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ABSTRACT Superpixel segmentation could be of benefit to computer vision tasks due to its perceptually
meaningful results with similar appearance and location. To obtain the accurate superpixel segmentation,
existing methods introduce geodesic distance to fit the object boundaries. However, conventional geodesic
distance easily suffers from error accumulation and excessive time consumption. This paper proposes a
fast superpixel segmentation method based on a new geodesic distance, called forgetting geodesic distance.
In contrast to the conventional geodesic distance, the forgetting geodesic distance utilizes a forgetting factor
to gradually reduce the influence of previous path cost and focuses on the latest pixels’ difference. Intuitively,
a pixel with lower difference with respect to the latest path contextual distance will be more similar with the
corresponding region. In the new path, the path cost devotes much greater attention to the latest pixels’
difference and could significantly relieve error accumulation. The pixels are also aggregated with less
dependence on seeds as the path extends, which avoids the seed updating. The experimental results validate
that the proposed method obtains 2 percent and 1 percent gain on average compared with most of the state-
of-the-art methods in terms of BSD500 and VOC2012 datasets, respectively.

INDEX TERMS Superpixel segmentation, forgetting geodesic distance, error accumulation.

I. INTRODUCTION
Superpixel segmentation aims to obtain local regions with
appearance and location consistency. It is used to extract
perceptually meaningful element regions, which signifi-
cantly reduces the computation complexity for other com-
puter vision applications, such as saliency detection [1], [2],
object segmentation [3]–[7], object detection [8] and recog-
nition [9], and biomedical image analysis [10].

Existing superpixel segmentation methods can be mainly
classified into two categories: graph- and clustering-based
methods. Graph-based methods construct a node adjacency
graph based on the similarity of adjacent pixels. Then, they
treat the superpixel as a graph split task, which is mod-
eled as a variety of energy minimization problems such
as those in [6], [11]–[13]. Because Ncut [11] utilizes the
eigen-decomposition to approximate the superpixel partition
as a nondeterministic polynomial-time (NP)-hard problem,
this will be time consuming and result in poor boundary
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adherence when increasing the image scale and superpixel
number. Other graph-based methods mainly utilize combi-
national optimization to solve this type of energy minimiza-
tion problem and could efficiently reduce the computational
complexity. However, these methods model a superpixel only
via adjacent matrices, without considering any seed point
locations, and generate superpixels with irregularity [12] or
with low boundary adherence [11], [13]. Clustering-based
methods evenly assign initial centers in images and update
cluster centers until convergence; examples are TurboPixels
(TP) [14], simple linear iterative clustering (SLIC) [15], lazy
random walks [16], higher-order superpixels [17], distance-
metric-based superpixel segmentation [18], linear spectral
clustering (LSC) [19] and simple noniterative clustering
(SNIC) [20]. These methods employ initial seed points as the
anchor points to estimate the position of superpixel centers
and label neighboring pixels in local regions. However, these
methods consider the Euclidean distance between pixels and
seeds in feature space, which only fits the spherical clus-
tering and results in increased undersegmentation error in
the case of irregular shapes and blurred object boundaries.
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In contrast, geodesic distance searches for the shortest path
among pixel and seed in an adjacent graph to calculate
path cost as a similarity evaluation. It connects the object
similarity regions with lowest gradients, which ameliorates
the issue of inaccurate similarity measurement in irregular
object regions. For example, Wang et al. [21] introduced
the structure-sensitive superpixels (SSS) algorithm, which
considers the structural information of images. It computes
the geodesic distance by the geometric flows instead of the
simple Euclidean distance. However, geodesic distance is
sensitive to color, with gradual change due to significant error
accumulation. Meanwhile, computational efficiency caused
by measuring the geodesic distance and iterative updating
becomes its bottleneck. Hence, gradually forgetting previous
errors along with increasing the shortest path is an efficient
similarity measurement method, which could devote much
greater attention to the latest pixels’ difference. We refer
to this as forgetting geodesic distance. Then, the new pixel
would be added into a cluster if the tail pixels of the path
have smaller pixels’ difference.

This paper proposes a new geodesic distance based on
forgetting strategy to address these issues. Intuitively, a pixel
will be more likely to belong to a region when it has less
geodesic distance from its local neighbor pixels, which could
be determined by a forgetting factor to reduce the influence
of the previous pixels on the shortest path. On the one hand,
forgetting geodesic distance relieves the error accumulation
by summing the errors of the starting pixel and ending pixel
in the conventional geodesic distance. On the other hand,
the performance of superpixel segmentation will not depend
on seed updating. This is because the influences of seed
points are faded away, which leads to more rapid superpixel
segmentation.

Some subjective results are shown in Fig. 1. We can see
that SLIC [15] and SNIC [20] cannot segment the left branch
of the first image. The reason for this is that the performances
of these two methods heavily depend on seed locations; seeds
which cannot locate the fine object structure result in inferior
segmentation performance, especially for small superpixel
numbers. However, our method relieves the seed influence by
forgetting geodesic distance, which enables devoting much
more attention to the latest path contextual distance and

FIGURE 1. Example for compared subjective results. From left to right:
SLIC [15], SNIC [20] and our method.

more easily fits the irregular object structure. Similarly, our
method obtains superior segmentation performance in the
case of blurred object boundaries in comparison with other
methods. This also validates that our method could achieve
better boundary extraction through focusing on the latest path
contextual distance.

Our main contributions are concluded as follows:
• We propose a new superpixel segmentation method
based on forgetting geodesic distance.

• We propose a nonrecursive optimization method to
rapidly calculate the new geodesic distance.

II. RELATED WORK
Superpixel segmentation could be roughly divided into two
classes: graph-based and clustering-based. The first class
constructs image pixels as a graph structure and models the
segmentation problem as cut edge searching with minimum
cost. For example, Shi andMalik [11] introduce a normalized
cut to balance the size of different partitions and relax the cost
function as a Rayleigh quotient to obtain the analytic solution.
However, this method heavily constrains the size balance
for cluster groups to maintain the region regularity, which
reduces segmentation performance for the weak bound-
aries of irregularly shaped objects. Meanwhile, the eigen-
factor-based optimization framework results in a low com-
putation efficiency. Felzenszwalb and Huttenlocher [12]
proposes a minimum spanning tree (MST)-based superpixel
segmentation based on regional differences. This method not
only results in irregularity of superpixel regions but also
reduces the weak boundary adherence rate due to considering
the minimum internal difference and maximum intradiffer-
ence, especially for images with complex noise backgrounds.
Moore et al. then propose two regular superpixel segmen-
tation methods based on vertical and horizon seam-like
paths [13] and binary region graph cut overlap [22], respec-
tively. To avoid crossing of multiple paths, they add some
regularity constraints into their models, which results in
not only many narrow superpixel regions but also higher
undersegmentation error. Most existing graph-based methods
calculate pixel similarity based on adjacent pairwise pixel
distance, which poses difficulty in maintaining the regional
regularity. Hence, Fu et al. [23] proposes a regular super-
pixel segmentation by finding geodesic path links of two
junctions lying on the object boundary. Although this method
could more directly obtain superpixel borders to fit with the
object boundary, it limits the pairwise link for vertical and
horizon junctions to preserve the superpixel regularity, which
results in a lower object boundary adherence rate. Hence,
Munoz et al. propose iterative spanning forest (ISF) to extract
superpixels to maintain object boundary adherence [24].
It introduces a mixture seed sampling strategy to adap-
tively place seed numbers according to region contents,
which solves the superpixel segmentation regularity issue via
graph-tree theory.

The clustering-based methods initialize seeds with regular
grids and grow pixel membership gradually. For instance,
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TP [14] locates initial seeds and expands the superpixel
border towards gradient flows until reaching a much larger
image gradient. Due to introducing a curvature cost to
maintain regular superpixels, TP obtains poor segmentation
performance under the condition of irregular object and com-
plex background. The most popular superpixel segmenta-
tion method, i.e., SLIC [15], uses a fast k-means algorithm
to efficiently formulate the superpixel. However, pairwise
distance-based k-means based on color and position space
do not always perform well for images with weak bound-
aries. Meanwhile, the k-means optimization framework
requires multiple iterations to achieve convergence, which
reduces the computation efficiency. Wang et al. propose
an autonomous attachment superpixel segmentation method,
called ALIC [25], via natural continuity between pix-
els, which not only solves the pixel isolation issue but
also improves the operation speed. Xie et al. propose a
high-precision superpixel segmentation method by adap-
tively initializing seed number according to image con-
tents and splitting undersegmentation superpixels [26]. Then,
Achanta and Słzsstrunk [20] propose a linear time superpixel
segmentation method to improve the time cost without any
iteration. However, those methods utilize Euclidean distance
between pixels and seeds in color and location space, which
leads to difficulty in obtaining an efficient balance, especially
in the case of complex background and weak boundary.
Wang et al. [21] introduce the structure-sensitive superpixel
(SSS), which considers the structural information of images.
It uses geodesic distance computed by the geometric flows
instead of simple Euclidean distance. However, the geodesic
distance often causes significant error accumulation, which
leads to unsatisfactory superpixel segmentation for irregu-
larly blurred object boundaries. Meanwhile, computational
efficiency becomes its bottleneck due to measuring the
geodesic distance and iterative updating. Recently, Zhao et al.
and Hu et al. propose two superpixel segmentation methods
based on raster scanning, i.e., MBS [27] and FLIC [28],
to improve computation efficiency. The former uses a coarse-
to-fine hierarchical scheme to estimate superpixel centers.
However, it introduces minimum barrier distance (MBD) to
evaluate pixels’ similarity, which results in lower boundary
adherence in the case of weak boundary regions. The latter
introduces an active search strategy to label neighbor pixels
via natural continuity, which results in irregular superpixel
regions.

III. PROPOSED METHOD
In this section, we propose a new superpixel segmentation
method by forgetting geodesic distance. First, we model
the superpixel segmentation as a geodesic label assignment
problem. Then, we introduce the forgetting geodesic distance
to address the error accumulation in conventional geodesic
calculation. Finally, optimized methods via recursive and
nonrecursive versions are introduced to efficiently obtain the
exact solution.

FIGURE 2. Explanation for superpixel generation based on shortest path.

Algorithm 1 Superpixel Algorithm: Recursive Version
Input: image I , initial seed set S = {s1, s2, . . . , sK },

MAX = 106

Output: Superpixel label L
1: for each p in I do
2: D(p) = MAX
3: end for
4: for each p in I do
5: (D(p),L(p)) = Disfun(p,D)
6: end for

A. PROBLEM FORMULATION
Given an image I , we build an undirected weighted graph
G = (V, E) based on the four neighborhoods of the
pixel. Define vertices as image pixel set {pi}, i.e., V =
{pi}. Let S = {s1, . . . , sK } be the superpixel seeds set,
which is a subset of V . K denotes the number of seeds.
The edges set consists of adjacent edges between image
pixels, i.e., E = {(pi, pj)|pi is a neighborhood of pj}.
In this paper, we define e∗(pi, pi+1) as edge weight with
a scalar, and d(p, sk ) is denoted as path cost along with
{p1 = p, p2, . . . , pn = sk}. We model superpixel seg-
mentation as a geodesic label assignment problem [4], [29].
As shown in Fig. 2, the superpixel label of pixel p is assigned
as the seed sk ’s indication which has the shortest path from p
on graph V:

d(p, sk ) = min
p1=p,p2,...,pn=sk

n−1∑
i=1

e(pi, pi+1)

s.t.(pi, pi+1) ∈ E (1)

where e(pi, pi+1) = ec(pi, pi+1)eb(pi, pi+1) consists of color
distance ec and boundary distance eb between image adjacent
pixels, in which eb is calculated by structure edge [30].
However, Eq. 1 accumulates the error of all pixels on

the geodesic path between pixel p and seed sk . This will
result in inaccurate segmentation. For example, in Fig. 3,
the conventional geodesic distance in (b) will accumulate
the error from seed to target pixel, which results in higher
undersegmentation errors. As shown in (d), the horizontal
coordinate denotes the position relationship between target
pixel p and seed s. The geodesic distance accumulates the
area under the gradient magnitude curve. It can be determined
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FIGURE 3. Explanation of the conventional geodesic distance and the
forgetting geodesic distance. Black points: seeds. Yellow point: target
pixel. (a) Original image. (b) Conventional geodesic distance.
(c) Forgetting geodesic distance. (d) Error accumulation for (b).
(e) Error accumulation for (c).

that pixel p has a shorter geodesic distance to seed s1 than to
seed s2, although there is a higher gradient magnitude in the
object boundary. The gradient accumulation will amplify the
magnitude of the geodesic path between pixel p and seed s2,
although it has more smooth gradient values along the path.

Hence, to ameliorate the issue of the error accumulation,
we introduce a forgetting factor to weaken the influence of
previous error. Specifically, we redefine geodesic distance as
follows:

d(pi+1, sk ) = min
p1=p,p2,...,pn=sk

λ d(pi, sk )+ e(pi, pi+1)

s.t.(pi, pi+1) ∈ E, λ ∈ (0, 1) (2)

The distance devotes much more attention to the similarity
of the latest several pixels on the shortest path. Intuitively,
the latest pixels on the geodesic path from seed sk to pixel p
could show the adjacent similarity between p and its global
context. In other words, the distance weightily aggregates the
similarity of pixel p’s most similar contextual pixels which
lie on the shortest path. Hence, pwill be more easily assigned
into the similar local region dominated by seed s2, as shown
in Fig. 3 (c). In Fig. 3 (e), the new geodesic distance between p
and seed s2 could be computed as the fading shaded area
under the gradient magnitude curve, which is smaller than
that between p and seed s1. Compared with conventional

Algorithm 2 Disfun(p,D)
1: min = MAX
2: if p ∈ {s1, s2, . . . , sK } then
3: return (0,L(p))
4: end if
5: T = neighbour(p)
6: for each ti ∈ T do
7: (Val,L(ti)) = Disfun(ti,D)
8: D(p) = min{Val + e(p, ti) ∗ d ′(p, sk ),D(p)}
9: if D(p) < min then

10: min = D(p)
11: t∗ = ti
12: end if
13: end for
14: L(p) = L(t∗)
15: return (min,L(p))

geodesic distance in Fig. 3 (d), the forgetting geodesic dis-
tance in Fig. 3 (e) focuses on near gradient magnitude and
reduces the error accumulation on the long distance path. This
leads to more reasonable label assignents in Fig. 3 (c).

Furthermore, pixel pi+1 with larger gradient and larger
spatial distance d ′(pi+1, sk ) to adjacent seed sk has a reduced
probability to be touched by sk . We thus modify the recursive
formula for geodesic distance as follows:

d(pi+1, sk ) = min
p1=p,p2,...,pn=sk

λ d(pi, sk )

+e(pi, pi+1) d ′(pi+1, sk )

s.t.(pi, pi+1) ∈ E, λ ∈ (0, 1) (3)

The formula considers not only the spatial relationship
between seed and pixel, but also the local contexture on the
geodesic path in terms of the similarity. Hence, it is more
robust to blurred boundaries and texture regions. In addition,
the pixel tends to be attached by the closer seeds, which could
maintain segmentation regularity implicity.

B. OPTIMIZATION
To find the pixel labels, our method computes the shortest

distance between pixel p and seed sk and assigns pixel p with
the corresponding label. The direct solution is to use recursive
structure for this problem. The distance starting from p to the
seed sk could be calculated as the minimum distance from p’s
neighbor t to seed sk by adding edge e(p, t), which falls into
the recursive process until computingD(sk ) = 0. Hence, each
pixel has a different minimum distance to different seed sk .
However, we need not save the distance for the pixel to all
seeds sk : we only maintain the smallest one, which inspires
us to follow the recursive algorithms in Alg. 1 and Alg. 2.
For each pixel p, we recursively call the Disfun function to
obtain the smallest distance D(p). Given distance map D,
theDisfun function could recursively calculate a shortest path
between pixel p and seed set S = {s1, s2, . . . , sK }. In Alg. 2
line 11, t∗ is p’s optimal adjacent pixel index with smallest
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Algorithm 3 Nonrecursive Version for Superpixel
Segmentation Algorithm
Input: image I , initial seed set S, edge map E
Output: Superpixel label L
1: prior queue Q, distance D, temp label set L ′, state setM
2: initialize M (sk ) = Labeled , L(sk ) = k , other pixels
M (p) = Unlabeled , L(p) = 0

3: for k ∈ {1, 2, . . . ,K } do
4: for each pixel p in the four neighborhoods of sk do
5: set L(p) = k
6: use Eq. 3 to obtain D(p)
7: push D(p) on Q, set M (p) = waiting
8: end for
9: end for

10: while Q is not empty do
11: Pop Q to obtain D(p)
12: if M (p) = Labeled then
13: continue
14: end if
15: M (p) = Labeled
16: L(p) = L ′(p)
17: for each pixel t in the four neighborhoods of p do
18: if M (t) = Unlabeled then
19: L(t) = L(p)
20: obtain D(t) = λ ∗ D(p)+ e(p, t) ∗ d ′(t, sk )
21: push D(t) on Q, set M (t) = waiting
22: else {M (t) = waiting and D(t) > D(p)}
23: if Lp == Lt ; continue; end
24: obtainD′(t) from p viaD′(t) = λ∗D(p)+e(p, t)∗

d ′(t, sk )
25: if D′(t) < D(t) then
26: L(t) = L(p)
27: push D′(t) on Q
28: end if
29: end if
30: end for
31: end while

distance. Finally, it returns the minimum value D(p) and
corresponding label L(p). In other words, besides computing
the smallest distance from p to seed sk , we also return the
smallest distance from p to all seed set S, which could be
performed by recording the label L(p) and minimum value
min. In fact, we only calculate the distances to the four nearest
seeds to reduce the computational cost.

In recursive processing, the algorithm will call to itself
repeatedly, which is achieved by executing on working stack.
The program first saves the operating data into the regis-
ter, then opens up new space to call the recursive function.
These operations will need to perform N calls and assign
N local variables andN function spaces. It is a substantial bur-
den which is impractical for image pixel-level applications.
Hence, we propose a new nonrecursive version to solve the
storage burden issues. The algorithm is concluded in Alg. 3.

Intuitively, the recursive version would solve some sub-
problem repeatedly. For example, to obtain D(p), we should
calculate its neighbor D(ti), ti ∈ T(p). However, D(ti) would
have been solved by another subproblem D(q), ti ∈ T(q) in
advance. However, the recursive version cannot avoidmaking
calls to itself again, which results in excessive redundant
computation. The proposed nonrecursive version introduces
a distance matrix D to record the minimum distance from
pixel p to seed set S and introduces logical variable M to
record the visited situation of each pixel. On the one hand,
we set M (p) = Labeled for the visited pixel, and M (p) =
Unlabeled for the unvisited pixel. On the other hand, pixels
on the superpixel boundary might be achieved by two adja-
cent seeds si, sj. Then, we setM (p) = waiting to denote that p
is a waiting pixel and needs to be further assigned a new label
with smaller seed distance. Specifically, if t is a waiting pixel,
we should compare D(t) with D(p) to judge whether the new
distance for t from p, i.e., D′(t) = λ D(p) + e(p, t) d ′(t, sk ),
is smaller than the old one D(t), as shown in Fig. 4. If the
distance from p to t is smaller than D(t), we should change
t’s label to p’s, i.e., L(t) = L(p). The new distance computa-
tion will only occur for the pixels of superpixel boundaries.
Most of the smooth regions have L(p) == L(t) and do not
require updating of t’s label, which significantly reduces the
computational cost.

FIGURE 4. Distance calculation for the boundary pixel.

The nonrecursive version uses the bottom-up framework
to calculate and record D(p) to reduce computational cost.
Specifically, we build a prior queue Q to identify the pixel
visiting order. Meanwhile, temporal variable M (t) is set to
record whether the pixel is visited or not. The temporary
cost D′(t) to record the current path cost is updated when
it is visited by some pixel from another path with less cost
value. On the other hand, there exists large redundancy in
the superpixel interior with regional consistency. In other
words, adjacent pixels in the superpixel interior have the
same labels, while those in superpixel borders have different
labels. We could only compare the boundary pixels’ new
and old distances to improve computational efficiency. Intu-
itively, a pixel could be visited by other pixels from four
paths, which results in four cost comparison and is obviously
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FIGURE 5. Objective results on BSD500 for our method and compared methods in terms of BR, UE and ASA.

time-consuming. Fortunately, we find that pixels in the super-
pixel interior tend to have the same label. We could then
compute and compare one pixel candidate path cost twice
or more only when the labels of two neighbor pixels are
inconsistent.

SNIC [20] proposes a fast optimization for seed
expansion-based superpixel segmentation. It builds a prior
queue to maintain the visiting order by corresponding dis-
tance value di,k , which represents the distance from pixel i
to the k-th centroid. It could obtain the minimum distance
of the visited pixel in Euclidean space by continuing to pop
the first element of the prior queue. However, calculation
of geodesic distance should select the best one from the
numerous candidate paths. Visiting each pixel only once in
SNIC [20] could not obtain the shortest path for geodesic
distance calculation in our situations. Hence, the proposed
recursive and nonrecursive algorithms could calculate the
shortest geodesic path via candidate pixels’ comparison.
Intuitively, if a path B between pixel p and sk is shorter than
a previous path A, then we can update the path cost of p
and its corresponding label, which is much more probable
for boundary pixels. This update is not performed via the
SNIC [20] optimization framework because of visiting only
once.

IV. EXPERIMENT AND ANALYSIS
We evaluate the proposed method on two datasets. The first
one is the BSD500 segmentation dataset, which contains five
hundred images of annotated boundary maps as ground truth.
The second one is the PASCAL VOC 2012 segmentation
challenge (SegVOC12), which contains 2,913 object segmen-
tation maps as ground truth. To obtain an object and compre-
hensive comparison, we test our method by three different
metric measures, which are the common quality indications
in existing works. Meanwhile, we compare our method with
nine state-of-the-art methods: FH [12], SLIC [15], TP [14],
NC [11], LSC [19], RPS [23], SNIC [20], MBS [27] and
FLIC [28]. We execute segmentation based on publicly avail-
able codes provided by authors. We set the forgetting factor
λ = 0.5.

A. OBJECTIVE RESULTS
We use boundary recall (BR), undersegmentation error (UE)
and achievable segmentation accuracy (ASA) [31] tomeasure
the segmentation performance. We use {Gi|i = 1, 2, · · · ,M}
to denote the segmentation of ground truth, and use {Sj|j =
1, 2, · · · ,K } to represent results by superpixel algorithms.
Three indications are defined as follows:

BR =

∑
i∈GTb logical(minj∈SGb ‖ xi − xj ‖2< 2)

GTb
(4)

where GTb and SGb represent the boundary results of ground
truth and superpixels. ‖ xi − xj ‖2 is defined as 2-norm to
denote the location difference between pixel i and pixel j.

UE(S) =
[
∑
{Gi|Sj∩Gi 6=∅}−Area(Gi)]− Area(Gi)

Area(Gi)
(5)

ASA =

∑
j argmax

i
|Sj ∩ Gi|∑

i |Gi|
(6)

where |Gi| is defined as the pixel number contained in
region Gi.
Specifically, BR measures the overlap of superpixel

boundaries with ground truth boundaries. Effective segmen-
tation performance leads to a higher BR. UE measures the
percentage of leakage regions for superpixel cross ground
truth boundaries. If fewer superpixels cross over different
ground truth objects, UE is lower. ASA indicates the ratio of
superpixels which are not leaked out of ground truth bound-
aries by labeling each superpixel with the ground truth’s
largest overlap area. The higher the value is, the better the
superpixels comply with the object.

We first evaluate our method and comparedmethods on the
BSD500 dataset. The objective results are shown in Fig. 5.
In terms of BR, our method outperforms other state-of-
the-art methods except FLIC [28]. It can be seen that our
method performs better than those competing methods, such
as LSC [19] and SNIC [20]. The reason is that our method
pays much more attention to the latest pixels’ similarity
by forgetting early path influence, which benefits object
boundary segmentation. LSC [19] and SNIC [20] also follow
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FIGURE 6. Objective results on VOC2012 for our method and compared methods in terms of BR, UE and ASA.

SLIC’s framework to balance the color and space distance
between cluster centers and pixels for their local neighbors.
MBS [27] introduces minimum barrier distance (MBD) to
evaluate the similarity between pixel and seeds. Although
this method utilizes the difference between the pixel’s maxi-
mum intensity and minimum intensity to evaluate similarity,
it tends to suffer from undersegmentation in the case of
weak boundary regions. Meanwhile, it does not explicitly
enforce the pixel connectivity, which also results in infe-
rior segmentation performance. FLIC [28] shows the best
boundary adherence rate. Each pixel actively searches its
neighbor pixels’ labels via natural continuity, which avoids
regional disjointness and limited searching range. These two
factors improve the boundary adherence rate and allow first
place to be achieved. However, pixel continuity without any
constraint also results in the worst performance in shape
uniformity, which is sensitive to maintaining compact local
regions. This results in inferior evaluation in terms of UE
and ASA.
For UE, the lower the value is, the more objects could

be correctly recognized. It can be seen that our method also
produces better performance compared with LSC [19] and
SNIC [20]. In this comparison, NC [11] achieves the second
highest error rate. The reason can be explained as follows:UE
measures the superpixel region leaking from the ground truth
boundary. Although NC [11], LSC [19] and SNIC [20] could
generate more regularity superpixels, they have much lower
boundary recall, which limits them to obtaining lower UE.
This aspect also validates the advantages of our method
with respect to extracting superpixel boundaries. It can be
determined that RPS [23] also obtains regularity superpixel
regions. However, the authors consider only local path con-
nection for superpixel junctions to preserve superpixel reg-
ularity, but ignore the junction connection with diagonal
crossover, which results in higher regional leaking.Moreover,
although FLIC [28] achieves the highest boundary recall,
the significant irregular regions result in higher UE. This is
because even if a superpixel with irregular shape has reduced
underfitting boundaries, it will yield high regional leaking.

In the same BR, the less the regularity is, the greater the
regional leaking.

In terms of ASA, it labels superpixels as the ground truth
with the largest overlap area. On the one hand, regular super-
pixels tend to produce larger overlap ratios and lead to higher
performance. On the other hand, higher boundary adherence
could also achieve higherASA. Our method obtains the high-
est performance compared with all state-of-the-art methods.
It also demonstrates that the proposed method could coor-
dinate the balance between region regularity and boundary
adherence.

In addition, we test the performances of our method and
the state-of-the-art approaches on SegVOC12. The objec-
tive results are shown in Fig. 6. The results suggest that
our method obtains similar performance to the results for
BSD500. FLIC [28] also obtains the highest score in terms
of BR. In this experience, NC [11] obtains the best ASA and
UEwith relatively small numbers of superpixels. It considers
intraclass similarity and interclass dissimilarity to generate
regularly shaped superpixel regions, which could result in
decreased regional leaking in regions with complex texture.
Along with the increasing number of superpixels, the pro-
posed method more easily fits the object boundary by the for-
getting mechanism to focus on latest pixels’ similarity of the
geodesic path, i.e., fitting for multiple seeds could eliminate
the ambiguity of pixels’ assignment in blurred boundaries.
The same phenomenon as for the results on BSD500 is also
shown in Fig. 6 (a).

B. SUBJECTIVE RESULTS
In this section, we list some subjective results in Fig. 7 to
compare our method with other state-of-the-art approaches.
It can be determined that our method could not only extract
the object boundaries but also obtain the regular segmentation
regions. For example, the case of the dog in the highly similar
background is very challenging. Our method could obtain the
accurate segmentation boundary, especially for the right leg.
Other methods obtain lower boundary adherence because of
heavy regular constraints, such as methods [11], [14], [23].
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FIGURE 7. Some subjective results of compared methods. From top to bottom: our method, NC, RPS, TP, SLIC, SNIC, LSC, MBS, FLIC.

Although LSC [19] obtains an accurate segmentation
boundary, it yields highly irregular segmentation regions.

In the second image, the roof of the building is difficult
to segment because of the highly similar appearance with
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TABLE 1. Average running time (seconds per image) for 100 superpixels on the BSD500 dataset.

the sky. It is challenging for existing methods to capture
the weak boundary. The regularity constraint of NC [11]
results in low boundary adherence. RPS [23] finds the seg-
mentation boundary via strong gradient edge, which easily
follows the noise edges. SLIC and SNIC update their seed
locations and balance color and location to obtain uniform
segmentation regions. However, due to the Euclidean distance
computation, they cannot accurately segment object parts,
such as pillars. Meanwhile, the weak roof boundary results
in low boundary adherence for MBS [27] and FLIC [28].
Our method calculates the geodesic distance to focus on the
object boundary and extract the pillar boundaries. LSC [19]
is the most competitive method, which obtains high boundary
adherence but yields rough boundary results for the inner
texture regions. For the bear image, the head and back bound-
aries of the middle bear are difficult tasks for all state-of-
the-art methods. However, our method successfully extracts
the complete boundaries for the bears. For the most difficult
example, the rear of the right sheep in the last image has
highly complex background noise and a weak region edge.
All of the state-of-the-art methods failed in segmentation of
the rear boundary. However, our method extracts complete
object boundaries, which validates ourmethod’s effectiveness
and robustness to the complex texture and weak boundary
condition.

C. TIME COMPLEXITY
Our method is a linear time O(n) superpixel segmentation
method. We run all compared methods and our method on the
same PC platform with an Intel Core i5 1.6 GHz CPU with
a single-core implementation. The comparison algorithms
are implemented from the publicly available source codes
provided by the author web pages with default parameters.
For a fair comparison, all algorithms are executed on the
BSD500 benchmark to obtain the corresponding average time
cost in the case of 100 superpixels. Our method requires an
average of 0.21 s in total for individual images with size
of 481 × 321 on the BSD500 benchmark. The most time
consuming aspect is generation of the structure edge [30],
which requires 110 ms. The segmentation step for all image
pixels requires 100 ms, which validates our method’s high
efficiency.

Tab. 1 shows the average runtime for 100 superpixels with
images of size 481×321 for compared methods. Most meth-
ods are subject to a linear timeO(n) comparison. NC [11] and
TP [14] are time consuming with respect to their polynomial
time complexity andmultiple iterations.MBS [27], FLIC [28]
and SNIC [20] achieve the top three results. The first two
both use back-and-forth scanning to traverse each pixel twice,

which makes them both O(n) linear complexity algorithms.
They require image and cost average times of 0.12 s and
0.07 s, respectively. Although MBS [27] introduces MBD
distance to reduce computation cost, it uses a hierarchical
scheme to update and propagate centers, which results in
external time cost. Our method obtains the fourth order due
to the calculation of structure edge [30]. Although LSC [19]
is also a linear time algorithm, it inherits the limitations of
SLIC [15], i.e., multiple iterations and centers updating after
member assignments, which reduce its efficiency. In contrast,
our method uses a prior queue for visited pixels. Meanwhile,
the forgetting geodesic path exhibits reduced dependence on
seeds as the path extends, which does not require any seed
updating or iterations.

V. CONCLUSION
This paper proposes a new geodesic distance, called
forgetting geodesic distance, to rapidly achieve superpixel
segmentation. In contrast with the conventional geodesic dis-
tance, the forgetting geodesic distance reduces the influence
of previous path cost but focuses on latest pixel difference.
Intuitively, a pixel’s cost will be updated when it is visited
by some pixel from another path with less cost value. In the
new path, the contribution of the gradient difference of pre-
vious pixels becomes smaller, and the new geodesic path
could relieve the significant error accumulation. Meanwhile,
the pixels are aggregated with less dependence on seeds as
the path extends, which avoids the seed updating. Exper-
imental results validate that the proposed method obtains
2 percent and 1 percent average gains compared with most
of the state-of-the-art methods in terms of BSD500 and
VOC2012 datasets, respectively. However, focusing on latest
pixel difference, our method readily results in superpixel area
imbalance. In the future, we plan to improve our results by
exploring more efficient area constraints, and further extend
our method to adaptive image content.
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