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ABSTRACT Network topology measurement is an important component in network research. Network
tomography is able to accurately infer network topology by using end-to-end measurement without cooper-
ation of internal routers. Unfortunately, traditional network tomography methods can not accurately estimate
topology in the non-stationary network due to the variability of traffic distribution. In this paper, we present
a novel network topology inference method based on subset structure fusion for accurate topology inference
in the non-stationary network. First, we propose an end-to-end measurement method named three-packet
to accurately probe the three-leaf-nodes subset structures of the network without the assumption that the
packet delay or loss follows a stable distribution. Second, we propose a metric for the shared path length
based on the structural characteristics of the subset structures to fuse these subset structures into a correct
complete topology. The analytical and simulation results show that our method is more applicable for
topology inference in the non-stationary network compared with the existing methods.

INDEX TERMS End-to-end measurement, network tomography, non-stationary network, subset structure
fusion, topology inference.

I. INTRODUCTION
The rapid development of the network makes it increasingly
difficult tomanage the network. The network topology, which
is the foundation of network management, can precisely
depict the connection relationship between network device
nodes [1]. Grasping the accurate network topology helps us to
manage the network more effectively. For example, by iden-
tifying and analyzing the weak parts of the network topology,
we can efficiently optimize the network structure, reduce
network congestion, and prevent hackers from attacking the
vulnerable parts of the network.

There are two primary network topology measurement
methods, one based on internal node cooperation and another
based on network tomography. The method based on internal
node cooperation can quickly and accurately estimate the
topology by using the feedback routing information returned
from the internal routers [2]–[4]. However, this method may
fail to estimate the topology when the internal routers refuse
to reply to the topology information because it probably
causes security issues and the probe packets may be filtered

The associate editor coordinating the review of this manuscript and

approving it for publication was Haipeng Yao .

by the firewall. The method based on network tomography
[5], [6] (also known as network topology inference method)
infers topology by using the path performance parameters
obtained from end-to-end measurement. Compared with the
method based on internal node cooperation, network topol-
ogy inferencemethod does not require extra cooperation from
the internal nodes and is more feasible. In addition, network
tomography can also be used to study more network internal
performance parameters [7]–[9], such as packet delay [10],
packet loss [11], and bandwidth [12].

Existing network topology inference methods generally
use well-designed end-to-end measurements such as back-
to-back packet [13] and ‘‘sandwich’’ packet [14] to obtain the
path performance parameters of the network. These methods
use the metrics obtained by calculating the path performance
parameters to measure the length of the shared path from
a single source to all destination nodes pairs, and construct
the network topology based on the relative size between the
metrics. However, in the non-stationary network, existing
network topology inference methods can not obtain accurate
metrics for shared path length to recover the correct topology.
The reasonwhy existingmethods are not applicable is that the
path performance parameters such as packet delay or loss in
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the non-stationary network do not follow a stable distribution,
whereas existing methods assume that the packet delays or
loss of different probes on the same link follow the identical
distribution.

We propose a network topology inference method based
on subset structure fusion to estimate the network topology
from a source node to a set of destination nodes in
the non-stationary network. We first measure and identify
the three-leaf-nodes subset structures of the topology via
three-packet end-to-end measurement. Then we fuse these
subset structures to build a complete network topology. The
main contributions of this paper are summarized in the
following three aspects:
• First, we propose an end-to-end measurement named
three-packet to probe the three-leaf-nodes subset struc-
tures in the whole network topology. In this way,
the topology inference problem is decomposed into
multiple simple sub-problems that are the inference
of subset structures containing three leaf nodes. Three
small probe packets with short time intervals are sent
to obtain such three-leaf-nodes subset structures. The
three-packet sends less probe packet than back-to-back
packet and can accurately measure the shared path
length of subset structures in the non-stationary net-
work. Therefore, the three-packet can effectively reduce
the number of probe packets and also accurately probe
the subset structures, which is benefit to recover the
complete network topology.

• Second, we propose a binary tree topology inference
method based on subset structure fusion to aggregate the
separated subset structures into a complete binary tree
network topology. A metric for shared path length based
on the structural characteristics of the subset structures
is proposed to fuse the subset structures into a binary tree
topology. Based on the accurate measurement of subset
structures via three-packet, this metric can precisely
measure the shared path length of the topology in the
non-stationary network and is conductive to estimate a
correct binary topology.

• Third, based on the metric above, we propose a gen-
eral tree topology inference method that deletes false
links by setting different thresholds for different subset
structures. The subset structures are determined whether
they are general tree-like or binary tree-like with the
given thresholds of themselves. Then the false links (the
links that do not exist in the real network topology)
are deleted if there are more general tree-like subset
structures contain these links than binary tree-like sub-
set structures. Therefore, different thresholds are more
feasible for the complex traffic distribution (such as
traffic unbalance and non-stationary) in practical appli-
cation, which greatly improve the accuracy of topology
inference.

Our approach is more applicable to topology inference
in the non-stationary network because we can accurately
measure the shared path length of the subset structures via

three-packet end-to-end measurement. The remainder of the
paper is organized as follows. In Section II, we review the
related works. In Section III, we introduce related models
and concepts. In Section IV, we give the three-packet end-
to-end measurement and the topology inference method.
In Section V, we describe the evaluations of the method
under NS2 simulation. We finally conclude this paper in
Section VI.

II. RELATED WORKS
There are already lots of network topology inference meth-
ods. Ratnasamy and McCanne [15] took the lead to study
network topology using multicast network tomography. They
obtained the path-level packet loss rate via end-to-end mea-
surement and calculated the link-level packet loss rate of
the shared path. Based on the work of Ratnasamy et al.,
Duffield et al. [16], [17] mapped the packet loss rate of the
shared path to a metric that could measure the length of the
shared path. In addition, they [18] also applied the path delay
covariance as a new metric to infer the topology. Network
tomography methods are often based on some assumptions,
but when some of the assumptions fail, the accuracy of topol-
ogy inference will be greatly reduced. In order to solve this
problem, Nguyen and Zheng [19] proposed the sequential
binary independent component analysis algorithm to pre-
cisely estimate the network topology under the assumption of
independent failure of intermediate nodes or links. Recently,
Bowden and Veitch [20] proposed the shared loss topology
discovery algorithm capable of returning the correct network
topology under the assumption that the link processes were
not completely independent.

Due to network security and other reasons, most of the
existing networks do not support multicast packet routing
now, so the main research focuses on the topology inference
method based on unicast probe. Castro and Nowak [13] pro-
posed a method for unicast end-to-end measurement based
on ‘‘sandwich’’ packet and used the agglomerative likelihood
tree algorithm to infer binary trees. In order to infer the gen-
eral tree topology, Castro et al. [21] also proposed a Markov
Chain Monte Carlo algorithm, which used the maximum
likelihoodmethod to select themaximum likelihood tree from
the candidate trees. Based on the works of Castro et al., Shih
and Hero [22] proposed a hierarchical clustering topology
inference algorithm, which used graph clustering and unsu-
pervised learning of a finite mixture model to recursively
partition the destination node from top to bottom. In order to
reduce the number of probe packets, Eriksson et al. [23], [24]
proposed a probe method based on Deep-First Search (DFS)
and used Ordered Logical Topology Discovery (OLTD) algo-
rithm to infer network topology. Pepe and Puleri [25] also
proposed a method to find the smallest end-to-end measure-
ment set to automatically determine the smallest set of paths
to probe, reducing the number of probe packets.

In addition, the fusion of multi-source information can also
improve the accuracy of topology inference, Ni et al. [26]
proposed a framework that integrated multiple metrics, which
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could integrate the metrics of shared path length obtained by
measurement methods such as multicast, unicast, or tracer-
oute. Malekzadeh and MacGregor [27] proposed a new
probe scheme named traceroute with sandwich probe based
on end-to-end unicast delay measurement, which combined
the delay-based ‘‘sandwich’’ packet unicast probe model
and traceroute. Fei et al. [28] use the delay cumulants of
second-order and above to infer the topology, so the statistical
information of the path delays can be more fully utilized.
Although existing network topology tomography methods is
relatively mature, it is suitable for small networks. For this
reason, Santos et al. [29] proposed a tomography method
based on the divide-and-conquer to effectively and accu-
rately probe large networks. To infer more general network
topology, Rai and Modiano [30] proposed two statistical
generic methods expectation-maximization and evolution-
ary sampling for inference of additive metrics using unicast
probing. Rahali et al. [31] used path interference to identify
general topology which outperformed the algorithm that used
distance measurements.

Related works often assume that that the delays or
loss of different probes on the same link are identically
distributed. Therefore, these methods are not applicable in the
non-stationary network because the path performance param-
eters in the non-stationary network does not follow a stable
distribution. The method we proposed is able to accurately
measure the shared path length of the subset structures and
recover the complete topology by fusing the subset structures
in the non-stationary network.

III. PROBLEM STATEMENT
A. NETWORK MODEL
In this paper, we aim at the problem of how to infer the logical
routing topology from a source node to a set of destination
nodes in a non-stationary network, where all internal router
nodes do not cooperate with each other and refuse to reply
to any information about the topology. As in most literature
[16]– [21], the network topology mentioned in this paper
refers to a logical tree. We use T = (V ,E) to represent a
tree-like logical topology, where V = {v1, v2, · · · , vn} repre-
sents the set of physical nodes andE represents the set of links
between nodes. V consists of a root node s, a series of internal
nodes W (path branching nodes), and the leaf nodes D. The
root node s is the source of our measurement and the leaf
nodesD are the destinations. Except for the source node, each
node v ∈ W ∪ D has a unique parent node f (v). For a pair of
destination nodes {i, j}, we use f (i, j) to represent their nearest
parent node. The path from the source node s to the parent
node f (i, j) is called the shared path of the destination node
pair {i, j}. The path from node s to a destination node i is
represented as p(s, i), which is composed of a series of links e.
We use Tsub = (Vsub,Esub) to represent a subset structure
of T , where Vsub ∈ V and Esub ∈ E . In addition, the root
node of Tsub is s and the leaf node set Dsub ∈ D.

B. TOPOLOGY INFERENCE PRINCIPLE
Topology inference methods use end-to-end measurement to
probe the network since it is not cooperative. Traditional
end-to-end measurement methods probe the network via
‘‘sandwich’’ packet or back-to-back packet. These methods
probe a pair of destination nodes at one time. For the conve-
nience of description, we abstract a topology include a source
node and a pair of destination nodes as Fig. 1. link1 represents
the shared path of the destination node pair. link2 and link3
represent the link between the leaf node and the nearest
common ancestor node.

FIGURE 1. Simplified binary tree network model.

The end-to-end measurement based on the ‘‘sandwich’’
packet [14] selects a leaf node pair {i, j} as the destinations to
send three probe packets < i1, j1, i2 > with a small interval
from the source node. The more routers the probe packet
passes through, the greater the queuing delay. Therefore,
the greater the difference between the delay values of the two
probe packets received at the leaf node i, the longer the shared
path length of the leaf node pair {i, j}. Although the back-
to-back packet [13] also selects a leaf node pair {i, j} as the
destinations, it sends only two packets from the source node
in a short interval. The transmission interval between the
back-to-back packet is small enough, so it can be consid-
ered that the behavior (such as transmission, alignment, and
discarding) of the probe packets on the shared path link1 is
almost the same. Thus, we can obtain the packet loss rate
and delay variance on the shared path by calculating the end-
to-end packet loss rate and delay variance. The higher the
probability of packet loss or the greater the variance of delay,
the longer the shared path length of {i, j}.

The end-to-end information collected by the ‘‘sandwich’’
packet or the back-to-back packet cannot be directly used to
infer the network topology, so further calculations are needed
to obtain the metric for the shared path length. To ensure
that the metric for shared path length obtained by end-to-end
measurement can accurately infer the topology, we make the
following assumptions:
Assumption 1 (Structure stability): The network topology

remains unchanged during the end-to-end measurement.
Assumption 2 (Spatial independence): The packet delays or

loss on different links are statistically independent.
Assumption 3 (Temporal independence): The packet delays

or loss of different probes on the same link are statistically
independent.
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Based on the above assumptions, the topology can be
recovered by comparing the metric for the shared path length.
Fig. 2 shows a shared path length model. f1 represents the
nearest common ancestor node of the leaf node pair {i, k}, and
p(s, f1) is the shared path from the source node s to the leaf
node pair {i, k}. f2 represents the nearest common ancestor
node of the leaf node pair {i, j}, and p(s, f2) is the shared path
from the source node s to the leaf node pair {i, j}. From Fig. 2,
we can see that the shared path p(s, f2) has more links than the
shared path p(s, f1), so the metric for p(s, f2) is larger than the
metric for p(s, f1) and f2 is far away from s comparing with f1.

FIGURE 2. Description of the shared path length.

Therefore, the topology inference principle is: the greater
the metric for the leaf node pair’s shared path is, the farther
the parent node is from the source node.We can insert the leaf
nodes one-by-one based on the shared path length metric to
recover the tree topology.

C. METRIC FOR SHARED PATH LENGTH
The key for topology inference is to obtain accurate metrics
for the shared path length. One of the most common metrics
is the delay covariance. Taking probing topology in Fig. 1 as
an example, we send back-to-back packet to probe node pair
{i, j}. Let Yi and Yj be the packet delay on the paths from s
to i and j. Let X1 and X2 be the delay of the packet send to
i on link1 and link2, and let X3 and X4 be the delay of the
packet send to j on link3 and link1. According to the additive
of packet delay, we have

Yi = X1 + X2
Yj = X3 + X4. (1)

According to the characteristics of the back-to-back
packet, we know that the two packets of a back-to-back packet
experience the same delay on the shared path except for
the queuing delay of the last packet caused by the previ-
ous packet. The queuing delay is the same for each probe.
Therefore, we rewrite (1) as:

Yi = X1 + X2
Yj = X1 + X3 + Z , (2)

where Z is the queuing delay.

Calculating the variance of Yi and Yj, we have

Var(Yi) = Var(X1)+ Var(X2)

Var(Yj) = Var(X1)+ Var(X3). (3)

By adding the two equations in (2) and then calculating the
variance, we obtain

Var(Si,j) = 4Var(X1)+ Var(X2)+ Var(X3), (4)

where Si,j represents the sum of path delay Yi and Yj.
The covariance of Yi and Yj is

Cov(Yi,Yj) =
Var(Si,j)− Var(Yi)− Var(Yj)

2
. (5)

By combining (3), (4), and (5), we obtain the variances of
link1, link2, and link3 as following:

Var(X1) = Cov(Yi,Yj)

Var(X2) = Var(Yi)− Cov(Yi,Yj)

Var(X3) = Var(Yj)− Cov(Yi,Yj). (6)

From (6), we can see that the variance of the shared path
link1 is equal to the path delay covariance Cov(Yi,Yj), so we
can get the variance of the shared path by calculating the
covariance of the end-to-end delay.

IV. TOPOLOGY MEASUREMENT AND INFERENCE
In order to overcome the inapplicability of existing meth-
ods for topology inference in the non-stationary network,
we decompose the topology inference into a series of smallest
sub-problems on the basis of divide-and-conquer. The small-
est sub-problem of topology inference is the measurement
and inference of the subset structure Tsub containing only
three leaf nodes, this is because the subset structure con-
taining only two leaf nodes is fixed, and the entire topology
cannot be recovered by fusing these subset structures. For the
convenience of description, if there is no special description
in this paper, the subset structures we mentioned all refer to
the subset structures Tsub containing only three leaf nodes.

In this section, we will introduce our work from five
aspects. Firstly, we propose an end-to-end measurement
named three-packet to probe the subset structures. Secondly,
we infer the subset structures by comparing the shared path
lengthmetrics based on the delay covariance. Thirdly, we pro-
pose ametric for the shared path length based on the structural
characteristics of the subset structure and merge all the subset
structures to recover the entire binary tree topology. Fourthly,
we modify the binary tree topology to obtain the estimation
of general tree topology by setting different thresholds for
different subset structures. Finally, we demonstrate why the
back-to-back packet is not applicable for topology inference
in the non-stationary network.

A. THREE-PACKET END-TO-END MEASUREMENT
We first propose an end-to-end measurement named three-
packet. The three-packet is applied to the tree topology with
only three leaf nodes, as shown in Fig. 3. The three-packet
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FIGURE 3. Three-packet end-to-end measurement.

respectively sends a probe packet of the same size from the
source node to the three destination nodes. The sending inter-
val between adjacent probe packets is very small. In order
to reduce the network burden, the size of the probe packet is
set to very small. We probe all the destination nodes at once
instead of three times like back-to-back packet. Although the
three-packet sends one more packet each time than the back-
to-back packet, the time interval between the three packets
is still very small, so it can also be considered that the three
probe packets are in the same network environment on the
shared path and have the same behavior (discarded, trans-
mitted, or queued). Therefore, any two of the probe packets
form a back-to-back packet, so we can use the method in
Section III-C to obtain the delay covariance of the shared path
and the delay covariance of different probe on the same shared
path are the same.

Three-packet end-to-end measurement has many advan-
tages compared with the back-to-back packet. On the one
hand, the three-packet reduces the number of probe packets.
For a subset structure with only three leaf nodes, the back-
to-back packet needs to send 6 packets in a probe
cycle, whereas the three-packet only needs to send 3.
So three-packet reduces the number of probe packets by half.
On the other hand, for the three-packet, the delay covariance
of different probe on the same shared path are the same,
whereas, for the back-to-back packet, the delay covariance
of different probe on the same shared path are different in the
non-stationary network. Therefore, the three-packet obtains
accurate metrics for shared path length and is more suitable
for end-to-end measurement in the non-stationary network.

B. SUBSET STRUCTURE INFERENCE
In this section, we aim at the problem of how to infer the
subset structure based on the precise end-to-endmeasurement
via three-packet. We first calculate the packet delay covari-
ance and then we get the unique binary subset structure by
comparing the packet delay covariance.

There are only four kinds of subset structures, as shown
in Fig. 4. We can see that different subset structures corre-
spond to the only longest shared path except Fig. 4(d). For
example, if the delay covariance of the node pair {i, j} is the
largest, their shared path is the longest, so the corresponding
subset structure is Fig. 4(a). Similarly, the subset structure
Fig. 4(b) corresponds to the node pair {i, k} has the longest

FIGURE 4. The subset structures with three leaf nodes.

shared path and the subset structure Fig. 4(c) corresponds
to the node pair {j, k} has the longest shared path. Although
the subset structure Fig. 4(d) is also a subset structure with
only three leaf nodes, we first recognize it as a binary subset
structure like Fig. 4(a), Fig. 4(b), or Fig. 4(c). Then we delete
the link which smaller than a given threshold to convert
the binary subset structure into the subset structure shown
in Fig. 4(d). We will discuss it in detail in the general tree
topology inference in Section IV-D.
Therefore, the subset structure inference principle is:

different subset structures correspond to the only longest
shared path.

Based on the subset structure inference principle, we infer
all the subset structures of the topology by comparing the
packet delay covariance. Then we can obtain a binary subset
structure set. This subset structure set will be the input for
subset structure fusion.

C. SUBSET STRUCTURE FUSION
In this section, we first propose a new metric for shared
path length by analyzing the structural characteristics of the
subset structures. Then we use this metric to fuse the subset
structures to recover the complete binary tree topology.

Observing Fig. 4, we can find that the shared path length
of the leaf node pair {i, j} is the longest in Fig. 4(a),
the shared path length of the leaf node pair {i, k} is the longest
in Fig. 4(b), and the shared path length of the leaf node
pair {j, k} is the longest in Fig. 4(c). We use this structural
characteristic of the binary subset structures to construct the
metric for the shared path length of the binary tree topology.

A binary tree network T with M (M ≥ 3) leaf nodes
has

(M
3

)
different subset structures containing only three leaf

nodes. Each subset structure is one of the first three structures
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shown in Fig. 4. The binary tree T has
(M
2

)
different leaf

node pairs, and for each leaf node pair {i, j}, there areM − 2
different subset structures T̂sub containing this leaf node pair.
The leaf nodes of theseM−2 subset structures are i, j, and k .
The parent node of {i, j} is f and f has N descendant leaf
nodes. For a subset structure T̂sub, if k is the descendant node
of f , we can find that the leaf node pair {i, j} does not have
the longest shared path. If k is not the descendant node of f ,
the leaf node pair {i, j} has the longest shared path. Therefore,
we set the metric for the shared path length of the leaf node
pair {i, j} to M − N .

More generally, for a subpath p(w0,wn) in the shared path
of the leaf node pair {i, j}. w0, w1, · · · , and wn are the nodes
in this path, where n > 0. Every wi has Ni descendant leaf
nodes, i ∈ {0, 1, · · · , n}. Let Ts is the subtree of T and the
root node of Ts is nodew0. So the path p(w0,wn) is the shared
path of {i, j} in the subtree Ts. Therefore, the metric for path
p(w0,wn) is N0 − Nn.
The shared path length metric ρ can be used to recover the

topology if it is an addictive metric [31]. So it needs to meet
the following two conditions:
Condition 1: 0 < ρ <∞;
Condition 2: ρ(i, j) =

∑
ρ(e),∀i, j ∈ V , where ρ(e)

represent the length of link e in path p(i, j) and ρ(i, j) represent
the distance between node i and node j.
The metric for the shared path length based on the struc-

tural characteristics of the subset structures is a positive
number that satisfies Condition 1. This metric also satisfies
the Condition 2 and we will prove this by mathematical
induction.
Lemma 1: For a shared path p(w0,wn). w0, w1, · · · , and

wn are the nodes in this path, where n > 0. Every wi has
Ni descendant leaf nodes, i ∈ {0, 1, · · · , n}. The metric for
the shared path length based on the structural characteristics
of the subset structures satisfies ρ(w0,wn) = ρ(w0,w1) +
ρ(w1,w2)+ · · · + ρ(wn−1,wn).
Proof:
1) For n = 1, ρ(w0,w1) = ρ(w0,w1).
2) For n = k , we have ρ(w0,wk ) = ρ(w0,w1) +

ρ(w1,w2) + · · · + ρ(wk−1,wk ) = N0 − Nk . So when
n = k + 1, we have ρ(wk ,wk+1) = Nk − Nk+1 and
ρ(w0,wk+1) = N0−Nk+1, so we can get ρ(s,wk+1) =
ρ(w0,wk )+ ρ(wk ,wk+1) = N0 − Nk+1.

3) In sumarry, ρ(w0,wn) = ρ(w0,w1)+ρ(w1,w2)+· · ·+
ρ(wn−1,wn).

The metric for the shared path length based on the
structural characteristics of the subset structures satisfies
Condition 2 through the above proof. Therefore, this metric
can accurately measure the length of the shared path and can
be used as the input of the topology inference algorithm.

We use a bottom-up topology inference algorithm
described in Algorithm 1 to fuse the subset structures into
a binary tree topology.

Using the BTI algorithm, we insert the leaf nodes one-
by-one to construct a binary tree topology by constantly
comparing and updating the shared path length metrics.

Algorithm 1 Binary Tree Inference (BTI) Algorithm
Input: Root node s, the leaf node set D, and the estimated
length of shared path from the root node to any two leaf
nodes ρ̂ = {ρ̂(î, ĵ) : î, ĵ ∈ D, î 6= ĵ};

Output: The estimated binary tree topology T̂ = (V̂ , Ê).
Initialize: V̂ = {s} ∪ D, Ê = ∅;
while |D| ≥ 2 do

Find two leaf nodes î and ĵ, s.t. {î, ĵ} =

argmaxî,ĵ∈Dρ̂(î, ĵ);

Create a node f̂ as the parent of î and ĵ;
Ê = Ê ∪ {(f̂ , î), (f̂ , ĵ)},D = D\{î, ĵ}, V̂ = V̂ ∪ {î, ĵ};
for k ∈ D do

ρ̂(k, f̂ ) = 0.5 ∗ (ρ̂(k, î)+ ρ̂(k, ĵ));
D = D ∪ ρ̂(î, ĵ).

end for
end while
Ê = Ê ∪ {(s, k)}, k ∈ D.

D. GENERAL TREE TOPOLOGY INFERENCE
In the last section, we estimated a binary tree topology by
fusing the subset structures. However, in an actual network,
the topology is usually a more general tree instead of a binary
tree, therefore we need to further optimize the estimated
binary tree.

Existing methods usually get a general tree topology by
setting a fixed threshold. Literature [14] infers the tree topol-
ogy by comparing the shared path length between the leaf
node pairs and merges the parent nodes of the leaf node
pairs into one if the difference of the shared path length is
smaller than a given threshold. Literature [21] first gives a
penalty factor. Then literature [21] adds a punishment term in
the likelihood function in accordance with the nodes number
and controls the number of nodes to get the general tree
topology. Literature [32] believes that the true links usu-
ally longer than the false links (the links that don’t exist
in the actual network), and deletes the links less than the
threshold.

We also set thresholds to infer the general tree. But one
fixed threshold does not apply to the general tree topology
inference due to the complexity of the network environ-
ment. Therefore, different from the existing methods to set
a fixed threshold, we set different thresholds for different
subset structures. Since the subset structures we infer in
Section IV-B are all binary tree-like, their structure is very
simple and only contains one intermediate link (the links that
do not contain the root node or the leaf nodes). We only
need to consider whether this intermediate link of the subset
structure should be deleted because the links that contain the
source node or the leaf nodes exist in the actual network. If the
intermediate link shorter than the threshold, we can consider
that this link should be deleted and this subset structure
is a general tree-like subset structure, vice versa. We use
g(Tsub(i, j, k)) to represent whether the Tsub(i, j, k) is general
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tree-like.

g(Tsub(i, j, k)) =

{
0, if Tsub(i, j, k) is binary,
1, if Tsub(i, j, k) is general.

(7)

Our link deletion principle is: an intermediate link is a false
link when there are more general tree-like subset structures
that contain this link than binary tree-like subset structures.
This is because this link is more like a false link and should
be deleted if there aremore general tree-like subset structures.
On the contrary, we do not delete this link when there are
more binary tree-like subset structures. Based on this link
deletion principle and Algorithm 1, we propose a general
tree topology inference algorithm described in Algorithm 2.
Before describing the algorithm, we first introduce some
necessary notations. For a tree T = (V ,E), let l(vi) represent
a set that contains some leaf nodes, if vi is a leaf node,
l(vi) = {vi}, and if not, l(vi) is the set of the descendant leaf
nodes of vi.

Algorithm 2 Subset Structure Fusion Topology Inference
(SSFTI) Algorithm
Input: Root node s, the leaf node setD, the estimated length

of shared path from the root node to any two leaf nodes
ρ̂ = {ρ̂(î, ĵ) : î, ĵ ∈ D, î 6= ĵ}, and the subset structure set
ĝ = {ĝ(Tsub(i, j, k)) : i, j, k ∈ D, i 6= j 6= k};

Output: The estimated general tree topology T̂ = (V̂ , Ê).
Initialize: V̂ = {s} ∪ D, Ê = ∅, l̂ = {l̂(vi), 1 ≤ i ≤ |V̂ |};
while |D| ≥ 2 do

Find two leaf nodes î and ĵ, s.t. {î, ĵ} =

argmaxî,ĵ∈Dρ̂(î, ĵ);

Create a node f̂ as the parent of î and ĵ;
D = D\{î, ĵ}, V̂ = V̂ ∪ {î, ĵ}, l̂(f̂ ) = l̂(î) ∪ l̂(ĵ), Ê =

Ê ∪ {(f̂ , î), (f̂ , ĵ)};
for k ∈ D do

num0 = 0, num1 = 0;
for vw ∈ l̂(k), vx ∈ l̂(i), vy ∈ l̂(j) do

if ĝ(Tsub(vw, vx , vy)) = 0 then
num0 = num0+ 1;

else
num1 = num1+ 1;

end if
end for
if num1 ≥ num0 then

D = D\{k};
Ê = Ê ∪ (f̂ , k);
l̂(f̂ ) = l̂(f̂ ) ∪ l̂(k);

end if
end for
for k ∈ D do

ρ̂(k, f̂ ) = 0.5 ∗ (ρ̂(k, î)+ ρ̂(k, ĵ));
D = D ∪ ρ̂(î, ĵ);

end for
end while
Ê = Ê ∪ {(s, k)}, k ∈ D.

E. PROBLEM ARGUMENTATION
In this section, we will demonstrate that the back-to-back
packet cannot accurately measure the shared path length
to recover the correct topology in the non-stationary
network.

The back-to-back packet sends a probe packet of the same
size to the destination node pair respectively. There is a very
small sending time interval between the two probe packets,
so we can consider that the two probe packets passed through
the shared path are in a very similar network environment and
have the same behaviors, such as packet loss and queuing.

The back-to-back packet currently has two main ways to
probe the topology, which are random probe and periodic
probe. Random probe stochastically selects two nodes from
the set of destination nodes as the destination to send the
back-to-back packet, whereas periodic probe detects all des-
tination node pairs in each probe cycle. Periodic probe selects
two nodes as the destination in sequence according to the
order of the destination node and the sending time interval
between the back-to-back packets is very small.

Traditional network topology inference methods assume
that the network is stable. The packet delay or packet loss
obtained through end-to-end measurement such as back-
to-back packet conform to a given distribution, so the met-
ric for the shared path length obtained through statistical
calculation can describe the length of the shared path accu-
rately. However, since the real network environment is often
very complicated, the performance parameters of the network
cannot be described by a definite distribution, so existing
methods are not applicable.

We use back-to-back packet to probe the topology in Fig. 2
in a non-stationary network. From Fig. 2, we can see that
{i, k} and {j, k} both have the shared path p(s, f1). Let Y1
and Y2 denote the packet delay on the path p(s, i) and p(s, k)
respectively obtained by probing the node pair {i, k}. Without
loss of generality, let Y3 and Y4 denote the packet delay on
the path p(s, j) and p(s, k) respectively obtained by probing
the node pair {j, k}. Let X1 and X2 denote the packet delay
on the shared path p(s, f1) respectively when probing the
destination node pair {i, k}, and let X3 and X4 denote the
packet delay on the shared path p(s, f1) respectively when
probing the destination node pair {j, k}. Same as the back-
to-back packet measurement mentioned in Section III-C,
we also set the queuing delay of the last packet in the back-
to-back packet caused by the previous probe packet on the
shared path to Z . According to (6), we have

Var(X1) = Var(X2) = Cov(Y1,Y2)

Var(X3) = Var(X4) = Cov(Y3,Y4). (8)

We can see that Var(X1) and Var(X3) are not equal when
using the random probe method because the network envi-
ronment is inconsistent when probing the node pair {i, k}
and the node pair {j, k} in the non-stationary network. So we
cannot obtain an accurate metric for shared path length via
the random probe.
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If we use the periodic probe to detect the destination node
pair in turn, assuming that probe destination node pair {i, k}
before {j, k}, we have the following analysis:
If at the nth probe, there are bn background traffic packet

between the probe packet sent to j when probing node
pair {j, k} and the probe packet sent to i when probing node
pair {i, k}. Then the relationship between X1 and X3 is

X3 = X1 + mZ + Xb, (9)

where m is the number of probe packets between the probe
packets sent to j when probing the node pair {j, k} and the
probe packets sent to iwhen probing the node pair {i, k}. Xb is
the packet delay of the background traffic between the probe
packets.

Since X1 and Xb are independent of each other, we get the
variance of (9):

Var(X3) = Var(X1)+ Var(Xb). (10)

The network is non-stationary, so we have

Var(Xb) > 0. (11)

According to (6), (10), and (11), we have

Cov(Y3,Y4) > Cov(Y1,Y2). (12)

We can find that in a non-stationary network, the later the
packets sent, the greater the delay covariance. In the case of a
larger network, the more back-to-back packets sent in a probe
cycle, the higher the possibility of mixing background traffic
in the probe packets and the lower the accuracy of topology
inference. Therefore, we decompose the topology inference
problem into the smallest sub-problems based on the divide-
and-conquer idea and only probe the subset structures with
three leaf nodes each time. We send three packets to probe all
the three leaf nodes of the subset structure at once, so our end-
to-end measurement is not affected by network traffic distri-
bution. Therefore, we can obtain accurate subset structures
of the topology and recover the correct complete topology by
fusing the subset structures.

V. SIMULATION AND RESULTS
In this section, we evaluate the performance of our method
on the network simulator version 2 (NS2) [33] and compare
its topology inference results with the methods based on the
back-to-back packet. We first introduce the settings of three
different network environments in the simulation, and then
design multiple simulations to demonstrate the effectiveness
of our method.

A. SIMULATION SCENARIOS SETUP
In this section, we construct multiple non-stationary net-
work simulation environments in NS2. In practice, it is dif-
ficult to construct a real network environment, so NS2 is
an effective experimental tool for network researchers and
has been applied to many network studies. Using NS2 for
computer network simulation provides a solid foundation for

computer network knowledge and skills, covering everything
from simple operating system commands to complex network
performance indicator analysis [34]. We performed a lot of
simulations under different traffic scenarios in NS2 to fully
evaluate the performance of our method.

Fig. 5 and Fig. 6 are the two different tree topologies we
construct. Fig. 5 is a small binary topology containing 8 leaf
nodes and Fig. 6 is a large general tree topology containing
30 leaf nodes. We use Fig. 5 to evaluate the performance
of the subset structure inference method and the binary tree
inference method. We also use Fig. 6 to evaluate the perfor-
mance of the general tree topology inference method. We set
the parameters of the simulation by referring to the network
environment settings of the classic literature [22] and the
computing ability of our simulation equipment comprehen-
sively. The parameter setting of the two simulation topologies
is very similar. The bandwidth of each link is set to 10 Mbps
and the propagation delay of each link is set to 2 ms. Each
link has a first in first out (FIFO) queue with the 50-packets
buffer size. NS2 is a discrete event simulator, it will compute
and record all transfer status (e.g. enqueue, dequeue, receive,
drop, et. al) for every packet. So a larger bandwidth, traffic
rate, and other parameters setting in the simulation indicate
that the simulation cannot be finished in a reasonable time.

FIGURE 5. Binary tree topology.

We send three-packet to get the end-to-end delay of the
subset structure. In each probe cycle, we respectively send
one packet from the source node with a size of 20 Bytes to
the three leaf nodes of the subset structure. The time interval
between adjacent probe packets is 100 ns and every 1ms is
a probe cycle. The number of three-packets sent in a subset
structure is about 700.

We add two kinds of background traffic in our simulation
topologies to simulate the actual non-stationary network.
The two kinds of background traffic are called stationary
and bursty traffic. The stationary traffic comprises 30 long
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FIGURE 6. General tree topology.

times UDP streams which are Pareto distributed and 30 TCP
streams with a constant rate. Both the burst time and idle time
of the UDP streams are 2 s. The burst rate of the UDP streams
is 0.2 Mbps. The rate of each TCP stream is 0.2 Mbps. Each
stationary stream starts randomly during the first 10% of the
simulation time and ends randomly during the last 10% of the
simulation time. Each bursty stream is randomly generated
and last for 2 s during different periods of the simulation. The
packet size of each background traffic stream is 500 Bytes.

The bursty traffic is the short-term and high-speed UDP or
TCP stream. We build three different bursty traffic scenarios
by controlling bursty traffic, which is the slight bursty, middle
bursty, and heavy bursty. The slight bursty scenario has two
0.5 Mbps UDP streams and two 0.5 Mbps TCP streams on
each link. The middle bursty scenario has three 1 Mbps UDP
streams and three 1Mbps TCP streams. The heavy bursty sce-
nario has three 2 Mbps UDP streams and three 2 Mbps TCP
streams. For each traffic scenario, we run 1000 independent
simulations to get more accurate results and avoid accidental
errors.

To verify the effectiveness of the topology inference
algorithm proposed in this paper, we also use the Rooted
Neighbor-Joining (RNJ) algorithm [30] and the OLTD algo-
rithm [24] based on the back-to-back packet as a comparison.
Both the RNJ algorithm and the OLTD algorithm can be used
to infer the general tree network topology. We first set the
thresholds in both the RNJ algorithm and theOLTD algorithm
to 0 to infer the binary tree topology Fig.5 and then set the
thresholds to infer the general tree topology Fig. 6. Both the
RNJ algorithm and the OLTD algorithm start from a binary
tree. Then by comparing the length of the shared path, the des-
tination nodes are added to the topology one by one and the
link which is less than the threshold will not be added to the
topology. The difference between the two algorithms is that
the RNJ algorithm selects the destination node corresponding
to the maximum metric for shared path length to insert to

the topology each time, whereas the OLTD algorithm inserts
nodes based on the order obtained by DFS ordering. In this
paper, the DFS ordering of the OLTD algorithm is from our
estimated binary tree.

The RNJ algorithm sends back-to-back packets from the
source node to two random leaf nodes, whereas the OLTD
algorithm sends back-to-back packets in the DFS ordering.
The size of the back-to-back packet is set to 20 Bytes.
To make the total number of probe packets the same as our
method, the number of back-to-back packets sent to each pair
of leaf nodes is about 2,100.

B. TOPOLOGY INFERENCE WITH INCREASING NETWORK
SIZE
First, we design a topology inference simulation based on the
RNJ algorithm in different network scales to prove the neces-
sity of decomposing the topology inference to sub-problem.
The network environment of this simulation is middle bursty
and the simulation time is 200 s. We measure the network
scale in this simulation by the number of leaf nodes of the
topology. The more leaf nodes, the larger the topology. In this
simulation, we select 13 binary tree topologies with 3 to
15 leaf nodes. Each topology with a number of n leaf nodes
has multiple structures. We run 1000 simulations and select
one structure for each simulation randomly.

We use two methods to evaluate the performance of topol-
ogy inference, which are the tree accuracy and the tree edit
distance between the estimated topology and the real topol-
ogy. These two evaluation methods assess the accuracy of
topology inference from two different dimensions.

We define the tree accuracy as the ratio of the simula-
tion number that the tree is correctly estimated to the total
simulation number same as we did in literature [28]. The
tree accuracy can intuitively reflect the precision of topol-
ogy inference. However, the tree accuracy is only a macro-
scopic assessment of the performance of topology inference,
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whereas the tree edit distance can assess the performance of
topology inference from a microscopic point of view.

The tree edit distance between two trees is the total mini-
mum cost of transforming one tree into another tree through
editing operations such as deleting, inserting, and relabeling.
According to the definition of tree edit distance, we can know
that the higher the tree edit distance, the greater the difference
between the two trees. Therefore, when the topology cannot
be estimated completely, the tree edit distance between the
estimated tree and the real tree can also evaluate the perfor-
mance of the topology inference. The smaller the tree edit
distance, the higher the accuracy of the topology inference.

We calculate the tree accuracy and tree edit distance of
topology inference. The results of this simulation are shown
in Fig. 7 and Fig. 8. From these figures, we can see that
as the number of leaf nodes increases which means the
scale of the binary tree network topology increases, the tree
accuracy of the RNJ algorithm shows a gradual decrease
overall, and tree edit distance also shows a gradual increase
overall at the same time, indicating that the performance of
topology inference has a decreasing trend overall. So this
verifies that as the network scale increases, the performance

FIGURE 7. Tree accuracy of binary tree inference in networks of different
sizes.

FIGURE 8. Tree edit distance of binary tree inference in networks of
different sizes.

of RNJ algorithm becomes lower and lower. This is because
in the non-stationary network, as the network scale increases,
the accuracy of the back-to-back packet becomes lower. The
delay covariance metric cannot accurately measure the length
of shared path. In order to solve the problem that the perfor-
mance of the topology inference algorithm decreases sharply
with the increase of the network size, we decompose the
topology inference problem into the subset structure infer-
ence based on the idea of divide-and-conquer, which is more
suitable for topology inference in the non-stationary network.

C. SUBSET STRUCTURE INFERENCE RESULTS
Obtaining accurate subset structures is the basis of our
approach. Hence, we design a simulation to verify whether
our method can get accurate subset structures in different
network environments. We run simulations under the three
bursty traffic scenarios and calculate the tree accuracy of
subset structure inference. The results are shown in Fig. 9.

FIGURE 9. Tree accuracy of subset structure inference.

From Fig. 9, we can see no matter in what kind of bursty
traffic scenario, the overall tree accuracy of the subset struc-
tures is very high, reaching over 86%. Therefore, subset struc-
ture inference not only has relatively high accuracy but also
maintains good stability, which provides a good foundation
for topology inference based on the subset structure fusion.

D. SHARED PATH LENGTH MEASUREMENT RESULTS
In this section, we design a simulation to verify the accuracy
of the metric for shared path length based on the structural
characteristics of the subset structures obtained under dif-
ferent network environments. We calculated the length of
the shared path p(0, 13) in Fig.5. We select p(0, 13) because
it contains the maximum number of links in all shared
paths. We average the theoretical and estimated metrics from
1000 simulations and depict the comparison between theoret-
ical and estimated metrics in Fig. 10. We did not calculate the
length of the shared path p(0, 9) because the BTI algorithm
did not need the length of p(0, 9).
It can be seen from Fig. 10 that the metrics for shared

path length under the three network environments are slightly
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FIGURE 10. Estimated metrics versus theoretical metrics in the three
bursty traffic scenarios.

deviate from the theoretical values. It is because the estima-
tion errors are mainly introduced by Assumption 2, which
may not be entirely satisfied in real network. In general, these
metrics are all very close to the theoretical value, indicating
the metric for shared path length based on the subset structure
characteristics can be accurately estimated from measured
subset structures and it can also be used to measure the length
of shared path. This is also the key to accurately infer the
topology based on subset structure fusion.

E. BINARY TREE TOPOLOGY INFERENCE RESULTS
Herein, we evaluate the performance of the binary tree
topology inference in the three bursty traffic scenarios in
the topology in Fig. 5. We first probe and infer all the sub-
set structures using three-packet, and then use the proposed
binary tree inference method to infer the tree topology. For
comparison, we also use RNJ and OLTD algorithm to infer
the topology. We respectively calculated the tree accuracy
and the average tree edit distance of each method in the three
traffic scenarios. The results are shown in Fig. 11 and Fig. 12.

FIGURE 11. Tree accuracy of binary tree inference in the three bursty
traffic scenarios.

FIGURE 12. Tree edit distance of binary tree inference in the three bursty
traffic scenarios.

Comparing the tree accuracy of the three methods in the
same network scenario in Fig. 11, we observe that the BTI
algorithm has the highest tree accuracy, followed by the
OLTD algorithm, and the RNJ algorithm has the lowest tree
accuracy. At the same time, comparing the tree edit distance
of the three methods in the same network scenario in Fig. 12,
we observe that the BTI algorithm has the smallest tree edit
distance, followed by the OLTD algorithm, and the RNJ algo-
rithm has the highest tree edit distance. Since the higher the
accuracy and the smaller the tree edit distance, the better the
topology inference method, so this simulation demonstrates
that the BTI algorithm is the best, the OLTD algorithm is the
second, and the RNJ algorithm is the worst. Both the RNJ
algorithm and OLTD algorithm use back-to-back packet to
measure the topology, but the back-to-back packet cannot
measure precise shared path length in the non-stationary
network. So RNJ algorithm and OLTD algorithm cannot esti-
mate correct topology. Different from RNJ and OLTD algo-
rithm, BTI algorithm decomposes the topology inference to
the inference of subset structures that can accurately measure
the shared path length via three-packet. Then BTI algorithm
can accurately recover the topology by fusing these subset
structures. So BTI algorithm is more applicable for topology
inference in the non-stationary network.

Fig. 11 and Fig. 12 also illustrate the topology inference
results under different network environment. We observe that
the BTI algorithm has the highest tree accuracy under all three
scenarios and achieves the best performance under the mid-
dle bursty scenario. The different performances of the BTI
algorithm in different scenarios can be explained as the
following two folds. First, in the slight bursty, the change of
the packet delay is relatively small, which leads to an error
of delay covariance. So the metric for the shared path length
cannot be measured very accurately, leading to low accuracy
of the subset structure inference and the final binary tree
topology inference. Second, in the heavy bursty scenario,
the correlation of the three packets in a three-packet may
have inconsistent delays in the same shared path, which may
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also cause inaccurate delay covariance estimation and make
it difficult to infer the network topology correctly.

F. GENERAL TREE TOPOLOGY INFERENCE RESULTS
Finally, we evaluate the performance of the general tree
topology inference method in the topology in Fig. 6. We run
1000 simulations for each traffic environment. We use tree
edit distance to evaluate the performance of the general tree
topology inference method, because the large general tree
topology cannot be correctly estimated in most simulations.

For each simulation, we first probe the subset structures
by using the three-packet end-to-end measurement. Then we
obtain the binary subset structures by comparing the shared
path length and the general subset structures by setting thresh-
olds. Finally, we estimate the general tree topology by fusing
the subset structures.

In order to exhibit the performance of our method, we com-
pare the performance of SSFTI with two classical methods
RNJ and OLTD. RNJ and OLTD algorithms both have a
tunable parameter, 1, that must be chosen, whereas SSFTI
algorithm needs to set different parameters for different sub-
set structures. We use the same strategy to set 1 regardless
of the algorithm. We first compute the maximum shared path
length ρmax and divide it into twenty equal parts. Then each
threshold is set as follows:

1i =
ρmax · i
20

, i = 1, 2, · · · , 20. (13)

Fig. 13 to Fig. 15 plot the variation of tree edit distance
with the number of probe packets. Note that we choose the
result with the highest accuracy in the conditions of setting
different thresholds. In our simulation, we find that the best
threshold for RNJ is 12 and for OLTD and SSFTI are 14.

FIGURE 13. Tree edit distance comparison between SSFTI, RNJ, and OLTD
(in the slight bursty traffic scenario).

From Fig. 13 to Fig. 15 we can see that the accuracy of
topology inference is higher if more probe packets are sent.
This is because that the end-to-endmeasurements are the only
information that can be used to infer topology and we can
obtain more accurate end-to-end delay when sending more

FIGURE 14. Tree edit distance comparison between SSFTI, RNJ, and OLTD
(in the middle bursty traffic scenario).

FIGURE 15. Tree edit distance comparison between SSFTI, RNJ, and OLTD
(in the heavy bursty traffic scenario).

probe packets. More importantly, Fig. 13 to Fig. 15 show that
our method outperforms the RNJ algorithm and OLTD algo-
rithm. Both the RNJ and OLTD are able to recover the correct
tree topology if the estimated link length errors are smaller
than a quarter of the minimum link length, but many factors
such as network burst and imbalance may deeply impact
the link length and the corresponding error. Therefore, it is
difficult to choose only one appropriate threshold to recover
accurate topology. Different from most existing methods,
our method selects different thresholds for different subset
structures adapting to different measurement environments.
Therefore, we can get accurate subset structures by unique
thresholds, resulting in an accurate estimation of general tree
topology.

VI. CONCLUSION
In this paper, we presented a method to infer topology in
the non-stationary network by probing and fusing the sub-
set structures. Firstly, we probed and estimated the subset
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structure containing three leaf nodes via three-packet end-
to-endmeasurement. Secondly, we fused the subset structures
to get a binary tree topology by constructing a metric that
could effectively describe the length of the shared path from
a source node to pairs of destinations. Thirdly, we set different
thresholds for different subset structures and deleted the false
links in the binary tree to obtain a correct general tree topol-
ogy. We evaluated the performance of our method by using
NS2 simulation and found that our method outperformed
existingmethods that probed the tree topology using the back-
to-back packet in the non-stationary network. We only use
packet delay covariance to infer the subset structure, so in the
future, we will focus on the subset structure inference based
on the packet loss to evaluate the performance of our topology
inference method more comprehensively.
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