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ABSTRACT This paper mainly proposes an artificial neural network (ANN) model for predicting edge
stretchability of GPa-grade steels, which is substantially difficult to predict due to the complex nonlinear
relation among the numerous sheared edge qualities. We newly suggest the physically characterized
parameters, such as material properties, deformed shape, and work hardening of sheared edge, to predict
the various materials and punching methods, simultaneously. The proposed parameters are trained with the
pre-damage strain which is calculated by inherent fracture strain and experimental results in terms of hole
expansion ratio. To prevent the overfitting issues, cross validation method with additional datasets from
a different kind of edge stretchability test such as sheared edge tensioning test are utilized. Experimental
validations have been conducted with various GPa-grade steels and sheared edge conditions, which are
compared with the proposed ANN model and numerical simulation. The proposed ANN model exhibits
remarkable performance in the prediction of hole expansion ratio having a mean absolute error of 1.5%
when compared to the previous studies such as numerical simulation and ANN model with utilizing the
maximum hardness measured at the sheared edge.

INDEX TERMS Artificial neural network, edge cracking, edge stretchability, GPa-grade steels, sheared

edge quality.

I. INTRODUCTION

GPa-grade steels which exhibit an ultimate tensile strength
of at least 1,000 MPa have been widely applied to body-
in-white (BIW) structures to improve their crash worthiness
and reduce their weight [1]-[3]. However, undesired fractures
frequently occur during the stamping and flanging process
due to the poor formability and sheared edge stretchability
of GPa-grade steels, which restricts their wide application in
BIW panels [4], [5]. It is difficult to predict edge cracking
using numerical simulations with conventional forming limit
curves since the onset of edge cracking occurs at a signif-
icantly lower strain than that of the forming limit curves,
which causes significant delays in new product develop-
ment [5], [6]. Moreover, edge cracking is still being reported
in the third-generation advanced high-strength steels which
have been recently developed to obtain superior elonga-
tion while maintaining inherent strength [7]-[9]. For these
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reasons, the prediction of edge cracking is an enormous chal-
lenge for the wide application of GPa-grade steels in BIW
structures.

Edge cracking is predominantly affected by the sheared
edge qualities after the punching or shearing processes that
produce the initial blanks from coiled sheet steel. Sheared
edge quality related to the edge cracking can be cate-
gorized into material hardening and deformed shape of
sheared edge [10]-[12]. The deformed shape of sheared edge
typically consists of roll over, sheared, fracture, and burr
zones [13]. Material hardening represents the strain harden-
ing profile along the sheared edge after the shearing [14].
Extensive studies have been mainly conducted by numerical
analysis with pre-defining the newly proposed pre-damage
values.

Wang et al. [15] proposed a numerical model for predicting
the hole expansion ratio (HER) by mapping a pre-damage
value at the center of the sheared edge after punching numer-
ical analysis. However, it cannot distinguish the various die
clearance conditions since this model only concerns a single
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influencing factor. Mu ez al. [16] suggested the edge cracking
prediction method using uncoupled ductile fracture models
by proposing a pre-damage value consisting of a function of
the equivalent plastic strain and the strain at the onset of the
fracture. However, it is limited to predict the exact experimen-
tal tendency of edge cracking with respect to the punching
clearances, since it cannot consider the complex nonlinear
effects among the various sheared edge qualities due to the
definition of pre-damage only relied on the numerical punch-
ing analysis. Pathak [17] suggested pre-damage value using
3-dimentional X-ray computed tomography for capturing the
number of voids per unit volume after punching process,
which could precisely represent the edge cracking by con-
sidering the void growth and their coalescence. Despite their
good prediction accuracy, this method is limited to utilize due
to the high costs and time to obtain dataset, which makes
it possible to apply to various applications. He et al. [18]
recently proposed an experimental method for defining the
pre-damage using the hardness (HV) to characterize the work
hardening with respect to the punching clearances. They
suggested that a single maximum HYV can effectively predict
the various die clearance in punching process with a new flat
punch.

Based on the literature reviews, experimental methods to
define a single pre-damage value have been recently devel-
oped. However, the punching process inevitably undergoes
tool wear after repetitive punching process due to the exces-
sive contact force [19], which aggravates the deformed shape
with the onset of a severe burr. In addition, advanced punch-
ing methods such as humped bottom punch and two-stage
punching have been newly developed to reduce the material
hardening at the sheared edge [7], [8]. Under these circum-
stances, it is highly required to find the effective experimen-
tal pre-damage values to predict the edge stretchability of
various punching methods.

However, there are several obstacles to apply all the
sheared edge qualities for predicting edge cracking, since
it does not only be clarified the exact relationship between
numerous sheared edge qualities and edge cracking mech-
anism, but also has a complex and nonlinear relationship
among the various sheared edge qualities [5], [12], [16], [18].
To mitigate these difficulties, artificial neural network (ANN)
is one of the most widely utilized deep learning algorithms to
predict the nonlinear relationships between multiple inputs
and output data in various manufacturing fields [20]-[22].
Recent research trends in development of ANN model for
engineering field are finding a definition of physically mean-
ing variables and obtaining the good accuracy with limited
amount of data.

For example, Lu et al. [23] developed an ANN model for
predicting mechanical properties from instrumented indenta-
tion by integrating the numerical simulation and experimental
data to increase the datasets to achieve a high accuracy. They
defined the physically characterized input variables suing
the indentation response from indentation instrument and
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physical and scientific law. Leema et al. [24] found physically
meaningful datasets from the various material testing meth-
ods such as X-ray diffraction analysis, particle size analysis,
transmission electron microscope, scanning electron micro-
scope and energy dispersive spectrum, which are applied for
the ANN model to investigate the effects of materials and
processing conditions on the final properties of a powder
metallurgy process. Lee et al. [25] integrated the constitu-
tive equation and an ANN model to study the relationship
between certain powder design parameters and compaction
properties. In addition, they utilized the leave one out cross
validation method to minimize the overfitting problem due
to the less data, which makes it possible to show a good
prediction accuracy even with utilizing a limited amount of
data.

In manufacturing fields, the recently developed ANN mod-
els mainly focused on the proposing the physically character-
ized variables specialized in each manufacturing fields using
experimental and image data with integrating physical law.
In addition, new approach to overcome the lack of dataset are
proposed to achieve good prediction accuracy and minimize
the overfitting. Since there is no report of the ANN model for
predicting the edge stretchability with respect to the sheared
edge qualities induced by various punching conditions, it is
highly required to establish the physically characterized
input variables and proper ANN approach to achieve the
remarkable prediction accuracy.

This paper newly proposes an ANN model to predict edge
stretchability in terms of HER with GPa-grade steels with
respect to the various punching conditions and materials.
New physically characterized input variables are proposed
based on the experimental results and well-known physical
law, which are partitioned in three representative sheared
edge quality parameters such as material properties, material
hardening, and deformed shape of sheared edge. Pre-damage
value obtained from hole expansion (HE) are newly defined
and applied for the output data for training with the com-
plex combination and nonreality of factors in sheared edge
qualities. To achieve the remarkable prediction accuracy,
we newly suggested the ANN approach by utilizing sheared
edge tensioning (SET) test dataset, which is totally different
method in edge stretchability tests. The performance of the
proposed ANN model is evaluated by direct comparison with
experimental results in terms of HER for different GPa-grade
steels and blanking methods including humped bottom punch
and two-stage punching.

The rest of the paper is organized as follow: In Section II,
we present the new experimental datasets to predict various
sheared edge qualities by categorizing the input parameters
based on the physically meanings related to the edge crack-
ing. Section III focuses on the proposed ANN prediction
framework which is validated by comparison with previous
research such as numerical prediction and other prediction
methods. Finally, Section IV concludes the paper with
summarizing the results and findings.
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Il. EXPERIMENTAL PROCEDURE

In order to predict the predict the edge stretchability with
various materials and punching methods, it is highly required
to take into consideration of the complex combination of
numerous factors in sheared edge qualities. However, it is
difficult to predict the edge stretchability using all factors,
since prediction accuracy can be deteriorated when unknown
trivial variables are applied. For these reasons, it is essential
to define the physically related influencing factors on edge
stretchability.

Figure 1 demonstrates the flow chart for predicting the
edge stretchability in this paper, and sheared edge qualities
are categorized into three representative parameters such as
material testing, deformed shape, and material hardening
data. We proposed the physically characterized input features
for each parameter. First, material testing parameter indi-
cates the inherent material characteristics which is examined
by the flow curves obtained from the uniaxial tensile tests.
Second, deformed shape parameter represents the charac-
teristics of deformed shape in sheared edge after punching
process obtained from the vision system, which shape is
directly affected by the condition of punching process. Last,
material hardening parameter indicates the strain hardening
along the sheared edge induced by the severe plastic defor-
mation after punching process, which significantly changes
with respect to the condition of punching process and applied
materials. The proposed input features for each parameter are
matched with the results of edge stretchability tests in terms
of pre-damage strain to train the complex combination and
nonlinearity among the data.

Gathering data set

[Raw data] [Input parameters features)

Engineering Material properties — Yield strength, Hardening exponent

Strain stress curves

Deformed shape — Ratio of roll over/sheared/fracture/burr zone
Fracture angle
Micro-hardness test Material hardening — Max. HV, HV at die corner, HV changes
along the edge | |
el Input

Mean, average single(5) gradients
" . y Target data Artificial
Pre-damage strain * € = Frvscmd ~ SR Neural
= 821 ¥ 10°[HER]® +0.01279-[HER]#0.013 by e

Hardening gradient (3-7)

1 sheared edge

Hole expansion test
Tensile test with DIC

Inverse calculation Ouiput

Hole expansion ratio
(HER, %)

Pre-damage strain (&)

FIGURE 1. Flow chart for predicting edge stretchability with ANN model.

A. MATERIAL TESTING DATA

Although specific materials are located in the same cate-
gory of GPa-grade steels, they show various strain hardening
behavior depending on the chemical composition and heat
treatment as shown in Fig. 2. Figure 2 demonstrates the
engineering strain-stress curves of two different GPa-grade
steels with XF980 and TRIP1180. TRIP1180 is one of the
conventional GPa-grade steels which is widely applied in
BIW panels, and XF980 is categorized as a third-generation
advanced high-strength steel exhibiting a good strength-
ductility combination [8], [9].
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FIGURE 2. Flow curves of XF980 and TRIP1180 after tensile tests.

It has been reported that inherent material properties
such as yield strength and strain hardening exponent
affect the work hardening and deformed shape of sheared
edge [12], [18]. Yield strength represents the onset of plas-
tic deformation, which determines the geometrical deformed
shapes of sheared edges since a higher yield strength reflects
the onset point at which the punch penetrates through the
thickness direction. The strain hardening exponent represents
the strain hardening tendency during plastic deformation, and
GPa-grades steels with a higher strain hardening exponent
tends to undergo more severe plastic deformation around the
sheared edges. It can be calculated by the power law equation
as expressed in Eq. (1):

oc=Kx¢g" (D

where K and n denote the strength coefficient and hardening
exponent, respectively, which are listed in Table 1. However,
it is insufficient to express the strain hardening characteris-
tics to precisely evaluate the strain hardening characteristics,
since it changes rapidly from initial yielding to ultimate
tensile strength. To evaluate the initial strain hardening char-
acteristics in detail, the mean gradient for each section was
calculated by partitioning 5 sections from yield strength to
ultimate tensile strength as shown in Fig. 3, which are addi-
tionally adopted for the input features of material hardening
including conventional input features such as yield strength
and strain hardening exponent.

TABLE 1. Material properties of XF980 and TRIP1180.

XF980 TRIP1180
Yield strength
(MPa) 629 1087
FlOi?V curvcis = 1899 8 x 02522 6=1519.3 x g0071
(c=Kx¢g")
Strain hardening 0.2522 0.071
exponent (n) ’ ]
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FIGURE 3. Input features for representing material properties.

In order to obtain the proposed features in the material
testing parameter, raw engineering strain-stress dataset is
required, which can be easily converted to the true-strain
stress dataset, and yield strength and strain hardening coeffi-
cient can be calculated using mathematical programs. Then,
the gradient of ranges from yield strength to ultimate tensile
strength, which are shown in Figure 3, can be extracted as a
profile of deviation between pairs of fixed-range points by a
program developed using Python language.

B. GEOMETRICAL DATA IN THE DEFORMED SHAPE

The deformed shape of a sheared edge is one of well-known
influencing factors on edge stretchability [14], which are
examined by utilizing vision system to capture front or
cross-sectional view of sheared edge as shown in Fig. 4.
Figure 4 demonstrates a representative deformed shape of
a sheared edge, and geometrical data are examined by ana-
lyzing the image processing algorithm. Sheared edge along
the thickness is respectively partitioned into 4 zones, such
as roll over zone, sheared zone, fracture zone, and burr zone
as shown in Fig. 3(a). From the previous literature, the ratio
of partitioned zone and size of burr are widely utilized to
examine the deterioration of edge stretchability in terms of
HER [15], [26]-[27]. For example, HER begins to decrease
as the burr is formed, which gradually worsens in proportion
to the size of burr. A lower portion of the fracture zone shows
a poor HER. To consider the effect of various geometric data
of deformed shape on edge stretchability, the length of roll
over, sheared zone, fracture zone, burr zone, and fracture
angles are normalized by original thickness and 90°, which
is adopted for the input features for representing deformed
shape parameter.

The length of each zones can be calculated as the ver-
tical distances between end points as red scatters shown
in Fig. 4(c), which can be precisely located by an image
processing-based program developed to position required
points regarding to the gradient change of top, bottom and
side curves of the specimen.
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FIGURE 4. Geometrical characteristics of a sheared edge: (a) definition of
sheared edge; (b) cross-sectional view; (c) end point measurement for
extracting features.

C. MATERIAL HARDENING DATA

Inevitably, GPa-grade steels undergo severe plastic defor-
mation at the sheared edge during the punching process in
which uneven local hardening is distributed along the sheared
edge through the thickness direction. It is generally evaluated
by the Vickers hardness test to characterize the local plastic
deformation of sheared edge in detail. A higher hardness
value indicates that the sheared edge undergoes severe strain
hardening, which in turn means that the residual local forma-
bility is low to withstand the edge stretching during stamping
and flanging process. To examine the level of the damage
in the shear edge, an edge strain hardening (ESH) index is
adopted as defined in (2) where HV 55 received indicates the HV
of as received material measured away from the sheared edge.

ESH = (HV - HVas—received)/(Hvas—received) (2)

Maximum HV among the sheared edge is frequently uti-
lized to predict the edge stretchability of GPa-grade steels
to characterize the representative pre-damage strain [18].
However, it is not proper to apply for the advanced punching
method such as humped bottom punch and two-stage punch-
ing which show remarkable improvements in HER compared
to the flat punch, since advanced punching methods can
improve the HER by dramatically reducing the hardness at
the bottom of fracture zone, although the maximum hardness
is similar to the conventional punch as shown in Fig. 5 [8], [9].

Under these circumstances, it is highly required to fully
consider the hardness profile along the sheared edge to pre-
dict the HER, precisely. Vickers hardness tests have been
performed along the sheared surface measured with every
0.1 mm interval from burr to roll over zone to obtain hardness
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profile, and we newly proposed new input features concern-
ing the physical characteristics, such as hardness at bottom,
hardness changes, each gradient of hardness changes and
their mean and average gradient as shown in Fig. 5, which
are adopted for the deep learning including maximum HV.

Fracture zone Sheared zone Rollover zone
T T T

05 Burr .

XF980
Flat punch
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O Two-stage punching
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FIGURE 5. Input features for material hardening parameters.

To obtain the hardness profile, it is required to prepare
the polished specimen after mounting for performing the
Vickers hardness test along the sheared edge. the maximum
HV and its position and HV at burr are firstly calculated,
and then the dropped or increased HV can be calculated. The
single, mean, average gradients of fracture zone as shown
in Fig. 5 are extracted as a profile of deviation between pairs
of fixed-range points by a program developed using Python
language.

D. HOLE EXPANSION TESTS DATA

The hole expansion (HE) is one of the most widely utilized
evaluation methods to examine edge cracking resistance in
terms of edge stretchability in which a conical punch expands
punched hole out-of-plane until fracture occurs through the
thickness direction of the sheared edge. Figure 6 demon-
strates the HE experimental set-up with machine vision
system, which we conducted by following the definition of
ISO 16630-2009 standard. Since an edge crack suddenly
propagates through the sheared edge rapidly, real-time
inspection system using a monochrome CCD camera with
5M pixels is utilized to precisely evaluate the through-
thickness cracks [28].

To evaluate the edge stretchability quantitatively, the HER
is measured by calculating the ratio of the initial diameter and
the final diameter at which a crack fully propagates through
the thickness direction as defined in (3)

HER(%) = ((Dr — Do)/(Do)) x 100 3

where Dy and Df denote the initial and final diameter, respec-
tively. As the initial sheared edge exhibits the larger HER,
it represents good edge stretchability. However, since it is
not possible to directly express the pre-damage of a sheared
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FIGURE 6. Experimental set up for hole expansion test with machine
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FIGURE 7. Correlation between HER and the effective plastic strain.

edge, it is necessary to find a relationship between HER and
the plastic strain at the sheared edge. Figure 7 schematically
illustrates the HE tests analysis, which was numerically simu-
lated with the DEFORM-2D commercial software. An initial
sheet of XF980 with a thickness of 1.2 mm was modelled with
30,721 axisymmetric elements, which were coupled with the
punching analyses to simulate the geometrical shape after the
punching process. The equivalent plastic strain at the burr
element was traced corresponding to the HER as expressed
in (4), then the pre-damage strain at the sheared edge was
calculated by the fracture strain of the as-received material,
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and the equivalent plastic strain was obtained from the HER
as defined in (5):

enpr = —8.21 x 107°[HER]?
+12.79 x 10_3[HER] +0.013 “4)
€D = Eas—received — €HER (5)

where ep and eppr indicate the pre-damage strain and
the equivalent plastic strain from the HER, respectively.
Eas—received denotes the fracture strain of the as-received mate-
rial, which was obtained from the uniaxial tension test using
a digital image correlation technique supported by GOM
ARAMIS v6.0. The calculated ep was utilized for output
data to find a nonlinear relationship with the sheared edge
qualities.

lll. PREDICTION OF HOLE EXPANSION RATIO

A. ARTIFICIAL NEURAL NETWORK(ANN) MODEL

An ANN algorithm is applied to predict the edge stretch-
ability of GPa-grade steels for various material hardening
and punching conditions with 72 experimental data set.
Additional 216 data-sets of SET test, which is one of edge
stretchability methods by tensioning the tensile specimen
with sheared induced on one side of edge, is applied to
increase the training efficiency since the SET test is also
affected by the material properties and material hardening in
terms of strain hardening exponent and material hardening
profile [8], [9]. In a single data set, 23 input features for
representing three parameters as listed in Table 2, which
are corresponded with the output feature of the pre-damage
strain. Figure 8 shows the schematic diagram for representing
overall HER prediction system to consist the ANN model.

TABLE 2. Input parameters and their detailed features for ANN model.

Material properties| Deformed shape |Material hardening

Input
features

1. Yield strength

2. Strain hardening
exponent

3-7. Strain gradients

1. Ratio of roll over
2. Ratio of sheared
3. Ratio of fracture
4. Ratio of burr

5. Fracture angle

1. Max. HV
2. HV at die corner
3. HV changes
K. Position
of max. HV

5. Mean gradient
6. Average gradient
7-11. single gradient

Figure 9 presents the schematic diagram of the ANN,
which is constructed with the complex combination of
multiple neurons. Each input cell receives the individual
inputs [25], which are applied to calculate the intermedi-
ate outputs by applying weights factors using the transfer
function as expressed in (6):

net; = Z:‘l:l

where x; and wj; denote input and weighting factors, respec-
tively. b and n indicate the bias and the number of input
features, respectively. Net; is the transfer function to get
the final output of the neural cell. In order to calculate the

(xiwij + D) (6)
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FIGURE 9. Schematic diagram of basic neural cells in a neural network.

non-linearity between the input and output data, rectified
linear units (ReLU), as defined in (7), was applied for the
ANN model in consideration of the effect of the occurrence
of the burr formation, which can also reduce the so-called
gradient vanishing issue during deep learning.

0 fornet; <0
x fornet; >0

yj =f(netj) = { )

We applied a multi-layered neural network structure as
shown in Fig. 10, which consisted of an input layer, hidden
layer, and output layer, and the hidden layer size was fixed

[Input layer] —————— [Hidden layer] ————— [Output layer]

[Input parameters]
Material propertics

W,

@@é

Wit

™ [Output parameters]
- Pre-damage strain

Wy

[Input parameters)
Deformed shape

éﬁ@@é@é@

|
1
{
|
|
A

[Input parameters]
Material hardening

‘W,

é@é@
(9)

FIGURE 10. Architecture of the proposed ANN model.
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at 60 neurons, which are determined by the trial and error
methods by changing the number of hidden layer and their
nodes to prevent the overfitting with securing the prediction
accuracy. The input layer receives the input data for trans-
ferring the data set to the hidden layer. In the hidden layer,
the numbers of layers and nodes are manually determined by
evaluating the prediction performance, which is connected
with every input node to find nonlinear relationship among
the nodes. The weighting factors and biases are calculated
by the transfer function and the activation function. Then,
weighting factors and bias are optimized by a gradient descent
algorithm to figure out the non-linear connections between
the input and output data by minimizing the error in terms of
root mean square error between the prediction results and the
target value.

In order to increase the prediction accuracy, we conducted
the cross validation for training to prevent the overfitting
problems [25]. The prediction accuracy was evaluated by the
mean absolute error (MAE) as defined in (8):

1
MAE = n 27:1 |erarger = €pred.| ®

where n indicates the total number of data samples. &grget
and epreq denote the target value and prediction value,
respectively. In addition, correlation coefficients with the
values obtained from experiments are compared with respect
to the machine learning methods to examine the performance
among the machine learning methods.

B. EFFECT OF INPUT FEATURES

In order to examine the effect of proposed input features
as listed in Table 2, the performance of each input feature
was examined in terms of MAE. To confirm the probabil-
ity of usage of ANN as the utilized model via comparison
with the other machine learning algorithms, the proposed
method, which one after another is integrated the machine
learning algorithms trained by the similar objects as train-
ing process of ANN model, was tested from the testing
dataset with 40 different cases, which are compared with
the various error statistics such as MAE, root mean squared
error (RMSE), correlation coefficient test, and R-square (R?).
Based on the results obtained as shown in Table 3, ANN

TABLE 3. Comparison of correlation coefficient of testing cases between
different machine learning algorithms.

Corr.
Algorithms MAE RMSE Coef. R?
(p<0.0001)
Linear regression 0.033 0.040 0.8751 0.7758
Decision tree (D = 3) 0.031 0.037 0.8903 0.7927
Lasco Regression 0.033 0.040 0.8647 0.7487
Ridge regression 0.028 0.035 0.9082 0.8340
Support vector machine 0.063 0.070 0.7762 0.6124
Artificial neural network 0.023 0.031 0.9348 0.8738
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technique which officially preferred as the utilized model
for the proposed method performed the highest correlation
coefficient tested by comparing the error statistics such as
predicted pre-damage strain and standard references obtained
from experiments (r = 0.9348, p < 0.0001). The correlation
between the proposed method and the standard measurement
is shown in Fig 11. Figure 12 shows the prediction error
in the trained ANN model with respect to the applied input
features. It is interesting to note that the maximum HV, which
is known to be a major influencing factor in edge cracking,
exhibits significantly low prediction accuracy with MAE
of 0.07, which only predicts the case of conventional flat
punch. On the other hand, proposed each influencing factors
remarkably improved the prediction accuracy.
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FIGURE 11. Scatterplots of correlation between experimental values and
pre-damage strain evaluated by proposed method.
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FIGURE 12. Error in trained ANN model with respect to the applied input
features.

In order to investigate the reason of inaccurate predic-
tion results only with maximum HYV, deformation of sheared
edge is observed by vision system during HE tests as shown
in Fig. 13, which are analyzed with the results of hardness test
as shown in Fig. 5. It is interesting to note that the onset time
and position of tiny crack is mainly induced by maximum HV,
but its propagation direction and speed are determined by the
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FIGURE 13. Onset of crack and crack propagation during HE tests.

various sheared edge qualities as shown in Fig. 13. This is
why the proposed ANN with fully applying the suggested
factors exhibits the best performance in prediction of pre-
damage strain regardless of material hardening and punching
methods, since it does not only consider the whole tends of
accumulated work hardening after blanking with concerning
material properties, but also take into consideration of the
geometrical shape of deformed sheared edge which affects
the onset of crack.

C. PREDICTED RESULTS OF HOLE EXPANSION RATIO

The final goal of the ANN model in this paper is prediction of
HER regardless of material properties and blanking methods.
It is possible to predict the residual edge stretchability in
terms of eygr using predicted pre-damage strain using the
Eq. (5), which can be inversely calculated for predicting
HER based on the fitted Eq. (4). Figure 14(a) demonstrates
the HER prediction results of the tested samples with the
proposed ANN model by only training with HER data set,
which is compared to the ANN model with maximum HV and
experimental results. In order to compare the performance of
proposed ANN model, numerical simulation has been carried
out with the DEFORM-2D commercial software as men-
tioned in Section 2.D. Based on the previous literatures [18],
pre-damage values are calculated with respect to the materials
and punching methods utilizing the maximum HV obtained
from the micro-hardness test. When maximum plastic strain
at the burr reaches the fracture strain of as-received material,
we treated that edge crack occurs. The numerical prediction
results as depicted with red dash line are compared with the
proposed ANN model as shown in Fig. 14.

We compared the effect of proposed pre-damage values
and generally used single pre-damage value calculated by the
maximum hardness. The pre-damage value with maximum
HYV can only predict the HER for the conventional flat punch
using ANN model and numerical simulation, since there is
little change in hardness at the fracture and sheared zone
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FIGURE 14. Prediction results using ANN model with proposed sheared
edge qualities: (a) HE tests data sets: (a) HE and SET test data sets.

when applying the flat punch as shown in Fig. 5, which is sup-
ported by the previous literatures [18]. Numerical prediction
using maximum HV also shows low prediction accuracy in
advanced punching methods with all humped bottom punch
and two-stage punching, since it is insufficient to express
the complex enhancing mechanism of advanced blanking
methods using maximum HV. On the other hand, it is possible
to predict the advanced blanking methods by proposed ANN
model with efficiently analyzing the changes in sheared edge
qualities, such as hardness profile and the ratio of deformed
shape in sheared edge. However, overestimation or underesti-
mation of HER occurs when applying proposed ANN model
only with HER dataset as shown in Fig. 14(a) due to the lack
of training of nonlinearity and complex combination among
the various sheared edge qualities.

In order to improve the remarkable prediction accuracy,
proposed ANN model is additionally trained by proposed
approach with utilizing SET test data set, which is totally
different sheared edge stretchability tests in terms of shearing
method and stretching direction. Figure 14(b) demonstrates
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the prediction results using HE and SET test datasets that
the overestimation and underestimation problems are solved
with representing exhibiting a 1.5% of HER difference. It is
evaluated that training efficiency can be improved due to
the similar enhanced mechanism of sheared edge stretcha-
bility although shearing method and stretching direction are
different [8], [9].

It is possible to conclude that the proposed ANN model
with physically characterized input parameters demonstrated
the best performance in prediction of HER regardless of
the material properties and blanking methods, and the pre-
diction accuracy can be improved by utilizing a SET edge
stretchability data set.

IV. CONCLUSION

This paper proposes ANN model to predict the edge stretcha-
bility of GPa-grade steels with suggesting the various sheared
edge qualities based on physically characterized input param-
eters such as material properties, deformed shape, and mate-
rial hardening. Cross validation has performed to prevent the
overfitting, and SET data sets were additionally applied to
efficiently train the nonlinearity among sheared edge quali-
ties the input features. Experimental validation was carried
out for three representative punching methods such as the
conventional punching, humped bottom punch and two-stage
punching by comparing the edge stretchability in terms of
HER. Based on the prediction results with the ANN model
with multiple input features of sheared edge quality, the fol-
lowing conclusions can be drawn:

1) An ANN model can be an alternative method for
predicting the HER of GPa-grade steels with various
punching conditions and sheared edge qualities to find
nonlinear relationships among the various sheared edge
qualities affecting on the edge stretchability.

2) Since physically characterized input parameters are
applied to predict HER such as material properties,
deformed shape, and material hardening, it is possible
to achieve remarkable prediction accuracy with limited
amount of data sets.

3) SET test data sets are effective to train nonlinear rela-
tionships among the input parameters and output value
to improve the prediction accuracy of HER, although it
is different edge stretchability test methods in terms of
in-plane stretching, unlike HER which is a representa-
tive out-of-plane test method.

4) The material hardening parameter is a main influencing
factor on edge stretchability, but material properties
and the geometrical shape should also be considered
to achieve more precise prediction accuracy in which
the MAE for predicted value does not exceed 1.5% of
HER difference.
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