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ABSTRACT Smart home scheduling, facilitated by advanced metering, monitoring, and manipulation tech-
nology, plays an important role in the energy transition in terms of accommodating intermittent renewable
energy and improving energy consumption efficiency. The key functionalities of home energy scheduling
are usually implemented by leveraging the flexibility of household appliances, such as thermostatically
controlled loads (TCLs) and energy storage units, to improve the peak-to-average ratio for utilities and
reduce energy bills for customers. However, the consumption patterns of appliances are greatly influenced
by a variety of factors, including real-time tariffs, ambient temperature profiles, indoor activities, and solar
irradiance. Hence, smart home energy scheduling is a challenging task because most of these impacting
factors are stochastic and difficult to predict. To properly model and manage the uncertainty factors
associated with smart home appliance scheduling, an economic model predictive control (MPC)-based
bilevel smart scheduling scheme is proposed in this paper. The comprehensive modeling of distributed
generation and household appliances is performed at the single-household level. The home energy scheduling
problem is formulated on two levels, with the upper level emphasizing the economic impact and the lower
level focusing on capturing TCL responses. The correlations among different TCLs and their performance
under the influence of various uncertainty factors, such as environmental impacts and user behaviors, are
considered. The efficiency of the proposed MPC-based bilevel optimization model and the effectiveness of
the home energy scheduling strategy in managing uncertainties are validated and illustrated in numerical
studies.

INDEX TERMS Smart homes, scheduling, thermostats, intermittent renewable energy, bilevel optimization,
economic model predictive control.

I. INTRODUCTION
The integration of renewable energy sources is increasing
quickly around the world to address the goal of developing
a more sustainable energy structure. Meanwhile, the inter-
mittency and uncertainty of renewable energy sources have
brought significant challenges to the power industry in terms
of accommodating renewable power generation. Demand-
side management, as a promising solution to absorb fluctuat-
ing renewable generation, has drawn much attention in recent
years, especially at the household level. Benefiting from
the development of advanced metering infrastructure (AMI)
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and information and communication technologies, including
Wi-Fi and ZigBee, smart household appliances that were
once considered autonomous are becoming a great source
of flexibility with the help of home energy management
techniques [1]. Smart devices and the digital twins they
are built upon are changing almost all aspects of everyday
life, increasing convenience, efficiency, and resilience [2].
Regarding energy utilization, it has been verified that smart
home scheduling can effectively reduce the electricity bill
for customers and significantly improve the peak-to-average
ratio (PAR) [3].

Smart home scheduling, implemented either by tariffs or
by incentives, is widely considered an effective measure of
active demand-side management. Many studies have been
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done on this topic. For example, smart home scheduling
is usually implemented at the individual and community
levels [4]. At the individual household level, appliances
are sorted into three categories, namely, uncontrollable,
shiftable, and thermostatically controlled [5]. In [6], the appli-
cation of schedulable loads in smart homes is integrated
with solar thermal energy, micro combined heat and power
(micro-CHP), heat pumps and batteries to maintain room
temperature within a comfortable range. Thermostatically
controlled loads (TCLs) are believed to be capable of provid-
ing ancillary services such as regulation and reserve, and their
aggregated flexibility capacity is evaluated using different
virtual battery models, which are derived from geometric
tractable approximation [7], modification of an equivalent
energy storage model [8], etc. In [9], the stochastic oper-
ation of a solar-powered smart home is implemented with
stochastic mixed-integer linear programming (MILP) and
Monte Carlo simulation to capture uncertainties in the ther-
mal load. In addition, transactive hierarchical scheduling for
TCLs is studied in [10] to regulate TCLs in a distributed
fashion via coordination between the system and devices.
Meanwhile, behind-the-meter household appliances and dis-
tributed energy resources (DERs) also fall under the category
of smart home scheduling, which has been discussed exten-
sively in studies such as [11] and [12]. At the community
level, game theory is a common measure to address the inter-
play between different end-users and aggregators to consider
their mutual benefits [13] by adopting new technologies such
as multi-agents [14], clustering [15], and inference [16] from
the artificial intelligence field. Treating the community as
a whole, which is another perspective of community-level
energy scheduling, falls into the area of distribution system
operations. Many proposals have been made under this topic
in areas such as demand-side management [17], microgrid
operation [18], DER integration [19], and distributional loca-
tional marginal pricing (DLMP) [20]. Nonetheless, current
community-level energy scheduling studies do not typically
have detailed models of individual household demands and
DERs. Thus, more work needs to be done to integrate energy
scheduling at both the individual and community levels to
properly handle uncertainty.

Among the various techniques to address uncertainty,
model predictive control (MPC) is a combination of optimiza-
tion and control that has been widely implemented because of
its capability of handling multi-input multi-output (MIMO)
problems and its consideration of future trends. The capabil-
ity of economic MPC to absorb time-varying costs and peak
demand charges for electricity consumers is verified in [21],
and the asymptotic stability of the economic MPC algorithm
for economic load dispatch and load frequency control is
derived in [22]. To date, the MPC-based optimization method
has already been applied to the energy sector in a number
of fields, such as electric vehicle charging [23], microgrid
operation [24], and energy scheduling [25]. Economic MPC,
as its name suggests, usually optimizes the operating cost
of the system under control, and it is used extensively in

power industries [26], [27]. Implementations of economic
MPC in controller design for dual-model power-split elec-
tric vehicles (EVs) [28], voltage regulation in distribution
networks [29], and the operation and control of modern
thermal power plants [30] have been investigated, among
other applications. In terms of solving energy scheduling
problems, economicMPC-basedmodels have been employed
to solve economic dispatch problems at the bulk system level
in addition to some adaptations such as distributed organi-
zation [31], backwards square completion [32], and virtual
power plants [33]. At themicro level,MPC-based solutions to
smart residential, community, and home scheduling have also
been obtained, though they are limited. In [34], residential
community load management considering standalone hybrid
renewable energy systems was optimized via an MPC-based
method. In [35], a home energy management system (HEMS)
employed an MPC-based method to manage battery usage
and solar power production based on weather and market
forecasts. Compared with works in the traditional smart home
scheduling area, the existing works are quite limited and
coarse, although the characteristics of the economic MPC-
based method make it an ideal candidate for smart home
scheduling.

In this paper, the operation model of a single household
with intermittent DERs and comprehensive load types is stud-
ied. The proposed model takes real-time tariffs into account
to determine the most profitable and feasible strategy for the
corresponding customers. Casual customer behavior is also
taken into account, along with other uncertainties embedded
in real-time tariffs and external environmental factors such
as the solar irradiance and ambient temperature. To effec-
tively solve this MIMO problem, a bilevel economic MPC
model is proposed. The upper level addresses the economic
dispatch of smart appliances and handles discrete decision-
making variables associated with the switching operation of
loads over a longtime span. The lower level focuses on the
detailed control performances of continuous household appli-
ances. The upper level optimizes the monetized cost based
on the feedback from the lower level, and the lower level
optimizes and updates the energy consumption according to
the external environment and market situation, considering
both the energy cost and the user’s comfort level. It should
also be mentioned that the proposed method is designated
for active prosumers, but it is still generalizable to different
sorts of smart home individuals, such as traditional passive
loads.

The remainder of this paper is organized as follows:
In Section II, the smart home scheduling problem con-
sidering comprehensive load types, real-time tariffs, and
intermittent DERs is formulated. In Section III, a bilevel
economic MPC model is developed to solve the home
scheduling problem. In Section IV, the efficiency of the
proposed model and the bilevel economic MPC-based
method are verified and demonstrated through numerical
results and comparisons. Finally, Section V concludes the
paper.
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II. PROBLEM FORMULATION
A smart home system includes measurement and control
units, distribution system interfaces, small DERs, and various
household appliances. Proper modeling of energy generation,
distribution and utilization is a prerequisite for optimal house-
hold energy management. Referring to the categorization
proposed in [5], household appliances are divided into non-
schedulable, schedulable, and TCL clusters in this paper.
Here, different types of energy supply, along with compre-
hensive load types, are studied in a categorized way. The
diagram of a smart home is illustrated in Figure 1.

FIGURE 1. Composition of a smart home.

A. NON-SCHEDULABLE SUPPLY AND DEMAND
In this paper, the non-schedulable household supply is
produced by self-owned small DERs such as solar pan-
els and biomass. The generation of small DERs, denoted
as SDER(h), shows potential intermittence, which is deter-
mined by many circumstantial factors. Meanwhile, the non-
schedulable household demand includes two types of loads.
One is the background load, which is constantly consuming
power while neither the customer nor the HEMS can control
it. Refrigerators are considered an example of background
household appliances in this paper. Another type of load is at-
will demands, such as televisions and lighting loads, because
they are generally controlled by the user. The aggregated non-
schedulable demand, denoted as LNS (h), can be imitated with
white noise of a certain value.

B. SCHEDULABLE SUPPLY AND DEMAND
Schedulable household appliances account for a large share
of the total energy consumption in smart homes. The time
requirements of most schedulable appliances, e.g., laundry
machines, dishwashers, and EVs, are not too strict, meaning
that they have significant potential to shift their consumption.
Another unique schedulable device is energy storage, which
can flexibly switch between consuming and generating power
depending on the needs of the customer.

1) SCHEDULABLE LOADS
For a schedulable appliance m with a rating power of ξm and
a required operating duration of dm (number of time slots), its

operation ismainly governed by temporal constraints (i.e., the
starting time slot αm and ending time slot βm) and energy con-
straints (denoted as dm). We denote the remaining required
duration at the beginning of slot h as xm(h), and the oper-
ational requirements of appliance m can be specified by (1)-
(4). The aggregated schedulable load at time slot h, denoted as
LS (h), can be calculated by adding the consumption of every
schedulable appliance at the corresponding hour together,
as shown in (5). The set of schedulable appliances working
in the home is denoted as �M . The scheduling interval (i.e.,
the length of the time slot) is denoted as 1.

xm(h+ 1) = xm(h)− um(h) (1)

xm(h) = dm, ∀h ≤ αm (2)

xm(h) = 0, ∀h > βm (3)

lm(h) = ξmum(h) (4)

LS (h) =
∑
�M

lm(h) (5)

where the binary variable um(h) and the continuous variable
lm(h) describe the on/off status and the energy consumption
of appliance m at slot h, respectively.

In addition to the schedulable load model discussed above,
certain demand such as washing machine generally performs
tasks in consecutive manner. These consecutive tasks can
also be incorporated into the proposed framework using the
following two solutions. One way is to treat consecutive tasks
as one task that can be suspended in the middle. Another way
is to modify the transition relationship to cover the constraints
that guarantee the consecutive relationship. Suppose the set of
loads that is established prior to load m is �m; the modifica-
tions will be to substitute (1) and (2) with (6) and (7) and to
add one more constraint indicating the consecutive relation-
ship expressed in (8). Several of the modified expressions are
compatible with the rest; that is, the other expressions do not
need to be modified.

xm(h+ 1) = xm(h)−
∑
n∈�m

un(h)− um(h) (6)

xm(h) = dm +
∑
n∈�m

dn, ∀h ≤ αm (7)

xm(h) ≥
∑
n∈�m

xn(h), ∀h (8)

where load n is an element inside �m.

2) SCHEDULABLE SUPPLY
In this paper, both self-generation and external acquisition are
considered types of schedule power supply for the household
concerned. In other words, household demand can obtain
energy from either self-owned DERs or the connected dis-
tribution power system. It should be mentioned that although
the energy supply from the distribution power system can be
accessed at will, the electricity price fluctuation needs to be
considered by household owners. We denote the electricity
acquired from the external power system as Sgrid (h) and
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the real-time tariff as pgrid (h). The energy cost Ch can be
calculated by (9). Note that pgrid (h) is an uncertain factor.

Ch = Sgrid (h)pgrid (h) (9)

3) BATTERY
For household management, the output of the battery SB(h)
can be positive, negative, or 0, as defined in (10). The state-
of-charge (SOC) level of the battery is denoted as χ and is
constrained by (11) and (12).

SB(h) = µ(h)qB (10)

χ (h+ 1) = χ (h)−
SB(h)
QB

(11)

0 ≤ χ (h) ≤ 1, ∀h (12)

where µ(h) is the operation decision for the battery at time
slot h and varies continuously within [−1, 1]. The variables
qB and QB are the rated battery charging/discharging power
and the capacity of the battery, respectively.

Note that the battery model (10)-(12) does not have
a set of complementary constraints to avoid simultaneous
charging/discharging behaviors. As discussed in [36], if the
simultaneous charging/discharging cannot bring arbitrage to
the energy storage, the complementary constraints can be
relaxed. In this paper, the simultaneous charging and dis-
charging will not bring arbitrage to the smart homes. Thus,
the complementary constraints can be relaxed and the energy
storage model remains exact. This is also observed in the sim-
ulation results where no batteries demonstrate simultaneous
charging/discharging behavior.

C. TCLs
Although TCLs can be regarded as schedulable demands,
they have some unique features. Generally, the operation of
a TCL is a closed-loop control focusing on a continuous
state variable. For household TCL demand, such as indoor
heating and cooling, room temperature is usually the sole
state variable, and an air conditioner or electric heater is
normally employed for thermostat control.

We denote the state variable of TCL k at time step t as yk (t),
and the corresponding appliance can be scheduled to meet
the users’ requirements, namely, a desired temperature Tk
and tolerable variation threshold γk . The temperature require-
ments can be modeled by (13). The sampling time of the
measurement equipment servicing the TCL is 1k . Note that
1k is determined only by the property of the TCL and may be
different from the time interval of home energy scheduling.

|yk (t)− Tk | ≤ γk (13)

In this paper, a modified TCL model is developed to
consider the coordination and interaction among different
appliances. In other words, a certain TCL k such as the indoor
temperature can be served by multiple appliances. The set
of appliances serving the same TCL k is denoted as 3k ,
and the set of TCLs is denoted as �TCL . The state transition
of a TCL is jointly determined by its appliances and by

other influencing factors, such as the ambient temperature,
as described in (14). The energy consumption for TCL k by
equipment e at step t , denoted as Qke (t), can be expressed
as the product of its nominal consumption (converted to a
step size) ζ ke and the on/off decision variable vke (t), as shown
in (15).

Ck
a
dyk (t)
dt
=
φkt − yk (t)

Rk
−

∑
e∈3k

COPkeQ
k
e (t)− ε(t),

∀k ∈ �TCL (14)

Qke (t) = ζ
k
e v

k
e (t) (15)

where Ck
a and Rk are the equivalent thermal capacity (kJ/oC)

and the equivalent thermal resistance (oC/kW) of TCL k ,
respectively.COPke is the coefficient of performance of equip-
ment e for TCL k , and φkt is the ambient temperature mea-
sured at time step t . ε(t) stands for potential casual behavior,
to be discussed in later sections.

In addition, the TCL consumption is derived from its
sampling step 1k . Suppose there are S steps in one energy
scheduling slot 1; then, the aggregated energy consump-
tion from the TCLs in time step t and the consumption in
slot h, lTCL and LTCL , can be calculated as in (16) and (17),
respectively.

lTCL(t) =
∑
�TCL

∑
3k

Qke (t) (16)

LTCL(h) =
S∑
t=1

lTCL(t) (17)

The developed models (13)-(17) generalize the house-
hold TCL demands to accommodate different situations. Two
examples are described below:
• Bidirectional control: The indoor temperature can be
maintained within an acceptable range by an air con-
ditioner for cooling and an electric heater for heating.
In this case, the coefficient of performance (COP) of the
air conditioner is positive, whereas that of the heater is
negative, according to (14).

• Multiple supply appliances: TCL scheduling is a cross-
section scheduling problem in which both the heat and
electricity sections are involved. In a household with
intermittent energy-based equipment such as a solar-
electricity water heater, there may be two, three, or more
involved sections. Referring to (14), the physical mean-
ing of the COP can be extended to the rate of conversion
to heat or cold from other energy carriers, such as solar
irradiance, natural gas, and a direct heat supply. In the
case of a solar-electricity water heater, the heater will
prioritize the solar energy for heating purposes.

Another important issue to address in TCL modeling is
uncertainty. The intermittence and randomness of multiple
energy supplies and customer behaviors, along with environ-
mental factors such as the ambient temperature, all contribute
to the uncertainty of TCLs. In addition to the ambient tem-
perature and fluctuating energy prices, this paper considers
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uncertainty factors associated with intermittent heat/cold sup-
ply and casual heat mass loss.

Taking a solar-electricity water heater as an example, the
nominal consumption from solar section ζTankSolar is intermittent.
Casual heat mass loss, denoted as ε(t), represents all potential
casual behaviors. In the water heater case, ε(t) stands for
heat mass loss from the casual usage of hot water. It should
be noted that the water tank will be refilled to its original
capacity with input water of ambient temperature. The heat
loss will be the thermal energy of the temperature difference
of the consumption quantity θt , as expressed in (18).

ε(t) = Ck
a θt (φt − yk (t)) (18)

D. OBJECTIVE AND CONSTRAINTS
The aggregate supply and demand should be kept in bal-
ance for each household, as expressed in (19). The objec-
tive of smart home scheduling is to minimize the electricity
procurement cost over the observation duration, denoted as
CD. In summary, the home energy scheduling model can
be described by the objective function (20) with (1)-(19) as
constraints.

LNS (h)+ LS (h)+ LTCL(h)

= Sgrid (h)+ SDER(h)+ SB(h) (19)

minCD =
H∑
h=1

Ch = f ([X ,Y ], [U ,V ], [2,8]) (20)

where X = {xm, χ},Y = {yk},U = {um, µ},V = {vke}.
2,8 are the parameters of the slot and step, respectively, that
are monitored or set in the unit.

III. ECONOMIC MPC-BASED SCHEDULING APPROACH
A bilevel economic MPC-based smart home scheduling
model with schedulable loads, non-schedulable loads, and
TCLs is discussed in detail in this section. The discrete
schedulable loads operated based on the MPC slot are for-
mulated in the upper-level model, and the continuous TCLs
are controlled in the lower level.

A. ECONOMIC MPC
An economicMPC is primarily implemented via three funda-
mental steps, namely, sampling (for a discrete time-varying
model), estimation, and control (strategic decision-making)
[37], [38]. In the case of smart home scheduling considering
multiple TCLs, continuous and discrete variables coexist and
affect each other. We denote the state variable and control
variable at step κ as x(κ), u(κ), respectively. The prediction
model for estimation and control can be described by the
state function and output function shown in (21) and (22),
respectively. It should be mentioned that if the numbers of the
states and the outputs of the prediction model are the same,
the output function can be omitted. The elements in the output
function (control variables) θ (κ) can be controlled to within
a predefined range. The cost function of the economic MPC
controller 0(κ) is shown in (23). The second interpretation of

the cost function reveals that the cost function at the current
moment is composed of the actual cost/quantity at the current
moment C(κ) and the expected cost/quantity of the subse-
quent moments under the current strategy, which is the core
of MPC.

x(κ + 1) = f (x(κ), u(κ)) (21)

θ (κ) = f (x(κ), u(κ)) (22)

0(κ) = f (u(κ), θ(κ)) = C(κ)+ E[
K∑

δ=κ+1

C(δ)] (23)

where κ is the current step of an observation duration with K
steps.

B. BILEVEL ECONOMIC MPC FORMULATION OF SMART
HOME SCHEDULING WITH COMPREHENSIVE LOAD
TYPES, REAL-TIME TARIFFS AND INTERMITTENT DERS
The smart home scheduling problem with comprehensive
load types, real-time tariffs and intermittent DERs can be
described as a daily cost minimization problem that is sched-
uled for each time slot. Moreover, the TCLs can be controlled
to within each scheduling time slot because they generally
have different sampling windows. Hence, the smart home
energy scheduling problem can be split into two stages:
energy scheduling and real-time control. In the bilevel eco-
nomic MPC model, the upper level focuses on the former
(discrete MPC loads with a time length of 1), and the lower
level focuses on the latter (continuous MPC loads with a
time length of 1k ). For simplicity, we define the interval of
the upper-level model (i.e., 1) as a slot and the interval of
the lower-level model (i.e., 1k ) as a step, unless otherwise
specified.

A short-time scheduling strategy is made at the begin-
ning of each time slot, while a real-time control strategy
is made at the beginning of each time step. In this paper,
a two-level economic MPC is considered—that is, economic
MPC is applied to both stages—to track the uncertainties at
different time scales. The upper level minimizes the energy
cost while balancing the supply and demand, addressing the
needs of different schedulable loads, and taking all measured
disturbances (including the estimated TCL consumption on
the lower level) into account. The lower level minimizes the
energy consumption without violating the user comfort level
requirement. The approximations and corrections in the lower
level are clarified in the previous section. The interaction and
optimization of the two-level model can be expressed with
the flowchart shown in Figure 2.

1) UPPER-LEVEL: DISCRETE MPC LOADS
Generally, smart home energy scheduling mainly aims at
minimizing the energy procurement cost through the manipu-
lation of schedulable loads over a period of time. The typical
energy scheduling time horizon and time interval are one day
(i.e., 24 hours) and one hour, respectively. Clearly, decisions
on this sort of arrangement can be represented with a series
of discrete decision variables.
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FIGURE 2. Interaction and optimization of the two-level economic MPC
model.

When real-time tariffs and intermittent DERs are con-
sidered, traditional dynamic programming methods are no
longer feasible in solving the smart home scheduling prob-
lem. The reason is that dynamic programming methods allo-
cate the appliance consumption schedules into different hours
one by one based on a certain parameter setting assumption,
which contradicts the real-time tariffs and the intermittency of
DERs. In this paper, each schedulable appliance is described
with a state variable and a control variable for each slot (1).
For a normal schedulable appliancem, the binary control vari-
able um denotes its working mode for the slot, and xm denotes
the remaining required working hours. Then, the transition
relationship for slot h can be described according to (1)-(5).
For the batteries, the continuous control variable µ and the
state variable (SOC) function χ are as stated in (10)-(12).
The upper-level model may also include other inputs, such
as measurement data and lower level feedback.

Schedulable loads are controlled at the slot scale. The
short-time scheduling problem at time slot h can be optimized
byminimizing the cost function as expressed in (24). It should
be mentioned that the cost function minimizes the cost of the
current time slot h and all the other slots in the duration.

5h(X ,U ,2) = Ch + E[
D∑
h+1

Cη] (24)

where5h is the cost function for the energy scheduling prob-
lem at time slot h; the second item on the right is stochastic
and represents the expected cost for the remaining time slots,
which is determined by the optimized energy scheduling
results and external dynamics. D is the number of slots in the
MPC observation duration.

According to the definition of Ch in (9) and the energy
balance constraints in (19), it can be inferred that the cost
function of the upper level is jointly determined by the exter-
nal environment (including DER generation, real-time tar-
iffs, etc.), discrete schedulable load scheduling, and feedback
from the lower level (TCL consumption). The expected cost
term Cη can be described as:

Cη= (LNS (η)+LS (η)+LTCL(η)−SDER(η)−SB(η))pgrid (η)

(25)

The optimization model of the upper level can be given as

obj minimize (24)

s.t. (1− 5), (10− 12), (19), (25)

2) LOWER LEVEL: CONTINUOUS MPC LOADS
In the lower level, the real-time TCL load control is modeled
to absorb the fluctuations in generation or consumption intro-
duced by intermittent DER generation or arbitrary energy
consumption behaviors. TCLs (such as indoor temperature)
may be measured on a minute or even second basis, and the
appliances for maintaining their desired intervals, such as air
conditioners and heating facilities, are also recommended to
be controlled every few minutes (e.g., in step units) to main-
tain the thermostat requirements. At the same time, frequent
on/off switching should be restricted to protect the lifespan
of appliances. Therefore, the states of TCLs are modeled
as continuous variables and further discretized according to
the TCL sampling step 1k , as described in (14). The dis-
cretization of the state variable yk of TCL k can be described
by (26).

dyk (t + 1)/dt = λkyk (t)−
∑
e∈3k

λ′k,ev
k
e (t)+

∑
φ
k,j
t ∈8

λ′′k,jφ
k,j
t

(26)

where λk , λ′k,e, λ
′′
k,j are the coefficients in the discretized

transition equation and the corresponding unit conver-
sions are based on the length of time step 1k . φ

k,j
t is

the measured disturbance related to the state transition of
TCL k .
The real-time control problem at time step t can be opti-

mized by minimizing the cost function expressed in (27).
The external energy consumption of step t , denoted as qt ,
can be calculated with (28), utilizing (14), (15), and (26).
It should also be noted that the cost function mini-
mizes the energy consumption of all the other time steps
in the same time slot rather than that of the current
step.

πt (Y ,V ,8) = qt + fpe(t)+
S∑
t+1

(qτ + fpe(τ )) (27)

qt =
∑
e∈3′k

ζ ke v
k
e (t) (28)

where 3′k is the subset of 3k that consumes electricity
(including DER-generated electricity). fpe(t) is the penalty
function of comfort level loss, which is a function of
|yk (t)− Tk | and increases suddenly when the value exceeds
γk , as suggested in (13).

It should be mentioned that the cost function of the lower-
level model optimizes the energy consumption rather than the
energy cost, as does its output to the upper level. As there
might be many steps in a single slot h, the upper level only
requires the results of two steps: the first step z1 and last step
zS in the slot. z1 and zS are the electricity consumption of the
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entire time slot h (the sum of each step’s consumption); the
upper level adopts z1 for the current slot h decision and zS for
revising the data of slot h.

z1 = q1 +
S∑
2

qτ (29)

zS =
S∑
1

qt (30)

The calculation of
S∑
1
Eqτ in (30) for the current slot h

is obtained from the real-time control model, whereas those
for the other slots are estimated by the predicted on/off
states based on the outdoor temperature and previous working
states, in units of the length of each time slot.

The optimization model of the lower level can be given as

obj minimize (27)

s.t. (13− 18), (26), (28)

C. CASE SETUP: AN EXAMPLE
In this section, a simple example of the proposed bilevel
optimization framework will be discussed to demonstrate the
short-term scheduling (upper level) of the example smart
home, which has three control variables: the plugin hybrid
EV (PHEV) charging/idle indicator u1, laundry working/idle
indicator u2, and battery charging/discharging/idle indicator
u3. It also has three state variables: the PHEV remaining
demand x1, laundry remaining demand x2, and SOCof battery
x3. The real-time tariff θ1, casual consumption behavior θ2,
and photovoltaic (PV) array generation θ3 are the three inputs
(measured disturbances). Additionally, the upper level takes
the lower-level output, i.e., the consumption of the TCLs,
as another input.

Based on the above settings, the upper-level model consists
of the state transition equations (31)-(33). The purchase cost
Ch is calculated as in (34), and the cost function of the MPC
model, which covers the whole observation duration, is the
same as in (24).

x1(h+ 1) = x1(h)− u1 (31)

x2(h+ 1) = x2(h)− u2 (32)

x3(h+ 1) = x3(h)+ u3 (33)

Ch = θ1(u1qPHEV + u2qLaundry
+ u3qB + θ2 − θ3 + z1) (34)

min5h(X ,U ,2) = Ch + E[
D∑
h+1

Cη] (24)

where qB is the charging rate (per time slot) of the battery
and qPHEV and qLaundry are the rated power of the PHEV and
laundry machine at work, respectively.

In this example, we assume the smart home has two TCLs
that are subject to real-time control: the room temperature
control, maintained by an air conditioner and an electric

heater, and the water temperature in the solar-electricity water
heater, maintained by an electric heater. The lower-level
model has three control variables: the air conditioner on/off
indicator v1, heater on/off indicator v2, and water heater
on/off indicator v3; it also has two state variables: the indoor
temperature y1and tank water temperature y2. In this case,
three disturbances, namely, the ambient temperature φ1, the
heat radiation φ2, and the casual usage φ3, are taken into
account.
The lower-level model includes the state transition equa-

tions (35) and (36). The energy consumption for time step t ,
denoted as qt , is calculated as in (37). The cost function of
theMPCmodel, which covers the whole observation duration
(slot length), is the same as in (27).

dy1(t + 1)/dt = λ1y1(t)− λ2v1(t)− λ3v2(t)

+ λ4φ1(t) (35)

dy2(t + 1)/dt = λ5y2(t)− λ6v3(t)+ λ7φ1(t)

+ λ8φ2(t)+ λ9φ3(t) (36)

qt = ζACv1(t)+ ζHv2(t)+ ζWHv3(t) (37)

minπt (Y ,V ,8) = qt + fpe(t)+
S∑
t+1

(qτ + fpe(τ )) (27)

where λi, i = 1, . . . , 9 are the coefficients in the discretized
transition equation as defined in (26); ζAC , ζH , ζWH are the
nominal consumption (converted to the step size) of the air
conditioner, heater and electricity section of the water heater,
respectively; and fpe(t) = (y1(t)− T1)2 + (y2(t)− T2)2.

TABLE 1. Home appliances.

IV. NUMERICAL RESULTS AND DISCUSSION
A. CASE DESCRIPTION
The parameters of the equipment considered in the example
smart home are listed in Tables 1 and 2. To evaluate a full EV
charging cycle, the observation duration is set to two days,
and the time slot and step are set to 1 hour and 5 minutes,
respectively. In addition to the household appliances, a nor-
mal 1Soltech 1STH-250-WH distributed PV array (detailed
in the NREL System Advisor Model) is equipped on the roof
of the home to support the household along with the power
grid with a real-time tariff. In this case, solar energy is also
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TABLE 2. TCL and its parameters.

FIGURE 3. Sunlight irradiance and outdoor temperature over a typical
48-hour period.

exploited by a solar-electricity water heater, which provides
hot water for the users. Its installed capacity is 140 L, the
radiant area is 2.24 m2, and the inclination angle is 60◦. The
available consumption value ζ of solar irradiance in units of
steps can be calculated by the product of the radiant area and
irradiance intensity. The utilization rate of the auxiliary heat
is 80%. The COP values of the solar and electricity sections
are 2.7778 × 10−4 and 1, and those of the air conditioner
and heater are also equal to 1, as they are assumed to con-
sume electricity. Suppose there are three casual hot water
usages over the 48 hours, which occur randomly in three-
hour increments. It is assumed that these casual usages occur
at 23:00 (1st day), 7:00 (2nd day), and 22:00 (2nd day). The
consumption each time is 25 L, and the tank is instantly
refilled with water at 20 ◦. The actual sunlight irradiance and
outdoor temperature over a typical 48-hour period are shown
in Figure 3 [39]. The real-time electricity price over a typical
48-hour period is shown in Figure 4 [40].

B. RESULTS AND DISCUSSION
To maintain the required indoor temperature and water
tank temperature, the optimized working states of the
heater, air conditioner, and water heater are as depicted
in Figures 5 and 6. It can be inferred from the profiles of
the indoor temperature and water temperature in the tank,
as shown in Figures 7 and 8, that the optimized household
energy consumption strategy meets the TCL requirements
perfectly. The aggregated consumption of the TCLs (zS1 for
the room temperature and zS2 for the water temperature in the
tank) is also shown in Figures 9 and 10.

FIGURE 4. Electricity price of the real-time market over a typical 48-hour
period.

FIGURE 5. Working status of the heater and air conditioner.

As shown in Figures 5, 7, and 9, explicit switching between
heating and cooling can be achieved via MPC models while
simultaneously taking the price fluctuation and ambient influ-
ence into account. It can also be inferred from Figures 6, 8,
and 10 that the solar-electricity water heater can completely
rely on solar irradiation for the TCL during the daytime.
The casual usage induces a limited increase in the energy
consumption, which can be seen in Figures 6 and 10 as spikes.
Compared with traditional proportional-integral-derivative
(PID) control, which focuses only on one appliance or one
trajectory, the advantage of the proposed MPC method is
self-evident in solving this MIMO problem with uncertain-
ties. The adoption of MPC in both levels also facilitates
the full coverage of the model-based methodology over the
whole operation, ensuring smooth interaction between the
two levels.

The optimal household energy scheduling is given in
Table 3. The strategy developed by the proposed method
is compared with that developed by traditional dynamic
programming, which can also be found in Table 2. The
aggregated cost, computation time and TCL comfort interval
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FIGURE 6. Working status of the water heater.

FIGURE 7. The indoor temperature over a typical 48-hour period.

FIGURE 8. The temperature of the water in the tank over a typical
48-hour period.

deviations of traditional dynamic programming and PID are
compared with the MPC method on an Intel R© Core TM

i7-10710U CPU@1.10 GHz 1.60 GHz, as shown in Table 4.
The computation time is the sum of the required decision time

FIGURE 9. The aggregate consumption for TCL 1 maintenance (room
temperature).

FIGURE 10. The aggregate consumption for TCL 2 maintenance (water
temperature in the tank).

for each hour. It should be emphasized that the advantage of
the proposed method is its absorption capability for different
kinds of uncertainties and its MIMO character, which are
not available in traditional dynamic programming or PID
control. The comparison aims to verify that, with these new
advantages, the demand for computing power and computing
speed in new methods has not increased significantly and has
possibly decreased.

According to Tables 3 and 4, the scheduling plan of the
MPC-based method can cut the energy cost from $1.952 to
$1.683 compared with those of dynamic programming and
PID control. In particular, the savings for appliances belong-
ing to the upper level are $0.183, and the savings of TCL
control are $0.086 (approximately). It is demonstrated that
the increase in the computational cost is trivial for the afore-
mentioned improvements brought by the proposed bilevel
MPC house energy scheduling. It should also be mentioned
that due to the MIMO incompatibility of PID, the bench case
employs relays to trigger the air conditioner and heater. The
sample time of the step in PID is assumed to be the same as
that employed in the lower-level MPC model.
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TABLE 3. Scheduling plans.

TABLE 4. Comparisons.

V. CONCLUSION
In this paper, smart home energy scheduling is modeled as
a MIMO problem and is solved by a new bilevel economic
MPC-based method. A complete set of home appliances
(non-schedulable, schedulable, TCLs, etc.) and possible DER
and storage integration are described and studied in this
paper. The simulation results confirm that the proposed
method can effectively address the real-time operation and
control of household appliances, handle various uncertainty
factors, and maintain a satisfactory comfort performance
with a marginal increase in the computational burden. The
method proposed in this paper involves the real-time detec-
tion and update of the components involved—in particu-
lar, TCL-related detection—i.e., full monitoring and control,
whichmay be somewhat extravagant for a home environment.
Future research will consider the home intelligent scheduling
problem in the case of uneven digital levels; that is, there will
be some missing measurements and decision-making infor-
mation. The finer characterization of themodeling and energy
access conditions will also be investigated in future studies.
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