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ABSTRACT Reinforcement learning is a technique for power control in wireless communications. However,
most research has focused on the deep Q-network (DQN) scheme, which outputs the Q-value for each
discrete action, and does not match the continuous power control problem. Hence, this paper provides a
deep deterministic policy gradient (DDPG) scheme for power control. A power selection policy designated
an actor is approximated by a convolutional neural network (CNN), and an evaluation of a policy designated a
critic is approximated by a fully connected network. These deep neural networks enable fast decision-making
for large-scale power control problems. Moreover, to speed up the training process, this paper proposes
a prioritized sampling technique, which samples the experiences that need to be learned with a higher
probability. This paper simulates the proposed algorithm in a multiple sweep interference (MSI) scenario.
The simulation results show that the DDPG scheme is more likely to achieve optimal policy than the DQN
scheme. In addition, the DDPG scheme with prioritized sampling (DDPG-PS) converges faster than the
DDPG scheme with uniform sampling.

INDEX TERMS Power control, reinforcement learning, deep deterministic policy gradient, prioritized
sampling, multiple sweep interference.

I. INTRODUCTION
In wireless communication systems, interference can degrade
performance due to the broadcast nature of radio [1]. There-
fore, interference mitigation has played an important role in
wireless communications [2]. Power control is an effective
solution for mitigating interference [3], and can be posed
as an optimization problem [2], [4], [5]. These optimization
techniques are suboptimal solutions for power control, while
reinforcement learning-based schemes have been shown to
exhibit potential for achieving the optimal policy by observ-
ing the rewards of trial-and-error interactions with the envi-
ronment [6], [7].

A. MOTIVATION
Power control is often used to address the problem of interfer-
ence [8]. This paper considers scenarios where multiple Lin-
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ear Frequency Modulation (LFM) interferences are present,
which are modeled as multiple sweep interference (MSI).
MSI can seriously degrade the performance of wireless com-
munication systems [9].

Power control [8], [10]–[13] has been studied for decades,
and typical algorithms that significantly enhance perfor-
mance have been proposed, such as the weighted minimum
mean square error (WMMSE) algorithm [4] and the itera-
tive algorithm based on fractional programming (FP) [5].
On the one hand, both algorithms require full channel state
information (CSI), which is difficult to accurately evaluate.
On the other hand, due to the dynamic characteristics of
MSI, it is difficult for the WMMSE and FP algorithms to
estimate MSI instantaneous parameters in a limited time-
frame. Reinforcement learning is one of the most appropriate
branches of machine learning to solve a complex control
problem [2] that does not require full CSI and estimation
of interference parameters. Therefore, the model-free rein-
forcement learning algorithm is a better scheme to solve
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the problem when the channel state transition probability is
unknown. Through continuous interaction with the environ-
ment, the policy is adjusted according to the feedback to
optimize the performance. Hence, this paper studies rein-
forcement learning-based power control algorithms in MSI
scenarios.

B. RELATED WORK
In the early years of power control solutions based on rein-
forcement learning, the Q-learning algorithm [14] was used
as a practical technique to store the reward of state-action
pairs in a table. In [15], without full CSI, the Q-learning
power control policy traded off transmission efficiency and
cost based on game theory, which improved anti-interference
performance, but it learned slowly in terms of the large-scale
power control problem. The decentralized Q-learning algo-
rithm proposed in [16] optimized the transmit power of user
equipment (UE) without waiting for transmission control
from the base station (BS), but it was only applicable to a
limited state number. In general, the Q-learning algorithm is
not suitable for decision-making in continuous or large-scale
states because the Q-table stores limited state-action pairs.

To this end, the deep Q-network (DQN) algorithm pro-
posed in [17] used a neural network to map the relationship
between the total discount reward and state-action pairs.
Furthermore, in [18], the DQN algorithm was improved
by using two identical neural networks for learning and
decision-making. This approach reduced the estimation error
of the Q-value by cutting off the correlation between
data samples and network training. The algorithm in [18]
has been widely used for the power control problem.
In [19]–[21], transmit power was determined to improve
transmission efficiency by the DQN scheme without being
aware of the dynamic interference model, and a convolutional
neural network (CNN) was used to accelerate the learning
speed. Although the dimension of the state space in [19]–[21]
was not large enough, power control is a continuous problem,
while the decision action of the DQN algorithm is a discrete
value. Thus, optimal power may not be determined. A dis-
tributively executed model-free power allocation algorithm
based on the DQN scheme was developed in [22], and the
approach achieved a near-optimal policy. The authors in [23]
proposed a multiagent DQN-based power control method
for a multiuser video transmission system, and instantaneous
CSI for each link was not needed in the model-free method.
In [19]–[21], discrete action was used in continuous power
control, and this problem also existed in [22] and [23]. The
only way to reduce the quantization error is to increase the
number of output neurons in the neural network, but this
increases the computational complexity. Therefore, the DQN
algorithm is not the best solution for power control.

The policy gradient (PG) algorithm [24] has solved this
problem by approximating the action space using a neural
network. The actor-critic architecture [25] with independent
policy and value networks takes advantage of value approx-
imation and policy approximation. An actor network is used

to represent the policy, and a critic network is used to approx-
imate the action value function. The original actor-critic algo-
rithm is difficult to converge and needs to be improved. Thus,
the authors in [26] proposed a deep deterministic policy gra-
dient (DDPG) algorithm, which is regarded as an actor-critic
algorithm with deterministic policy, and is more robust than
the original actor-critic algorithm. The DDPG algorithm was
applied in [27] to adjust the transmit power in a frequency
hopping system; it improved performance in the interference
environment compared with Q-learning algorithm, but it still
did not achieve an optimal policy. In [28], a DDPG network
was used to dynamically adjust the resource allocation pol-
icy according to the feedback of a nonorthogonal multiple
access (NOMA) system, while the learning process was not
robust. The main methods used for power control are com-
pared in Table 1.

TABLE 1. Comparison of methods for power control.

C. CONTRIBUTION AND PAPER ORGANIZATION
In this paper, we consider a power control problem in theMSI
scenario. Tomaximize the reward function, the agent needs to
control the transmit power on each channel of the communi-
cation system. Due to the complexity of MSI, it is difficult to
evaluate the parameters of all LFM interferences. Therefore,
as a model-free scheme, the DDPG scheme for power control
is investigated in this paper without being aware of the inter-
ference model. Thus, we provide a DDPG scheme for power
control. To solve the problem of the DQN scheme not being
applicable for continuous action space decisions, we use an
actor network to approximate the transmit power in this state,
and the state-action pair acts as the critic network. A critic
network is used to approximate the action value function
in this state. The critic network is trained to minimize the
mean square error of the state-action value approximation
through experience. The actor network is trained to maximize
the Q-value, which is the output of the critic network. Then,
we study the experience sharing approach to centrally train
[29], [30] the network. To further speed up the training pro-
cess, we propose a prioritized sampling technique [31] based
on the DDPG scheme. By sampling the experience that is
more worthy of learning, the training process beconmes more
effective. The contributions of this paper are summarized as
follows:

1) A DDPG scheme is introduced for power control in
the MSI environment, which is model-free and has
been shown to be more stable than the existing DQN
algorithm.
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2) A centralized training scheme is proposed for themulti-
task power control problem which gathers experiences
from all channels in a memory pool and leads to much
faster learning than distributed training techniques.

3) We propose a prioritized sampling technique for the
DDPG scheme by which poorly trained experiences
are sampled more frequently via nonuniform sampling.
In this way, the training process is accelerated signifi-
cantly.

4) Simulations show that the DDPG scheme for power
control is significantly more robust than the DQN
scheme. Furthermore, with prioritized sampling,
the training converges much faster than in uniform
sampling.

The rest of the paper is organized as follows. We present
the communication system model and interference model in
Section II. In Section III, we provide the DDPG scheme for
power control in the MSI scenario and propose the DDPG
scheme with a prioritized sampling technique. We provide
simulation results in Section IV and draw the conclusions in
Section V. The summary of notations used in this paper is
listed in Table 2.

TABLE 2. List of Notations.

II. SYSTEM MODEL
A. COMMUNICATION SYSTEM MODEL
We consider a point-to-point communication scenario where
a few interferers transmit LFM that interferes the communi-
cation between two users. A communication user acts as an
agent that selects transmit power on each channel interacting
with environment ε, and the environment ε is a complex
model that can be modeled as MSI. We assume that the
transmitter and receiver are stationary, and only a line-of-
sight path exits in this scenario. Thus, only the large-scale
fading component needs to be considered. The scenario is
shown in Fig. 1.

FIGURE 1. The point-to-point communication scenario with 4 LFM
interferers.

We assume that the user can only sense interference and
noise power on each channel, and the summation of sensed
interference and the noise power vector is denoted as Z ={
z1, z2, . . . zNc

}
, where zn is the sensed power on channel n,

and Nc is the number of channels. The user specifies transmit
power vector P =

{
p1, p2, . . . pNc

}
to maximize average

reward performance per channel defined as (2), in which pn
is the transmit power on channel n, and 0 ≤ pn ≤ Pm, where
Pm represents the maximum transmit power.

The strategy between the user and interference is formu-
lated as a zero-sum game. The user’s goal is to balance the
signal-to-interference plus noise ratio (SINR) and the trans-
mit power. The reward performance benefits from the SINR,
while the cost increases with transmit power. For simplicity,
we assume that all the interferers are at the same distance
from the receiver. Let gp and gI denote the channel gains from
the transmitter and interferers to the receiver, respectively.
Then, the reward of channel n is defined as the utility function
of user rn, which can be formulated as (1):

rn (pn) =
gppn

σ 2 + gI In
− Cppn, (1)
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where σ 2 is the variance of Gaussian white noise, Cp is the
unit power cost and In is the interference power on channel n.
Then, the average reward performance per channel is formu-
lated as (2):

r (P) =
1
Nc

Nc∑
n=1

rn (pn). (2)

More specifically, the power control problem can be writ-
ten as

maxmize r (P)

subject to 0 ≤ pn ≤ Pm, n = 1, . . . ,Nc. (3)

B. INTERFERENCE CHANNEL MODEL
We formulate such an MSI model: NK LFM interferences
cyclically sweep on the entire frequency channels, each of
which only blocks a single channel at a time step. The prob-
ability distributions of the sweep rate and initial frequency
of these interferences are random, uniform and independent.
The frequency channel of the kth LFM interference blocks at
time step t is

f (t)k =

(
f (0)k + t · Rk

)
mod Nc, (4)

where f (0)k and Rk are the initial frequency channel and sweep
rate of the kth interference respectively.
Thus, the MSI on channel n (whose frequency is fn) at

time step t is the summation of all LFM interferences on the
channel:

I (t)n = PI
NK∑
k=1

I
(
f (t)k , fn

)
, (5)

in which PI is the power of a single LFM interference, and
I (x, y) is an indicator function, where I (x, y) = 1 if x = y
and I (x, y) = 0 otherwise.
The time-frequency pattern of the channel with MSI is

shown in Fig. 2.

III. PROPOSED ALGORITHM
A. DETERMINISTIC POLICY GRADIENT ALGORITHM FOR
POWER CONTROL
The interaction process between agents and interferences is
formulated as a Markov decision process (MDP). At each
time step t , the agent observes the current channel screen x(t),
which forms state s(t) =

{
x(t−Nc+1), x(t−Nc+1), . . . x(t)

}
with

the lastNc−1 screen, and then selects an action a
(t)
n ∈ [0,Pm]

based on policy π
(
a(t)n

∣∣s(t) ) on channel n for 1 ≤ n ≤ Nc.

The reward r (t)n of action a(t)n in state s(t) is defined as (1).
We define the future discounted return at time step t as

G(t)n =
∞∑
t ′=t

γ t
′
−tr(

t ′)
n , (6)

where γ is the discount factor. Similarly, we define the value
of taking action a(t)n in state s(t) under policy π

(
a(t)n

∣∣s(t) ),

FIGURE 2. The time-frequency pattern of the channel with MSI:
2 interferences in 10 channels.

denoted Q (s, a), as the expected return:

Q (s, a) = Eπ
[
G
∣∣∣s(t) = s, a(t)n = a

]
. (7)

We define the optimal action-value function as (8):

Q∗ (s, a) = max
π

[
G
∣∣∣s(t) = s, a(t)n = a, π

]
. (8)

The Bellman equation is typically used to find the optimal
action-value, and (8) can be rewritten as:

Q∗ (s, a) = Es′∼ε

[
r + γ max

a′
Q∗
(
s′, a′

)
|s, a

]
, (9)

where s′ and a′ are the next state and the action, respectively.
However, this algorithm is only applicable tomodels where

both the state space and the action space are discrete. Quanti-
zation makes the continuous state space and action space dis-
crete, but it introduces additional errors and increases search
complexity. The actor-critic algorithm represents the contin-
uous state space and action space by two function approxima-
tors, such as neural networks; thus, it is more suitable for the
power control problem. The DPG algorithm represents policy
by a neural network a = π (s; u) as an actor network, which
is a deterministic function, and represents action value by a
neural network Q (s, a;w) as a critic network.
We apply two identical networks, one of which is named

the evaluate network, to select action and update parame-
ters. The other network named the target network, is used
to calculate the target action value. The parameters of the
target network are updated with the evaluate network by soft
replacement τ , which periodically updates the parameters of
the target network.

The experience replay approach is used to remove cor-
relations in the observation sequence and smooth the
data distribution. We store the agent’s experience tuple
e(t)n =

(
s(t−1), a(t−1)n , r (t)n , s(t)

)
in memory pools Dn ={

e(1)n , e(2)n , . . .
}

at each time step t [18] and sample the
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mini-batch of experience
(
s, a, r, s′

)
∼ U (D) randomly from

the memory pool during training.
We define the objective function as the total discount

reward:

J (u) = Ert ,st∼ε,at∼π [G1 |π (s; u) ] . (10)

Then the actor network parameters u are updated by gradient
descent as (11), shown at the bottom of the page, where ρD

is the state distribution in the memory pool.
Then, the actor network parameters u are updated as:

u← u+ ηu∇uL (w) , (12)

where ηu is the learning rate of the actor network. The
mean-squared error of Q (s, a;w) is minimized by the loss
function (13):

L (w) = E
[(
r + γQ

(
s′, π

(
s′; u′

)
;w′

)
− Q (s, a;w)

)2]
,

(13)

where u′ and w′ are the parameters of the target actor net-
work and target critic network, respectively. Then, the critic
network parameters w are updated as:

w← w+ ηw∇wL (w) , (14)

in which ηw is the learning rate of the critic network.

B. EXPERIENCE SHARING
The calculation rule of the reward function for each channel
is the same while the mapping among the state, action and
reward is different. Note that the state can be transformed so
that each channel keeps the same mapping among the trans-
formed state, action and reward. It is reasonable to gather the
experience fromNc channels in onememory pool and train on
the same network as long as the experience is pre-processed
properly. Therefore, the training process will be accelerated
if training by a central agent compared with training as Nc
distributional tasks.

To achieve this goal, we change the observed state with a
row transform. We denote the current observed state s(t) =[
o(t)1 , o

(t)
2 , . . . , o

(t)
n

]T
, where o(t)n is the last Nc sensed infor-

mation sequence up to time t on channel n. We define the
row of transformed states starting from the current chan-
nel; then, the transformed state on channel n is s(t)n =[
o(t)n , o

(t)
n+1, . . . , o

(t)
Nc , o

(t)
1 , . . . , ot,n−1

]T
, as shown in Fig. 3.

In this way, the experience from all channels is equivalent.
Thus, the sharedmemory pool collectsNc times experience as
before, and the experience sharing approach saves most of the
storage resources and computational resources. The central
DDPG algorithm is illustrated in Algorithm 1.

C. PRIORITIZED SAMPLING
There are two levels to design when using an experience
replay [31] approach: which experiences to store and which
experiences to replay. This paper focuses on the latter, which
makes the most effective use of the stored experience for
training.

Uniform sampling is not an effective sampling method;
instead, prioritized sampling is a more reasonable choice. The
key point of prioritized sampling is to decide the importance
of each experience in the memory pool, so we sample these
experiences with different probabilities. To accelerate the
convergence process of the networks, poorly-trained expe-
riences are more valuable for convergence and are given a
higher probability of sampling, which improves the overall
performance. For the actor network, the training goal is to
maximize the Q-value, which is the output of the critic net-
work, and for the critic network, the goal is to minimize the
temporal difference (TD) error between the output and the
target Q-value. For the power control problem, the action
space is squeezed in 0 to Pm. Thus, the output of the actor
network is designed as a sigmoid function. However, the gra-
dient of the sigmoid function easily becomes very small and
even vanishes so that the parameters of the neural network
are hard to update according to the chain rule. In most cases,
the training actor network is slower than the training critic
network. Therefore, instead of the TD error [32], the Q-value
is more relevant for prioritized sampling. The experiences
with lower Q-values need to be sampled more frequently,
which prevents an agent from making the wrong decision
again. Considering that the Q-value is nonnegative when
the optimal policy is adopted, we use a minimum func-
tion to ensure that well-trained experiences with nonnegative
Q-values are sampled uniformly, as in (15).

fi = min (Qi, 0) , (15)

Then, we formulate a nonlinear mapping between the sam-
pling factor and sampling probability of experience i and
normalize the sampling probability as (16):

p (i) =
exp (−αfi)∑
k exp (−αfk)

, (16)

in which the parameter α is named the priority factor and the
factor determines how much prioritization is used, and when
α = 0 prioritized sampling degenerates to uniform sam-
pling.The DDPG scheme with prioritized sampling (DDPG-
PS) for power control is illustrated in Algorithm 2.

D. NEURAL NETWORK STRUCTURE
The actor of the DDPG scheme is a CNN that consists of six
layers. To better predict future channel states, CNN extracts

∇uJ (u) ≈ Est∼ρU
[
∇uQ (s, a;w)

∣∣s=st ,a=π(st ;w) ]
= Est∼ρU

[
∇aQ (s, a;w)

∣∣s=st ,a=π(st ;w) ∇uπ (s; u) ∣∣s=st ] (11)
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FIGURE 3. The approach of cyclically shifting the state matrix.

Algorithm 1 Centralized DDPG Scheme for Power Control
Input: Actor network structure, critic network structure, and MSI environment simulator
Output: Actor network with parameters u, critic network with parameters w, the policy a represented by the output of actor
network π (s; u)
1: Randomly initialize evaluate actor network π (s; u) with weights u and evaluate critic network Q (s, a;w) with weights w.
2: Initialize target actor network π

(
s; u′

)
and target critic network Q

(
s, a;w′

)
with weights u′← u, w′← w.

3: Initialize the memory pool.
4: for episode = 1, . . . ,M do
5: Receive initial observation state s(0), action a(0)n and form s(0)n .
6: for t = 1, . . . ,T do
7: Reset a random process N whose variance decays along with episode for action exploration.
8: for n = 1, . . . ,Nc do
9: Observe reward r (t)n and new state s(t).

10: Cyclically shift state s(t) =
[
o(t)1 , o

(t)
2 , . . . , o

(t)
n

]T
, the new state is s(t)n =

[
o(t)n , o

(t)
n+1, . . . , o

(t)
Nc , o

(t)
1 , . . . , ot,n−1

]T
.

11: Store experience tuple et =
(
s(t−1)n , a(t−1)n , r (t)n , s

(t)
n

)
in memory pool D.

12: Select action a(t)n = π
(
s(t)n ; u

)
+ Nt according to the evaluate policy and exploration noise.

13: Execute action a(t)n .
14: end for
15: Sample a random minibatch of experience tuple uniformly from memory pool D.
16: Update evaluate critic network parameters by minimizing the loss L (w) according to (13).
17: Update evaluate actor network parameters using the sampled policy gradient as (11).
18: Update the target networks: u′← τu+ (1− τ) u′, w′← τw+ (1− τ)w′.
19: end for
20: end for

the time-frequency pattern ofMSI using a convolution kernel.
The first layer is the input state matrix with Nc×Nc neurons,
which consists of Nc time step information and Nc channel
information. To train the networkmore quickly, the input state
is normalized by 1/

(
σ 2
+ In

)
. The last layer is the output

action with 1 neuron, and a sigmoid function is applied so
that the output value ranges from 0 to 1. The output value

is expanded by Pm times to ensure that the real action goes
from 0 to Pm. More specifically, other parameters of the actor
network are shown in Table 3.

The critic of the DDPG scheme is a fully connected net-
work that consists of four layers. The first layer is made up of
a state matrix with Nc×Nc neurons and action with 1 neuron,
and it consists of N 2

c +1 in total. The last layer is the Q-value
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Algorithm 2 DDPG Scheme With Prioritized Sampling for Power Control
Input: Actor network structure, critic network structure, and MSI environment simulator
Output: Actor network with parameters u, critic network with parameters w, the policy a represented by the output of actor
network π (s; u)
1: Randomly initialize evaluate actor network π (s; u) with weights u and evaluate critic network Q (s, a;w) with weights w.
2: Initialize target actor network π

(
s; u′

)
and target critic network Q

(
s, a;w′

)
with weights u′← u, w′← w.

3: Initialize the memory pool.
4: Initialize f (0)n = 0, for 1 ≤ n ≤ Nc.
5: for episode = 1, . . . ,M do
6: Receive initial observation state s(0), action a(0)n and form s(0)n .
7: for t = 1, . . . ,T do
8: Reset a random process N whose variance decays along with episode for action exploration.
9: for n = 1, . . . ,Nc do
10: Observe reward r (t)n and new state s(t).

11: Cyclically shift state s(t) =
[
o(t)1 , o

(t)
2 , . . . , o

(t)
n

]T
, the new state is s(t)n =

[
o(t)n , o

(t)
n+1, . . . , o

(t)
Nc , o

(t)
1 , . . . , ot,n−1

]T
.

12: Store experience tuple et =
(
s(t−1)n , a(t−1)n , r (t)n , s

(t)
n , f

(t)
n

)
in memory pool D with f (t)n = mink<t f

(k)
l .

13: Select action a(t)n = π
(
s(t)n ; u

)
+ Nt according to the evaluate policy and exploration noise.

14: Execute action a(t)n .
15: end for
16: Sample a random minibatch of experience tuple by probability (16) from memory pool D.
17: Compute the Q-value, which is output of the critic network, and update sampling factor f as (15) in the memory pool.
18: Update evaluate critic network parameters by minimizing the loss L (w) according to (13).
19: Update evaluate actor network parameters using the sampled policy gradient as (11).
20: Update the target networks: u′← τu+ (1− τ) u′, w′← τw+ (1− τ)w′.
21: end for
22: end for

TABLE 3. Parameters of actor network.

TABLE 4. Parameters of critic network.

with 1 neuron, which evaluates how good the state-action is.
More specifically, other parameters of the critic network are
shown in Table 4.

IV. SIMULATION RESULT
In this section, our simulation results are presented to
demonstrate the performance of the proposed DDPG scheme
for power control. More specifically, we compare the

performance of the DDPG scheme and DQN scheme in
the MSI scenario. Moreover, we provide our performance
comparisons to characterize the effects of prioritized sam-
pling imposed on the achievable performance of the DDPG
scheme. We simulate the schemes in four typical scenarios as
illustrated in Table 5.

A. THE PERFORMANCE COMPARISON OF THE DDPG
SCHEME AND DQN SCHEME
In this subsection, we compare the performance of the DDPG
scheme and the DQN scheme. More specifically, the DQN
structure with 2-D CNNs proposed in [21] is adopted in the
simulation to be consistent with the structure of the DDPG
scheme proposed in this paper. To reduce the error in sim-
ulation, we simulate for 9 times on each scheme and take
the median performance according to the convergence speed,

194246 VOLUME 8, 2020



S. Zhou et al.: DDPG With PS for Power Control

FIGURE 4. Average reward per channel of the DDPG scheme and the DQN scheme in different scenarios.

TABLE 5. Simulation scenarios.

as shown in Fig. 4. The final reward statistics between the two
schemes are illustrated in Table 6.

For our application, the Q-network structure of the DQN
scheme is the same as the actor network of the DDPG scheme
except for the output dimension. More specifically, the input
layer consists of N 2

c neurons, while the output dimension
depends on the quantization level. We use 11 discrete power
levels. Thus, the output layer consists of 11 neurons, each of

TABLE 6. Reward performance statistics comparison between the DDPG
scheme and the DQN scheme.

which represents the Q-value at the power level. The rectified
linear unit (ReLU) activation function is applied on each layer
to avoid the gradient vanishing problem of backpropagation.

Most training parameters are set to the same values in
both schemes to eliminate the influence of training param-
eters as much as possible. For generalization, we set mini-
batch size and capacity of the memory pool to 32 and
20000, the Adam optimizer [33] is used with a learning rate
of 0.0001, the reward discount factor γ is set to 0.9, and the
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FIGURE 5. Average reward per channel of priority factor ‘‘α=0,0.25,0.5,0.75,1’’ in difference scenarios.

soft replacement factor τ is 0.01 to update the target network
every 100 steps. In the DQN scheme, ε-greedy algorithm is
applied, the initial exploration factor is 0.1, and the explo-
ration factor decays with the episode; the final exploration
factor is 0.01. In the DDPG scheme, the initial variance of
exploration is 3 and decays by 0.9999 at each time step.

Fig. 4 shows the average reward performance per channel
among our proposed DDPG scheme, DQN scheme, optimal
power control scheme and random power control scheme.
The simulation lasts for 1500 time steps, and both schemes
finally achieve optimal performance. Note that the training
speed depends on the scheme and the number of channels.
More specifically, the DDPG scheme learns slightly slower
than the DQN scheme, because two neural networks of the
DDPG scheme need to be trained in coordination, which
costs a few training steps. However, since the DDPG scheme
achieves the optimal policy, the performance is stable at
the optimal value. In contrast, the performance of the DQN
scheme is unstable, especially in scenarios 3 and 4.Moreover,
it learns faster when Nc = 60 than when Nc = 40, which
shows that experience sharing can speed up the training pro-
cess by collecting more experience.

Table 6 shows the robustness statistics of the two schemes.
In these scenarios, DDPG simulation results always achieve
near optimal performance, while only approximately half of
the DQN simulation results achieve that, and the other part
of the DQN simulation results fell into suboptimal perfor-
mance. Therefore, for the power control problem in the MSI
scenario, the DDPG scheme is much more robust than the
DQN scheme.

B. THE IMPROVEMENT OF PRIORITIZED SAMPLING
In this subsection, we investigate the performance of the
DDPG scheme employing different priority factors. Simi-
larly, we simulate for 9 times on each priority factor and take
the median performance according to convergence speed,
as shown in Fig. 5. The final reward statistics among different
priority factors are illustrated in Table 7.

The learning parameters are the same as in the last sub-
section. Fig. 5 shows the average reward performance per
channel of the DDPG scheme with different priority factors.
In scenarios 1, 3 and 4 (Nc = 40), the two priority factors
that accelerate the training process the most are 0.25 and 0.5.
Among them, the DDPG scheme with the priority sampling
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TABLE 7. Reward performance statistics comparison among different
priority factors of the DDPG scheme.

technique saves up to 36.4%, 35.6%, and 25.7% time steps to
achieve the optimal performance compared with the DDPG
scheme with uniform sampling (when α= 0) in scenarios 1,
3, and 4, respectively. In addition, a factor that is too high
will not cause an increase in training speed; DDPG schemes
with α= 1 even cost 8.1% more time steps in scenario 1.
In scenario 2, the DDPG scheme learns fastest when α= 0.5
and α= 0.75, and they save 23.4% of the time steps to achieve
the optimal performance compared with uniform sampling.
These simulation results show that selecting a proper priority
factor can speed up the training process, which is attributed
to the priority sampling technique more effectively sampling
the poorly trained data from the experience pool. Note that
the optimal priority factor when Nc = 60 is larger than when
Nc = 40, which shows that more prioritization is needed
in a larger number of channels, because it produces more
experience. Moreover, the training process is unstable when
the priority factor is large, especially when α = 0.75 and
α = 1, because the priority factor changes the state distri-
bution of the visited experience compared with the original
state distribution, which introduces estimation bias, and the
solution to which the estimates will converge is changed.
The larger the priority factor, the more the state distribution
changes.

Table 7 shows the robustness of the DDPG scheme with
different priority factors. The statistical results show that the
DDPG scheme with an appropriate priority factor can remain
robust as the DDPG scheme with uniform sampling, while
a priority factor that is too large may cause poor performance
due to the change in experience distribution.

These simulations demonstrate that the proposed pri-
oritized sampling technique can significantly improve
convergence performance. Selecting a proper priority factor
makes the training process more effective.

V. CONCLUSION
In this paper, we provided a reinforcement learning-based
DDPG scheme for the power control problem and proposed
a prioritized sampling technique for the DDPG scheme.
We considered a wireless communication scenario with one
transmitter, one receiver, and a few interferers, and the total
interferencewasmodeled asMSI. The transmitter only senses
the summation of interference and noise power on each
channel and specifies the transmit power vector to maxi-
mize the reward performance by using a DDPG scheme.
The DDPG scheme approximates a power selection policy
to a CNN and approximates an evaluation of the policy to
a fully connected network. We have shown that by apply-
ing a DDPG-based power control scheme, a communica-
tion user can achieve optimal reward performance without
full channel CSI. Moreover, we have proposed a prioritized
sampling technique which samples poor-trained experiences
with a higher probability to further accelerate the learning
of the DDPG scheme. The simulation results reveal that
our proposed DDPG scheme for power control has a higher
probability of achieving near optimal reward performance
than the DQN scheme, while the training is slightly slower.
This means that compared with the DQN scheme, the DDPG
scheme significantly improves the robustness of learning at
the expense of a small amount of training speed. At the
same time, with the prioritized sampling technique, the train-
ing process of the DDPG scheme becomes more effective.
In particular, by selecting a proper priority factor, the training
process is accelerated by up to 36.4% compared with uniform
sampling. Note that selecting a priority factor that is too large
may cause agent convergence to a poor policy.
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