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ABSTRACT Due to the high splitting-gain of dense small cells, Ultra-Dense Network (UDN) is widely
regarded as a promising networking technology to achieve high data rate and low latency in 5G mobile
communications. In UDNs, user association is an open NP-hard problem due to the high computational com-
plexity. In this paper, we study the user association problem from a deep learning perspective. We propose a
U-Net based deep learning scheme aimed at intelligently associating user equipments(UE) to the competing
Macro Base Stations (MBS) and small Base Stations (SBS). We formulate the user association problem
as a constrained combinatorial optimization problem and employ a cross-entropy algorithm to obtain its
asymptotically optimal solution for labelling in supervised learning. We define a differentiable loss function
by combining theMean Squared Errors(MSE) criterion and the fairness and load balancing constraints for the
supervised deep learning framework. We first train the U-Net based learning model and then evaluate the
accuracy of the proposed scheme. Simulation results show that the proposed U-Net scheme approaches
the asymptotically optimum Genetic Algorithm (GA) scheme in terms of minimum rate gain and sum rate
gain, whereas outperforms the latter with significantly reduced computation time and robustness to network
scales.

INDEX TERMS Deep learning, user association, Ultra-Dense Network, U-Net.

I. INTRODUCTION
A. USER ASSOCIATION AND RELATED WORKS
Ultra-Dense Network (UDN) is widely considered as a
promising technology to meet the requirements of explosive
data traffic and low latency in emerging 5G and beyond 5G
(B5G) mobile communications. By densely deploying small
cells (such as picocells and femtocells), cell splitting and
densification in UNDs are considered to be one of the most
effective means to deliver ever-increasing capacity and to
offload the wireless data traffic from macrocells. In UDNs,
a user equipment(UE) may receive signals frommultiple BSs
and interference in UDNs becomes more severe. Coordinated
Multi-Point (CoMP) transmission technique is proposed to
leverage the cooperation of multiple BSs to enhance the
signal to interference and noise ratio (SINR), to counteract
intercell interference and to enhance network capacity in
UDNs.

Increased complexity and heterogeneity of cellular
networks require a paradigm shift from traditional resource
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allocation mechanisms. In this paper, we study the user asso-
ciation mechanism, which plays a pivotal role in enhancing
the load balancing, the spectrum efficiency, and the energy
efficiency of networks.

In existing cellular networks, received signal power based
user association is the most dominant rule, where a UE
chooses to associate with the specific BS with the maximum
received signal strength (max-RSS). In UDNs, the conven-
tional max-RSS association rule will lead to over-loading
at Macro cells, due to different maximum transmit powers
and coverage ranges. Rather than being associated to the BS
with max-RSS, a UE in CoMP based UDNs may be asso-
ciated with one or more BSs before data transmission com-
mences. Thus more sophisticated user association algorithms
are needed to address the unique features of the emerging 5G
and B5G networks.

In general, finding the truly optimal UE-BS association
is a combinatorial optimization problem and the complexity
grows exponentially with the scale of the network, which is
a dead end [1]. Since a general utility maximization of (load-
weighted) rate, subject to a resource or/and power constraint,
results in a coupled relationship between user association
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and scheduling, which is NP hard and not computable even
for median-sized cellular networks. It is shown that the
load-aware association significantly improves resource uti-
lization and mitigates the congestion of MBSs, resulting in a
multi-fold gain to the overall rate for most UEs [2].

One way to make the user association problem convex is
to assume a fully loaded model with the binary association
relaxed to a real number between 0 and 1. Besides combi-
natorial optimization, game theory, Markov Decision Pro-
cesses(MDP)and stochastic geometry are also widely used
tools for solving the user association problem [3].

In [2], Ye et al. proposed a class of novel user association
schemes that achieve load balance in heterogeneous networks
through a network-wide utility maximization problem and
designed a distributed algorithm via dual decomposition.
A key observation is that the optimal biasing factors are
nearly independent of BSs’ densities for the various tiers,
but highly dependent on the per-tier transmit powers. With
these optimal biasing factors, the network nearly achieves
the optimal load-aware performance. However, it is hard to
determine the optimal bias value. In [4], Ge et al. investigated
joint user association and user scheduling for load balanc-
ing over the downlink of a wireless heterogeneous network
by formulating a network-wide utility maximization prob-
lem, and proposed an alternating direction method of mul-
tipliers to efficiently approximate and solve the nonconvex
problem.

B. APPLICATIONS OF DEEP LEARNING IN
COMMUNICATIONS
Recently, deep learning has emerged as a state-of-the-art
machine learning technique with promising potential to drive
significant breakthroughs in wireless communications. Deep
learning has been first investigated in decoding and codes for
better error performance and lower complexity. Besides chan-
nel decoding, deep learning techniques have been recently
investigated in a variety of wireless communications such as
MIMO detection [5], radio signal classification [6] and chan-
nel estimation [7]. In [8], Zhou et al. studied network traffic
predication based on deep long short-term memory (LSTM)
structure learning model, to make localized prediction per-
taining to future traffic characteristics from the past and
current dataset.

Deep learning (DL) has also been considered as a powerful
tool by which a multi-layer neural network can be trained
to model resource management such as power allocation
and subchannel allocation. By using the data generated
by a suboptimum/near optimum algorithm and training the
deep learning model, resource allocation decisions can be
obtained without intensive online computations. Existing
works on deep learning based resource allocation in wire-
less communications can be categorized into two groups:
deep reinforcement learning (DRL) and deep supervised
learning [9].

The DRL is theoretically based on the finite Markov
Decision Process (MDP) modelling, and attempts to achieve

the maximum long-term utilities to obtain the optimum
joint policy. However, the wireless environment states are
more complicated rather than the simple Markov pro-
cess under time-varying channel conditions and random
mobility of UEs. Moreover, information exchange by pass-
ing the message among the BSs and UEs at each deci-
sion episode involves overwhelming overhead in wireless
communications.

In [9], Ahmed et al. proposed a supervised Auto-encoder
based DL model to jointly solve the sub-band and power
allocation problem in amulti-cell network. However, the joint
power and subchannel allocation is only considered in
data generation phase by iteratively using Genetic Algo-
rithm(GA), the maximum power and subchannel constraints
are not considered in the DL training phase. More impor-
tantly, output sparsity is not considered for large-scale sub-
channel allocation, which may result in non-convergence in
training.

In [10], supervised deep learning has been applied for
power allocation based on Weighted Minimum Mean Square
Error (WMMSE) benchmark. TheWMMSE criterion is how-
ever not the global optimum and thus Liang et al. proposed
an unsupervised deep learning by directly maximizing the
sum rate utility function in the training phase [11]. The
unsupervised learning method does not require the ground
truth data labelling which is usually infeasible in practice
due to non-convex optimization. However, the unsupervised
learning cannot be generalized due to that the loss function
in discrete allocation such as subchannel allocation and user
association may be non-differential and may not converge in
training phase. Rather than maximizing network throughput,
Matthiesen et al. developed a deep learning power control
framework for energy efficiency maximization in wireless
interference networks [12].

In [13], Zhao et al. investigated a deep reinforcement learn-
ing scheme for user association and resource allocation in
heterogeneous cellular networks. To solve the computation-
ally expensive problem with the large action space, a multi-
agent DRL method is proposed to obtain the nearly optimal
policy through message passing. However, passing channel
information and instant rewards among BSs for each UE at
every decision episode will impose unacceptable overhead in
time-sensitive 5G/B5G cellular networks. Moreover, the con-
vergence of the DRL method highly depends on training
parameters such as ε-greedy exploration, discount rate of
utility, episode length and step sizes, the optimal values of
which are environment-dependent.

C. CONTRIBUTIONS
In this paper, we investigate the user association problem
from the supervised deep learning perspective, which does
not assume the MDP of the environments. The inherent char-
acteristics of environments are learned from collected past
and current data. The main contributions are as follows.
• We study the user association problem of ultra dense
mobile networks by using deep supervised learning
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FIGURE 1. System model of UDN with JT-CoMP.

technologies to address the open NP-hard problem.
We first map the user association problem into an
image segmentation problem in typical convolutional
networks with pixel-scale classification, and propose a
U-Net based deep learning algorithm aimed at intel-
ligently associating UEs to the competing Macro and
small BSs.

• We formulate the user association problem as a
constrained combinatorial optimization problem and
employ a cross-entropy algorithm to obtain its asymp-
totically optimal solutions for labelling in supervised
learning. We define a differentiable loss function by
combining the MSE-criterion and the fairness and
load balancing constraints for fast convergence in the
supervised deep learning framework.

• Extensive simulations are performed for performance
evaluation and the results show that the proposed deep
learning user association scheme approaches the asymp-
totically optimum GA scheme in terms of maximum
rates and sum rates, whereas outperforms the latter with
significantly reduced computational complexity.

• We consider the user association to more than one BSs in
the CoMP, the framework of which can be also suitable
to non-CoMP transmission scenarios.

The rest of the paper is organized as follows. The
system model and use association model are introduced in
Section II. Problem formulation is presented in Section III
as a constrained combinatorial optimization problem.
In Section IV, the main contribution of this paper is presented
to introduce a U-Net based deep learning framework for
user association. Simulation results are given in section V.
Conclusions of this study are drawn in Section VI.

II. SYSTEM MODEL
A. NETWORK MODEL
We consider a two-tier OFDMA heterogeneous Ultra Dense
Network consisting of NMBS MBSs and NSBS SBSs. The
system model is shown in Fig.1. Denote Pi as the i-th tier
transmit powers of BSs. Usually, there is a transmit power
disparity among different tiers of BSs. For example, Macro-
cells have a typical transmit power 43 dBm, Picocells have
classical transmit powers ranging from 26 dBm to 30 dBm,

whereas the transmit powers of Femtocells are usually less
than 23 dBm.

We consider a topology area ofD×D square meters, where
the MBSs are uniformly distributed to provide coverage and
to support capacity, with the distance betweenMBSs no small
than dM . The small BSs are also randomly and uniformly
distributed within the covering area. Let B� = {b|b =
1, 2, · · · , |B�|} denote the set of BSs consisting of both
Macro BSs and Small BSs, where |B�| = NMBS + NSBS is
the total number of BSs. UEs are randomly and uniformly
distributed around each SBS. The set of UEs is denoted by
M�
= {m|m = 1, 2, · · · , |M�

|}.
In an OFDMA network, the total transmission time and

frequency bands are equally divided into multiple time slots
and multiple subcarriers. Similar to that in 4G LTE and 5G
New Radio (NR), a resource block (RB) is the smallest unit
of resources that can be allocated to a UE, and each resource
block consists of several consecutive subcarriers. As known
in LTE network, the resource block is 180 kHz wide in
frequency and 1 slot long in time. Without loss of generality,
we denoteW0 and NRB as the bandwidth of each RB, and the
total number of RBs, respectively.

The channel gain is modeled to capture path loss, shadow-
ing and antenna gain, which is averaged over the allocated
resource blocks for association. Denote gm,b as the averaged
channel gain between UE m and BS b, we then have the
averaged channel gain matrix as

G =


g1,1 g1,2 · · · g1,|B�|
g2,1 g2,2 · · · g2,|B�|
...

...
. . .

...

g|M�|,1 g|M�|,2 · · · g|M�|,|B�|

 (1)

UEs locating at the edges of cells usually suffer from severe
intercell interference and low capacity. To reduce interference
and enhance peak data rates of cell edge users, joint trans-
mission Coordinated Multi-Point (termed as JT-CoMP) is
considered in the network architecture, which allowsmultiple
BSs in the neighborhood to cooperatively serve a specific
UE simultaneously. Let B�m denote the set of coordinated
BSs for joint transmission to UE m, the SINR of UE m is
given by

γm =

∑
b∈B�m

Pbgm,b∑
b′∈B�\B�m

Pb′gm,b′ + σ 2 (2)

where Pb is the transmit power of BS b, σ 2 is the variance of
Additive White Gaussian Noise (AWGN) denoting the noise
power level.

Before data transmission, a user association mechanism
is needed to determine whether a UE is associated with a
particular base station (BS).

B. USER/CELL ASSOCIATION MODEL
User association, namely associating a UE with a particular
serving base station (BS), plays a pivotal role in enhancing
the load balancing, the spectrum efficiency, and the energy
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efficiency of networks performance. The association relation-
ship between UE m and BS b is denoted by a bit number
xm,b(m ∈ M�, b ∈ B�) defined as

xm,b =

{
1 UE m is associated with BS b
0 otherwise

(3)

Thus, the entire association matrix between all UEs and all
BSs can be represented as:

X =


x1,1 x1,2 · · · x1,|B�|
x2,1 x2,2 · · · x2,|B�|
...

...
. . .

...

x|M�|,1 x|M�|,2 · · · x|M�|,|B�|

 (4)

In this paper, we consider downlink user/cell association,
and assume that each BS always has data to transmit to its
associated UEs. Assume that the association time is carried
out in a large time scale compared to the change of channel.
The SINR of a specific UE in a downlink transmission can be
presented in terms of xm,b as follows,

0m =

∑
b∈B�

xm,bPbgm,b∑
b′∈B�

(1− xm,b′ )Pb′gm,b + σ 2 (5)

C. RESOURCE BLOCK ALLOCATION
In [2], it was shown that under the consideration of load
balancing, the optimal resource allocation is equal allocation
under logarithmic utility function. Therefore, the optimal
RB allocation for BS b is equal allocation given by W0·NRB

|M�
b |

,

where |M�
b | denotes the number of UEs associated with

BS b. Considering that UE m may associate with different
BSs in JT-CoMP networks, correspondingly, the optimal RB
allocation for UE m can be given by

βm = min

{
W0 · NRB∣∣M�

b

∣∣ ∣∣b ∈ B�m
}

(6)

where B�m ⊆ B� denotes the set of BSs associated with UE
m, i.e., B�m = {b|b ∈ B

�, and xm,b = 1}, M�
b ⊆ M� denotes

the set of UEs associated with BS b, i.e., M�
b = {m|m ∈

M�, and xm,b = 1}. The min operation is applied due to that
JT-CoMP has to transmit on the same frequency band.

Then the data rate of a downlink transmission to UE m can
be given by

Rm = dβme log2 (1+ 0m) (7)

where dxe is the minimum integer larger than or equal to
x, 0m is the SINR of UE m defined by Eq. (5). The dxe
operation is applied due to that RB allocation is based on
integer allocation of RBs in practice.

III. PROBLEM FORMULATION
In this paper, we consider the user association problem under
the consideration of load balancing. As shown in [2], logarith-
mic utility function is concave and has diminishing returns
and thus promotes the load balancing. Therefore, logarithmic
function is applied to the achievable rate. Considering the
fairness of UEs, the network throughput of cell edge users

is used as the performance metric, therefore, the objective
function is to maximize the minimum logarithmic achievable
rate of the cell edge user. Finally the problem is formulated
as:

max
X

min
∑
m∈ME

log(Um)

s.t. C1 : 1 ≤ |Bm| ≤ Bmax , ∀m ∈ M�

C2 :
∑
m

xmb ≤ Nmax , ∀m ∈ M�, ∀b ∈ B� (8)

where the constraint C1 indicates that for an arbitrary UE m,
it can be served by at least one BS. In practice, the overhead
may be unacceptably increasing with the number of coopera-
tive BSs. Therefore, it is reasonable to assume that the number
of associated BSs is upper-bounded by the maximum number
of cooperative BSs as B ≤ Bmax . The constraint C2 indicates
that for an arbitrary BSm, the total number of associated UEs
should not exceed the maximum allowable number Nmax by
considering load balancing.

Problem (8) is a combinatorial problem with high com-
plexity. Brute force search is only applicable for small scale
network. For moderate scale network and large scale net-
work, the computational complexity is prohibitively high.
We have to determine for each UE which BSs are supposed
to associate with. Mathematically, we have to determine
the association matrix X from the input channel matrix G,
which can be regarded as an image segmentation problem
and the class label (0/1) is supposed to be assigned to each
pixel. Convolutional networks are investigated in this paper to
solve the user association problem with significantly reduced
computational complexity.

IV. A U-Net BASED DEEP LEARNING FRAMEWORK FOR
USER ASSOCIATION
A. A MODIFIED U-Net ARCHITECTURE
The user association problem is to determine the value of each
element of the association matrix X, which can be mapped
into the image segmentation problem in typical convolu-
tional networks with pixel-scale classification. In particular,
the channel gain matrices G can be mapped into the input
‘‘images’’ of a convolutional networks, and the output of the
convolutional network can be regarded as the user association
matrices X. Considering that the U-Net architecture usually
achieves good performance on various segmentation appli-
cations, the user association problem is modeled based on
modified U-Net convolutional network as shown in Fig.2.

The network consists of a contracting path and an expan-
sive path, which also gives it the U-shaped architecture. The
contracting path follows the typical architecture of a convo-
lutional network. It consists of four convolution blocks. Each
convolution block has a 3 × 3 convolution operation with
stride 2 and padding value 1, followed by a rectified linear
unit (ReLU), and batch normalization. In the first convolu-
tional block, a 5 × 5 kernel size is applied for convolution,
with stride 1 and padding value of 2. At each downsampling
step, the number of feature channels is doubled. There is

197442 VOLUME 8, 2020



Y. Zhang et al.: Deep Learning Based User Association in Heterogeneous Wireless Networks

FIGURE 2. A modified U-Net architecture for user association.

an additional 2 × 2 max pooling operation in the fourth
convolution block, which halves the feature map.

The first step in the expansive path consists of an upsam-
pling operation of the feature map followed by a 2× 2 trans-
pose convolution (‘‘up-convolution’’) that doubles the height
and width of the ‘‘feature map’’. Every other step consists of a
3×3 convolution with stride 1 and padding value 1, followed
by a ReLU function, batch normalization and a concatenation
with the corresponding feature mapping from the contracting
path. At the final layer, a 1 × 1 convolution is used to map
each 64-component feature vector to the desired number of
classes. The activation function is defined as

y =


0, x < 0
x, 0 ≤ x ≤ 1
1, x > 1

(9)

In practice, the convolutional kernel size, stride and
padding value can be adjusted by considering feature extrac-
tion dimensions and avoiding over-fitting, for both the
contracting path and the expansive path.

We take an ‘‘image’’ for example to explain the image
transform through each step of the modified U-Net archi-
tecture to get the desire output. The input ‘‘image’’ is of
size C × H × W , where C , H and W denote the number
of the U-Net ‘‘channel’’, height and width of the input data
respectively. In this paper, C = 1, H = |M�

| denotes the
number of UEs, andW = |B�| corresponds to the number of
BSs. The 10∗ log10(·) operation is applied to the channel gain
matrices G followed by a normalization, we then obtain the
normalized channel gain matrices Ĝ as the input of the U-Net
architecture.

In the contracting path of the first convolution block,
64 filters with 5× 5 kernel size are applied to the normalized
channel gain matrices Ĝ, with stride 1 and padding value
of 2, followed by a ReLU activation function and batch nor-
malization. In the second convolution block, the number of
filters is set as 128 then the size of the feature maps becomes
128 × H × W . In the third and fourth convolution block,
the numbers of filters are both 256 whereas the fourth
block has a max pooling operation. Therefore, the third and

the fourth feature maps are of size 256 × H × W and
256× H/2×W/2 respectively.

In the expansive path of the first upsampling block, a 2×2
‘‘up-convolution’’ is applied and we double the size of the
image and obtain a 256 × H × W feature map. With a
concatenation by adding the associated feature map from the
contracting path, we get a fused 256 × H ×W feature map.
In the following steps of the expansive path, the feature map
is applied by a 3 × 3 convolution with stride 1 and padding
value 1, followed by a ReLU function and batch normaliza-
tion, as well as an add operation from the contracting path.
The feature maps are halved with the size from 256×H×W ,
128×H ×W , to 64×H ×W respectively. At the final step,
a 1 × 1 convolution is applied to map the 64-feature map to
the desired number of classes.

B. SUPERVISED LEARNING
1) DATA PREPROCESSING
a: DATA GENERATION
Ideally, we have to obtain the input channel gain matrix G
and the optimal association matrix X for supervised learning.
However, the problem of (8) is a constrained combinatorial
optimization problem and brute search is practically infea-
sible for moderate-scale networks. To generate data to train
and test ourmodifiedU-Net learningmodel, the input channel
gainmatrices have to be labeled. In this paper, a cross-entropy
algorithm is applied [14] to obtain labels Xl , which is the
suboptimal solution of problem (8) by essentially a heuristic
search Genetic Algorithm. The training dataset is divided into
training set, validation set and testing set.

b: TRAINING PHASE
The training phase consists of pretraining and training phase.
The goal of the pretraining phase is to find a good inial weight
and bias of the learning network. We define the Minimum
Mean Squared Error(MMSE) loss function as

LM = E(||Xk − XL ||
2) (10)

whereXk denotes the output matrix of the learning network at
the kth training epoch,XL is the label matrix, andE(.) denotes
the expectation operation.

After pretraining, the learning network can usually obtain
a good initial value. By considering the constraint C1 in (8),
we denote LU as the loss function under the constraint of the
number of BSs that a UE can be associated with,

LU = λ1 ∗ Em

ReLu

max
i

B�∑
j=1

bxmij c − Bmax


+ λ2 ∗ Em

ReLu

1−min
i

B�∑
j=1

bxmij c

 , (11)

where xmij denotes the association value of the m-th sample
between user i and BS j, bxc denotes the rounding operation to
map x to a binary indicator 0/1. Note that xmij is a real value in
the training process and is different from the final association
indicator xi,j which only takes the value 0 or 1. The ReLu
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Algorithm 1 Procedure of Deep Learning Based User Asso-
ciation
1: Generate channel gain data set and do data preprocessing.
2: Find labels of input data by the cross-entropy based

heuristic algorithm.
3: Train data set offline with training data set and validation

data set.
4: Test the dataset and process the outliers.

function promotes the model to satisfy the constraint of the
number of allowable BSs as f (x) = max(0, x). When the
associated number of BSs exceeds Nmax , there will be a
positive loss on the loss function and the learning model will
trace the path towards the minimum loss.

By considering the constraintC2 in (8), we denote LB as the
loss function under the constraint of the maximum number of
UEs that a BS can associate,

LB = λ3 ∗ Em

(
ReLu

(
max
j

M�∑
i=1

bxmij c − Nmax

))
. (12)

Finally, the loss function of training phase is given by

LC = LM + LU + LB. (13)

C. LEARNING PROCEDURE
Because of the rounding operation of bxmij c, for each
sample m, there may exist an outlier situation where
a ‘‘lucky’’ UE cannot find a single BS to associate.
Mathematically, we have

im = arg
i

 B�∑
j=1

bxmij c = 0

 (14)

To deal with this situation, we let the outlier UE i choose from
the light-loaded BSs set B′� with the maximum xij,

jmi = arg
j

(
max
j∈B′�

xmij , and,
M�∑
i

bxmij c ≤ Nmax

)
(15)

Because of the rounding operation of bxmij c, there may exist
another outlier situation where a ‘‘lucky’’ BS associates too
much UEs, that is,

jm = arg
j

(M�∑
i

bxmij c > Nmax

)
(16)

Similarly, we would find the UE which has the smallest
association value xij and at least is associated with more than
one BS iteratively, until the load condition is satisfied

imj = arg
i

min
i
xmij , and,

B�∑
j=1

bxmij c > 1

 (17)

In practice, the above procedure to deal with the outlier’s
situationsmay be implemented iteratively until all outliers are
removed.

Algorithm 2 Procedure to DealWith the Outlier’s User Asso-
ciation
1: if UE i is an outlier without an associated BS then
2: Associate UE i with BS jmi based on (15).
3: end if
4: if BS j is an overloaded outlier then
5: Remove the associated UE i from BS j based on (17).
6: end if

TABLE 1. Simulation parameters’ setting.

V. PERFORMANCE EVALUATION AND SIMULATION
In this section, system level simulations are performed to
evaluate the performance of the proposed scheme in terms
of achievable rates and computational complexity.

A. SIMULATION SETTINGS
Some important parameters settings are presented in Table 1.
In the simulations, the maximum number of BSs serving for
one UE is 3, by considering that a large number of cooper-
ative BSs will cause huge overhead and intolerant network
delay [15].

The total number of BSs |B�| = NMBS + NSBS = 10.
For computational simplicity, we only consider the number
of UEs ranging from 28 to 44 in the simulations, which
means UEs are generally far from each other geologically at
the space of 600 times 600 square meters and the adjacent
channel gains/pixels are generally uncorrelated. In the U-Net
model, the height of U-Net ‘‘images’’ denotes the number of
the UEs as H = 28 ∼ 44, and the width of U-Net ‘‘images’’
corresponds to the number of BSs as W = |B�| = 10.

The data set is collected by following the WINNER
channel model and randomly spreading UEs around each
SBS. We collect 15000 samples for each scale of net-
work (fixed number of UEs and BSs). Among each total
15000 samples, 10% samples are used for validation, 10% for
testing and the left 80% for training. In the first 10 epochs of
training, the Adaptive Moment Estimation (Adam) optimizer
is applied with learning rate 0.00001 for fast adaptation.
Then the optimizer is changed to the well-known Stochastic
Gradient Descent (SGD) method with learning rate dynam-
ically reduced 10% every 20 epochs for steady conver-
gence. The activation function in simulations is defined
in (9).
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FIGURE 3. The minimum rate comparison of different association
schemes versus different numbers of UEs.

FIGURE 4. The maximum rate comparison of different association
schemes versus different numbers of UEs.

B. SIMULATION RESULTS
In this section, we first evaluate the performance of different
user association schemes in terms of the minimum rate,
the maximum rate and the sum rate of the network in Fig.3,
Fig.4 and Fig.5 respectively. In particular, we compare the
performance of the proposed deep learning scheme with the
conventional genetic algorithm(GA) scheme and the N-best
association scheme (N = 3 in the simulations, that is, each
UE is associated first 3 BSs with maximum RSS).

To evaluate the generalization of the U-Net model, a much
larger sample set under different numbers of UEs are used
to train the network, which is termed as ‘‘U-Net(General)’’
in this paper. By ‘‘U-Net(General)’’ model, we mean
multi-scale training. By training the U-Net architecture with
input ‘‘images’’ (channel gain matrices) of different sizes,
we expect the trained network can adapt to different numbers
of UEs to some extent in practical wireless environments.

Under the fixed U-Net architecture, training and testing
data of the U-Net(General) model have to be preprocessed by

FIGURE 5. The sum rate comparison of different association schemes
under different numbers of UEs.

interpolation to the same size. More specifically, the training
data of the U-Net(General) model are the same and fixed
as height H = 32 and width W = |B�| = 10, whereas
the channel gain data with the height H ranging from 28,
36, 40, 44 have to be preprocessed by interpolation. The
‘‘U-Net(General)’’ model is trained to evaluate whether to
adapt the practical time-varying channel data and mobility
of UEs.

In Fig.3-Fig.5, ‘‘U-Net’’ represents the performance of the
loss function LC -based U-Net learning scheme (LC is defined
in (13)). ‘‘NB’’ and ‘‘GA’’ represent the performance of the
conventional the N-best scheme and the cross-entropy based
Genetic Algorithm in [14] respectively.

Fig.3 shows the minimum rates of the wireless network
achieved by the proposed deep learning schemes, the con-
ventional N-best (NB) association scheme and the asymptotic
optimal GA association scheme in [14]. Let K denote the
number of UEs and we have K = |M�

|. We can see that
the proposed U-Net deep learning scheme with customized
loss function and the ‘‘U-Net(General)’’ scheme can achieve
respectively 80% and 74% minimum rate gain compared
with the N-best scheme under the number of UEs K = 28.
Under the number of UEs K = 44, the U-Net and the
‘‘U-Net(General)’’ scheme can achieve respectively more
than 52% and 35% minimum rate gain.

Moreover, both the proposed U-Net scheme and the
‘‘U-Net(General)’’ scheme approach closely the asymptotic
optimal GA association scheme in [14], with more than 97%
minimum rates under the number of users K = 28. Under
the number of users K = 44, the minimum rate of the
proposed U-Net scheme and the ‘‘U-Net(General)’’ scheme
are respectively 93% and 83%, compared to that of the GA
scheme.

Fig.4 shows the maximum rates of the wireless network
achieved by different association schemes.

We can see that the proposed U-Net scheme and
‘‘U-Net(General)’’ scheme significantly outperform the
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TABLE 2. Computation time comparison of different association schemes.

simple N-Best scheme with about three times maximum rate
gain, and even outperform the asymptotically optimal GA
scheme with around 5% maximum rate gain.

Fig.5 shows the sum rates of the wireless network achieved
by different association schemes.

In Fig.5, we can see that the proposed ‘‘U-Net(General)’’
deep learning scheme has the best performance in terms of
sum rates compared to the other schemes under different
number of UEs. The proposed U-Net and U-Net(General)
scheme can achieve respectively 82% and 86% sum rate gain
compared to the N-best scheme.

As expected, in Fig.3, the proposed U-Net schemes
perform slightly inferior compared to the asymptotic opti-
mum GA scheme. This is reasonable because the objective
function is to maximize the minimum rates. However, we can
see from Fig.4 and Fig.5 that both the proposed U-Net and
U-Net(General) scheme approach and even outperform the
GA scheme, in terms of maximum rates and sum rates under
different network scales, with about 12% maximum rate
gain and 7% sum rate gain respectively. The achieved rate
gains show the effectiveness of the proposed method to the
outliers, otherwise, the maximum rates and sum rates of the
proposed methods would not exceed that of the asymptotic
GA method.

Table 2 shows the computation time complexity of
different association schemes with unit second (sec.) in the
testing phase. We evaluate the proposed deep learning based
association scheme under both GPU and CPU configuration,
termed as DL/GPU and DL/CPU respectively. We used the
NVIDIA Tesla V100 GPU and the Intel(R) Xeon(R) Gold
5118 CPU @ 2.30 GHz to run the simulations. We can see
in Table 2 that, the computation time of the DL/GPU associ-
ation and the DL/CPU association is remarkably decreased
compared to the asymptotic optimal GA-based association
scheme, on the order of 1% and 0.1% respectively. More-
over, the computation time of the conventional GA based
association increases with network scales, whereas the com-
putation time of the two DL based schemes keeps almost
invariable with the number of UEs K with little fluctua-
tion and this property is crucially important for practical
application, especially helpful for large scale network with
hundreds and thousands UEs in a cell. The computation
time of the DL-based association schemes fluctuate on the
order of millisecond due to the negligible instability of
GPU and CPU. In addition, the computation time of the
the DL/GPU scheme is about 10% compared to that of
DL/CPU scheme, this is because deep learning on GPU can
run in parallel. We can expect that the GPU for acceleration
of DL algorithm would be more significant in large-scale
networks.

VI. CONCLUSION
In this paper, we study the user association problem of ultra
dense mobile networks from a new perspective, by using
deep learning technologies to address the open problem of
high complexity of the NP-hard problem. We first map the
user association problem into an image segmentation problem
in typical convolutional networks with pixel-scale classi-
fication, and propose a U-Net based deep learning algo-
rithm aimed at intelligently associating UEs to the competing
MBSs and SBSs. We formulate the user association problem
as a constrained combinatorial optimization problem and
employ a cross-entropy algorithm to obtain its asymptotically
optimal solutions for labelling in supervised learning. We
define a differentiable loss function by combining the MSE
criterion and the fairness and load balancing constraints for
fast convergence of the supervised deep learning framework.
Simulation results show that the proposed deep learning
user association schemes approach the asymptotically opti-
mum GA scheme in terms of maximum rate gains and sum
rate gains, whereas outperform the latter with significantly
reduced computation time and robustness to network scales.

Resource blocks’ allocation and power control are
important to improve network performance and it is an inter-
esting topic to investigate the joint allocation for ultra dense
networks. We leave this open problem for our future work.
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