the input variables of
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FIGURE 2. Implementation process of dissolved oxygen content prediction.

prediction model are determined. The FA method is used
to calculate the weather index. Combined with K -means
method, we cluster the data set of similar time slots. Based
on these steps, we construct the dissolved oxygen prediction
model and obtain the predict values. The implementation
process of dissolved oxygen prediction can be described as
follows.

Step 1: Data Preprocessing. To eliminate difference
between sensor data of different measurement standards,
Z-score normalization is performed on the raw data [35].
Meanwhile, there are so many factors which influence on
dissolved oxygen. It is necessary to reduce the dimension
of factors including pH, water temperature, humidity, tem-
perature, atmospheric pressure, carbon dioxide, illumination
intensity, photosynthetically active radiation, radiance, wind
speed and direction. We utilize the PCA method to analyze
these indicators and determine the input variables of predic-
tion model. Then extract five common factors depending on
whether eigenvalue is greater than 1. The results of PCA
analysis are shown in Table 1.

From Table 1, we determine the pH, water temperature,
temperature, carbon dioxide, illumination intensity, photo-
synthetically active radiation, radiance, wind speed and direc-
tion to represent the five common factors and use these
indicators as the input variables of prediction mode.

Step 2: Clustering based on similar time slots. K -means
is used to cluster historical samples based on similar time
slots. Since dissolved oxygen is affected by multiple weather
factors, the custom weather index is used to evaluate weather
conditions in aquaculture.

Angle Cosine has the advantages of measuring the dif-
ference in different directions, and correcting the problem
of non-uniform metric. Considering the periodically change
trend of dissolved oxygen in day and night, we choose the
Angle Cosine instead of Euclidean distance in K -means and
finish clustering data sets of similar time slots. The results

TABLE 1. The results of PCA analysis.

TABLE 2. DB values change with k.

of K -means clustering are shown in Table 2. Davies-Bouldin
(DB) index is applied to evaluate clustering effect [36]. From
Table 2, it is clear that DB = 0.2765 is minimum, so K = 3
is best.

VDB(k) =

k∑
i=1

max
j,j 6=i

{
Si+Sj
dij

}
k

(10)

where Si = 1
ni

∑
x∈Ci
||x − zi|| is compactness in cluster Ci,

dij − ||zi − zj|| represents the dispersion between cluster Ci
and cluster Cj.
Step 3: Modeling. Set the parameters of IGA and ELM

neural network respectively in three clusters. IGA is used to
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TABLE 3. Neural network structures of three clusters.

optimize the parameters of each ELM model. Finally, build
the hybrid prediction model.

1) IGA parameters. Set the initial population size of IGA
algorithm to 10 and the number of iterations to 50. According
to the principle of minimum mean squared error for multi-
ple times, the crossover probability is 0.1 and the mutation
probability is 0.1.

2) ELM parameters. Set the number of input nodes to 9 and
the number of output nodes to 1. The number of hidden layer
nodes in each cluster is set to 37, 27 and 21 respectively by
using trial and error approach. Thereby obtain the structure
of each ELM neural network.

Step 4: Forecasting results. For each new group of dis-
solved oxygen prediction task, assign new data stream to
the corresponding cluster and obtain the forecasting value
through KIG-ELM prediction model.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
In this section, we present the experimental results and dis-
cussions of the dissolved oxygen prediction. We first intro-
duce the experimental data. Then we present the clustering
results of experimental data sets. When obtaining the best
clustering results, we realize the prediction of dissolved oxy-
gen in different clusters. We finally compare the prediction
performance and analyze the prediction results.

A. DATA SETS
In this paper, all data are collected every 10min from the aqua-
culture tank through the water quality monitoring system. All
weather data and water quality data (totally 2,016 data sets)
are grouped into 28 streams (each for a day or night) from
July 1, 2019 to July 14, 2019. And 1,728 data sets (in 12d)
are used for training, 288 data assets (in 2d) used for testing.
We choose the 9 indexes as the input variables of prediction
model, including pH, water temperature, temperature, car-
bon dioxide, illumination intensity, photosynthetically active
radiation, radiance, wind speed and direction. Dissolved oxy-
gen is the output. All of the experiments are implemented by
MATLAB 2014a and run on a PC with 3.4GHz Core(TM)
processor, 16.0GB memory, and Microsoft Windows 10.

B. CLUSTERING RESULTS
The data sets in 14d (28 days or nights) can be clustered
into three clusters by K-means. The structure of IGA-ELM
neural network in each cluster is shown in Table 3. Every
cluster has different size and structure. The largest cluster
contains 828 samples, while the smallest cluster contains only
228 samples. In Table 3, we can find that all night samples

are classified into cluster 1. And day samples are classified
into two clusters. Cluster results indicate that the different
night weather conditions have little effect on dissolved oxy-
gen, while the effects are big with different day weather
conditions.

C. PERFORMANCE CRITERIA
It is necessary to use some widely recognized indicators to
evaluate the performance of the proposed prediction model.
Thus, we utilize different statistical performance evalua-
tion criteria including the mean absolute percentage error
(MAPE), the root mean square error (RMSE), Nash Sutcliffe
efficiency Coefficient (NSC) [37] (Benyahyaetal et al., 2007)
and run time. These indicators are calculated as follows

RMSE =

√√√√1
n

n∑
i=1

(
yi − ŷi

)2 (11)

MAPE =
1
n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (12)

NSC = 1−

∑n
i=1

(
yi − ŷi

)2∑n
i=1 (yi − ȳ)

2 (13)

where n is the number of samples, yi and ŷi are the observed
value and predicted value respectively, ȳ is the average of all
observed values.

D. SIMULATION RESULTS AND ANALYSIS
After K -means clustering, we realize DO prediction of
KIG-ELM. The prediction result of the proposed model
is shown in Fig.3. To verify effect of K -means cluster-
ing and IGA optimizing operations, K means-GA-ELM
(GA optimized ELM network after K -means clustering),
K means-ELM (ELM neural network after K -means cluster-
ing) [38], K means-LSSVM [39], IGA-ELM (improved GA
optimized ELM network) and ELM models are constructed
for comparison. The total training and testing samples of
these contrast models are the same with KIG-ELM. The
prediction errors of the six models are shown in Fig.4.

From Fig.3, it is clear that the KIG-ELMpredictionmodels
can complete the dissolved oxygen prediction well. The pre-
diction trend of the KIG-ELM is consistent with real value
and prediction results are closer to real values with small
fluctuations. Fig.4 represents the prediction errors of the
above six models. It is obvious that the KIG-ELM is superior
to the other models. Its prediction performance is stable.
The prediction error of KIG-ELM is less than 0.2 and lower
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TABLE 4. Performances comparison of six predictive models.

FIGURE 3. Prediction results of proposed prediction model.

FIGURE 4. Prediction errors of six models.

than the other counterpart models. Meanwhile, the prediction
errors of the other counterpart models are unstable.

To verify the superiority of KIG-ELM, we compare the
performances of these six models. All contrast models realize
with K-means algorithm performed the clustering based on
similar time slots. Under the same preconditions, the predic-
tion performance of each model is shown in Table 4.

From Table 4, the prediction accuracy of the six mod-
els has reached more than 90% (all MAPEs were less
than 0.1). The MAPE, RMSE values of the hybrid model
are 0.0386 and 0.2591, respectively. Compared with the K
means-GA-ELM, K means–ELM, K means-LSSVM and
ELM, the MAPE value is decreased by 16.09%, 25.48%,
40.43% and 49.61% respectively. Meanwhile, the RMSE
value is decreased by 17.25%, 27.38%, 38.32% and 46.57%
respectively. Meanwhile, KIG-ELM shortens the time by
0.2698s and 0.2574s, when comparedwithK mean-GA-ELM
and K mean-LSSVM. Compared with IGA-ELM, MAPE,

RMSE values of KIG-ELM decreased by 36.20% and
35.76%. This is because dissolved oxygen is susceptible to
multiple weather factors such as temperature and illumina-
tion. The clustering operation based on weather index can
group data streams well, which have similar characteristics.
Clustering helps eliminate information interference between
data streams with different characteristics, thus improving
the accuracy of prediction model. However, the time of
IGA-ELM is five times longer than KIG-ELM. The running
time of KIG-ELM is slightly longer than K mean-ELM.
Moreover, KIG-ELM had the best NSC value among these
models. The experimental results prove that the improved
genetic algorithm could avoid the premature convergence of
genetic algorithm and improve the efficiency effectively.

From the prediction results of IGA-ELM and ELM neural
networks, we can conclude that parameters optimization pro-
cess of IGA algorithm helps ELM obtain the best parameters.
It dramatically improves the prediction accuracy, but also
consumes a little time. The prediction results ofK mean-ELM
and K mean-LSSVM show that ELM neural network is
more suitable to be applied in forecasting dissolved oxy-
gen in high-density aquaculture than LSSVM. In conclusion,
the proposed KIG-ELM has higher prediction accuracy and
efficiency than the counterpart models for these indicators.

FIGURE 5. Prediction error comparisons with two existing models.

To verify the superiority of KIG-ELM, the existing algo-
rithms EMD-IGA-ELM [40] and GA-BP [41] are selected
for comparison. In GA-BP, the structure of BP is 9-44-1,
the number of iteration is 1000, and the goal is 0.1.
In EMD-IGA-ELM, the number of IMF components is 8.
The parameters setting of IGA and ELM are the same as
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TABLE 5. Performances comparison with two existing models.

Section 3. Fig.5 represents the prediction error comparisons
with these two existing models. It is clear that the error of
our proposed KIG-ELM is lower than EMD-IGA-ELM and
GA-BP. The prediction error of KIG-ELM is less than 0.2,
but the prediction errors of EMD-IGA-ELM and GA-BP
both are between approximately 0 and 0.4. To analysis the
performance of KIG-ELM, we calculate different prediction
indicators of three models in Table 5.

From Table 5, the performance of proposed model is
superior to EMD-IGA-ELM and GA-BP. The MAPE of
KIG-ELM decreases by 34.58% and 42.65% respectively,
when compared with EMD-IGA-ELM and GA-BP. RMSE
values of KIG-ELM reduces by 34.17% and 42.22% respec-
tively.Meanwhile, the NSC values of KIG-ELM significantly
outperform the other two models. These results prove that
KIG-ELM could capture the characteristics of data stream
and improve the reliability and accuracy of the prediction
model by clustering operation. Besides, the run time of
EMD-IGA-ELM is about 7 times of KIG-ELM, and 0.6995s
shorter than GA-BP. Although multi-scale decomposition of
EMD can reduce the interference at different scales informa-
tion, it also consumes time. The multi-scale decomposition
achieves high accuracy at the expense of time.

In summary, KIG-ELM can solve the problem of random
parameters in ELM and explore the characteristics of dis-
solved oxygen data streams. The combination of K-means,
IGA and ELM can effectively improve the accuracy of pre-
diction model, and overcome the problem of low accuracy of
single model. We can get the status and trend of dissolved
oxygen and make scientific strategy based on this reasonable
and reliable method in intensive aquaculture.

VI. CONCLUSION
This paper constructs a new multi-parameter prediction
method KIG-ELM to forecast the DO content in aquacul-
ture based on edge computing architecture. In order to cap-
ture the characteristics of dissolved oxygen data stream,
this paper self-defines the variable weather index and used
K-means to cluster data streams in similar time slots. The
chaotic sequence is introduced into IGA algorithm, which
can weaken and avoid the chattering problem in the process
of optimization. Therefore, it is used to search the optimal
weight and threshold of ELM neural network. The experi-
mental results show that optimized ELM neural network can
realize the forecasting process quickly. The combination of
ELM, K-means and IGA can improve prediction accuracy

significantly. Compared with the counterpart algorithms,
the proposed hybrid model is more suitable for predicting DO
in intensive aquaculture.

Although the proposed model has achieved excellent
prediction results in this study, there is still room for improve-
ment in the future. Firstly, additional proper search tech-
niques for obtaining optimum parameters could be combined
with ELM to predict DO content. Secondly, prediction accu-
racy usually decreases rapidly during sunrises and sun-
sets. It is meaningful to find a proper method to enhance
accuracy in above time slots. Finally, how to construct com-
prehensive indexes as inputs of prediction model is signif-
icant. All of above are worth exploring problems in future
research.
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