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ABSTRACT Two obstacles lie in the traditional Signal Strength Fingerprint Positioning method. Initially,
the algorithm cannot converge quickly and accurately due to massive data generated by large indoor
environment. Secondly, it is difficult to determine a specific floor in a building using the received Signal
Strength(RSS). This article proposes a method, which uses convolutional neural network (CNN) to classify
the floor and location of Bluetooth RSS as well as magnetic field data to calculate the final coordinates, could
apply Fingerprint Positioning into indoor environment with large areas and multiply floors. The method
involves converting the collected Bluetooth RSS into the ““fingerprint image” required for calculation and
establishing the CNN for classification training. Subsequently, the real-time Bluetooth RSS are imported
into the CNN to classify the floor and determine the transmitters’ location. Additionally, the observer’s
coordinates are matched using the magnetic field data. Our experiments suggested that the proposed method
can classify floors and transmitters’ locations with predictable bunds of 0.9667 and 0.9333, respectively.
At the same time, the average positioning error is less than 1.2 m, which is 43.32% and 44.67% higher than
the traditional Bluetooth and magnetic field fingerprint positioning. The accuracy of dynamic positioning is
also within 1.55 meters.

INDEX TERMS Fingerprint location, Bluetooth, magnetic field, convolutional neural network (CNN),

classification.

I. INTRODUCTION

With the evolution of Internet and mobile communication
technology, the demand for location information services
is growing, and navigation and positioning services have
become a critical part of many people’s lives. The Global
Navigation Satellite System (GNSS) has become one of the
most important positioning tools for its real-time capability
and its accuracy [1]-[3]. As satellite signals cannot penetrate
walls, it is impossible to locate people and objects indoors,
which is where people spend most of their daily lives. The
need for indoor location information services, such as mon-
itoring pedestrian flows at airports and stations, positioning
people and stores in shopping malls, and monitoring the
location of medicine in hospitals, is becoming increasingly
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urgent. Therefore, the R&D of indoor positioning systems is
also growing in importance.

Technologies such as Wi-Fi, RFID, infrared, and ZigBee
have been developed for indoor positioning [4], [5]. Blue-
tooth low energy (BLE) positioning technology has become
a research focus because of its low energy consumption, low
cost, and compatibility, and because of the small size of
BLE devices [6]. Because a Bluetooth module is integrated
into most mobile devices, including mobile phones, lap-
tops, and tablets, no additional device is needed. A common
Bluetooth positioning method is based on received signal
strength (RSS) [7]-[9]. There are two methods of signal
strength positioning. The first is through the attenuation of
the signal during transmission. By establishing a distance and
signal attenuation model, the distance between the target and
the launch station can be measured, and the coordinates of the
target can then be calculated. However, when a Bluetooth sig-
nal is transmitted indoors, the problems of non-view distance
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propagation and multipath propagation inevitably occur. This
is why the second method, fingerprint positioning [10]-[12],
is often adopted. In this method, the positioning environment
is divided into several grids. Signal fingerprints (such as
Bluetooth signal strength) are collected at the grid points and
stored in a fingerprint database. In the positioning process,
received measurements are compared with the grid finger-
prints to estimate the location by matching and similarity
analysis.

While Bluetooth positioning has better practicability than
other positioning technologies, it also has limitations. One
advantage of Bluetooth fingerprint positioning is that the
algorithm is simple, but this method needs to collect a large
amount of fingerprint data in advance to establish a finger-
print database. During the positioning process, each finger-
print data in the fingerprint database needs to be matched,
which takes up a large amount of computing resources.
At the same time, due to the complexity and variability of
the indoor environment, the quality of the signal strength
data collected during the establishment of the fingerprint
database and real-time positioning is likely to be poor, which
ultimately leads to large positioning errors. The application of
machine learning technology [13]-[15] to indoor positioning
can solve the problem of matching positioning occupying
a large amount of computing resources, and improve the
stability of positioning, but most signal strength fingerprint
positioning algorithms cannot distinguish floors. Because
when multiple unknown points are on different floors they are
difficult to locate, Bluetooth fingerprint positioning cannot
locate its targets in large-scale indoor environments.

In this article, we use a convolutional neural net-
work (CNN) in deep learning [16], [17] to solve these prob-
lems. CNNs are often used in tasks such as large-scale image
recognition and natural language processing, because they
can extract feature information and determine the category by
comparing the feature information. Researchers are employ-
ing CNN technology when using visual positioning method
for indoor positioning. By analyzing the CNN’s image recog-
nition, we can see that if we can turn the fingerprint data
collected at the reference point into the image used for
training in the CNN, and convert the data collected during
positioning into the image to be recognized, then the CNN
can be applied to the fingerprint location of Bluetooth signal
strength. Because of the CNN’s abilities to extract features
and classify the data, this method can extract the features
of the Bluetooth signal strength and then classify the floor
and location area of the data to be fixed in the fingerprint
positioning.

The experimental equipment in this article consists of a
smartphone and 144 BLE base stations. First, in the construc-
tion of the “fingerprint library picture,” all the fingerprint
data are spliced together to form the “fingerprint image”
data for training. Then a CNN for floor classification and
localization is built, and the data are convolved into the neural
network for training to obtain a model for floor classification
and a model for determining location areas. The received
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real-time positioning data are brought into the trained model
to obtain the floor and location area of the unknown point, and
then the magnetic field fingerprint map is used for matching
to obtain the final location coordinates in order to realize the
positioning function. Compared with traditional Bluetooth
signal strength and magnetic field matching positioning, this
method can use Bluetooth signal strength to quickly deter-
mine the area of the point to be measured, and improve
the efficiency and positioning accuracy of magnetic field
matching positioning. This method could apply fingerprint
positioning into indoor environment with large areas and
multiply floors.

The remainder of the paper is arranged as follows.
Section 2 introduces the related literature on indoor posi-
tioning technology. Section 3 describes the establishment of
the data and the construction of CNNs. Section 4 describes
the experimental environment and equipment and ana-
lyzes the experimental results. Section 5 provides a summary
of the paper.

Il. RELATED WORK

Increasing demand for indoor positioning has motivated
much research. There are two main methods of Bluetooth
positioning. The geometric method measures the distances
or angles from known points to unknown points and uses
their geometric relationship to locate the unknown points.
Kotanen et al. [18] used the geometric method. Through a
simple model, the attenuation of Bluetooth signal strengths
from transmission to acceptance was converted to dis-
tances from which the three-dimensional coordinates of the
unknown points were calculated using extended Kalman fil-
ter (EKF). However, the accuracy of this method depends
on the accuracy of distance estimation, which is greatly
affected by the environment. The complex indoor environ-
ment often leads to multipath effects in the propagation of
a Bluetooth signal, which degrades the accuracy of distance
estimation and affects positioning accuracy. For this reason,
the second Bluetooth positioning method, which is based
on signal strength matching, is used more often. With this
method, the principle of Bluetooth positioning is similar to
that of Wi-Fi positioning. The radio frequency RADAR sys-
tem [19] developed by Microsoft in 2000 is an RSS-based
indoor positioning system. Prior to the process of real-time
positioning, it collects a large number of signal strength
samples in the positioning area and establishes their map-
ping relationships with the coordinates of the location. The
mobile terminal compares the signal value received at the
wireless access point to the existing RSS and the geographic
location mapping database, finds the most likely result, and
completes the positioning. Subsequent Bluetooth position-
ing research based on signal strength is also based on this
theory. Cruz et al. [20] proposed the use of the k-nearest
neighbor (KNN) algorithm for Bluetooth positioning, which
also selects a number of points with known coordinates in
the positioning area, collects the signal strengths at these
points, and stores the coordinates and corresponding signal
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strengths in the fingerprint database in the offline phase.
In the online phase of real-time positioning, it matches the
signal strengths received at unknown points to the fingerprint
database to find the k-nearest sets of signal strengths and the
corresponding coordinates, and calculates the coordinates of
the unknown points using the KNN algorithm. The Bluetooth
method based on signal strength matching is less affected by
the environment than the geometric method and has a simpler
calculation model, but has its limitations. The KNN algorithm
uses the mean value of the coordinates of the K nearest refer-
ence points as the calculation result, which cannot accurately
reflect the true position of the point to be measured. There-
fore, various improvements have been made. Brunato and
Battiti [21] proposed a weighted KNN algorithm (WKNN) to
improve the positioning accuracy of KNN. As with the KNN
algorithm, the k-nearest fingerprint point data are found in the
fingerprint database, and the Euclidean geometric distances
between the RSS of the fingerprint points and those of the tar-
get are calculated and weighted so that a point with a shorter
distance gets a greater weight. With the introduction of the
weight, the calculation becomes more practical, and the posi-
tioning accuracy is improved. Analysis of KNN and WKNN
indicates that they have the same defect in positioning, which
is the need to match the signal strength received in real-time
positioning with all of the data in the fingerprint database,
which requires a great deal of computational time, and there
is so much data in the fingerprint database that real-time
calculation is significantly affected. Castillo-Cara et al. [22]
and others made some improvements to solve this problem.
They used a support vector machine (SVM) to classify the
data and determine the type of data in the fingerprint database
that is received at the time of positioning, and used KNN for
location calculation within that type of data. This reduces the
calculation time and improves the accuracy and stability of
positioning.

Magnetic field positioning is another important indoor
positioning technology. Because indoor magnetic fields exist
naturally and smartphones currently contain magnetic field
sensors, the use of magnetic fields for indoor positioning
does not require additional equipment. Many researchers are
using magnetic field data for indoor positioning [23], [24].
Magnetic field positioning technology uses a magnetic field
as a fingerprint signal and ultimately achieves positioning
by matching the significant magnetic field characteristics of
the indoor environment [25]. As with Bluetooth fingerprint
matching, a magnetic field fingerprint library needs to be
established first, and positioning is ultimately achieved by
matching magnetic field features. Due to the spatial corre-
lation distribution of magnetic field characteristics, in addi-
tion to single-point matching, magnetic field matching can
also achieve more robust matching results through contour
matching and multi-point contour matching. Zhang et al. [26]
used crowdsourcing technology to build a magnetic field
fingerprint database and used a Monte Carlo method to match
the final position coordinates of the pending point. The posi-
tioning error of this method is within 5 m, but the amount
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of calculation required for position estimation is large and
is resource intensive. To improve magnetic field positioning
accuracy, Moreno et al. [27] used magnetic landmarks to
improve positioning accuracy. The obtained magnetic field
X, ¥, z three-axis data are stored as fingerprint data in the
fingerprint database, and then clustered using the expectation
maximization algorithm. Each cluster is used as a unique
landmark for finding the location of users.

However, Bluetooth positioning and magnetic field posi-
tioning each has its own limitations. The research on these
two fingerprint positioning methods shows two reasons why
fingerprint positioning cannot be used on a large scale. First,
in large-scale deployments of fingerprint positioning, there is
a large amount of fingerprint data, and processing the data
requires a good deal of computing resources, and the meth-
ods cannot determine the floor of the point to be measured.
The second reason is that fingerprint positioning cannot accu-
rately describe data changes in a complex and unstable indoor
environment, which leads to unstable positioning.

Deep learning technology has facilitated the processing of
large-scale data [28]—[31]. In deep learning, sample data are
input into the algorithm model, and the model automatically
extracts features from the sample [32]-[35]. As the model
deepens, basic and higher-level features are combined so that
large amounts of data can be processed, and the prediction
results become stable. Introducing deep learning into indoor
positioning can help overcome the shortcomings of finger-
print positioning. Researchers are now using deep learning
methods for indoor positioning. For example, Xu et al. [36]
used a CNN for indoor visual positioning.

This article uses the CNN method to first determine the
floor in the building, so it can locate the Bluetooth fingerprint,
then convert the signal strength fingerprint database received
in offline database construction into a “fingerprint image,”
establish the CNN required for positioning, and finally input
the data collected by real-time positioning into the CNN. The
trained model predicts the floor and location area. Once the
location area is determined, the magnetic field data matching
method is performed in the area to estimate the coordinates
of the pending point. This method requires less preprocessing
than traditional signal strength fingerprints and can reflect
the changes of fingerprints more accurately. When predicting
coordinates, this method can also reduce the impact of non-
line-of-sight propagation caused by a complex indoor envi-
ronment on positioning and improve positioning accuracy.

ill. MODEL AND METHODS

The above analysis of an indoor positioning algorithm shows
that current fingerprint location algorithms cannot iden-
tify the floor, making it impractical for large-scale applica-
tions. Therefore, this article proposes the use of CNNs for
indoor positioning, which overcomes the limitation of use in
large-scale applications due to the signal strength fingerprint
location’s inability to determine the floor. The Bluetooth
signal strength is collected at the reference point as the feature
data, and the floor number is used as the label to train the
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FIGURE 1. Bluetooth fingerprint positioning process.

CNN in order to identify the floor where the unknown point
is located. Once the floor is identified, the signal strength
in fingerprint data is taken as the feature data, the region
where the reference point is located is used as the label
to train the CNN, and the model is used to determine the
location area of the unknown point. Once the location area
is determined, the collected magnetic field data are matched
with the magnetic field data in the fingerprint database of
the region, and the coordinates of the unknown point are
calculated. The positioning process of the method is shown
in Fig. 1. However, special instruments used in specific envi-
ronments such as hospitals can affect magnetic field, result-
ing in inaccurate location coordinate calculations. Therefore,
when these instruments are working, the coordinates of the
reference points are used as the final coordinates of the points
to be measured.

As with the traditional fingerprint location method,
the method of signal strength fingerprint location using a
CNN consists of an offline phase and an online phase. In the
offline phase, it is necessary to collect the signal strength
values of each anchor point (AP) on the selected reference
points in the positioning field while recording the coordinates
of these reference points and the floors on which they are
located, then establish the corresponding fingerprint database
and the CNN to train the data in order to obtain the classifi-
cation model for determining the floor and location. In the
online phase, the signal strength data on the unknown point
is collected and put into the trained CNN to calculate the
positioning result.

In the online phase, the signal strength data on the
unknown point is collected and put into the trained CNN to
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Magnetic field
matching

Floor Classification
Location estimation

TABLE 1. CNN components.

Hardware/software Model/version number
GPU Nvidia GeForce GTX 1650 (4
GB)
CPU Intel i5-9300H
RAM 8 GB
Python 3.7
TensorFlow 1.6.0 (GPU)

calculate the floor and location area, and then calculate the
final coordinates through magnetic field matching. Below we
list the software and hardware required for the experiment
and describe the format of the input data, the establish-
ment of the CNN and the calculation of the magnetic field
position.

A. SOFTWARE AND HARDWARE
The computer used for CNN calculation runs Windows
10 and uses the Python 3.7 programming environment and
the TensorFlow framework tool for designing the CNN.
TensorFlow, developed by Google, supports all types of
deep learning algorithms and has been applied to deep learn-
ing R&D by many technology companies and research insti-
tutes. The GPU version of TensorFlow was selected, because
the CNN has a large amount of calculation data and is
very computing resource-intensive. The computer used is a
Hewlett-Packard notebook with 8 GB RAM. The graphics
card is an Nvidia GeForce GTX 1650 with 4 GB of graph-
ics memory. The configuration of software and hardware is
shown in Table 1.
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FIGURE 2. Bluetooth fingerprint data format.

B. RSS IMAGE CREATION

The CNN usually processes images, meaning that the fin-
gerprint data to be trained should be transformed into a
“fingerprint image” prior to the convolution operation. This
is very different from the conventional fingerprint method.
In this article, 144 Bluetooth APs are used in the experimental
environment. During the collection process, the mobile phone
receives the signal strength of each AP at each reference
point. The signal strength will be denoted as 100 if it cannot
be received under the circumstances that the AP is far away
from the mobile phone or is not on the same floor. The
received data are shown in Fig. 2.

The first row of Fig.2 is the title of the variables, in which
contains 149 columns of data in total. The first 144 columns
are the signal strength data corresponding to the MAC
addresses of each Bluetooth transmitting station. Columns
145 and 146 are the coordinates corresponding to the ref-
erence points; column 147 represents the floor where the
reference point is located; column 148 represents the cate-
gory number; column 149 represents the epoch of the data
collection. Starting from the second row, each row of data is
the complete fingerprint data recorded at a reference point.
In the data preprocessing, after experimental verification,
the Bluetooth signal strength of less than -100dbm or the data
not received at each reference point is recorded as 100. There
are 49 reference points selected in the positioning field of
three floors. In order to ensure the classification accuracy of
CNN, the trained classification model can accurately classify
the Bluetooth signal strength data received at any time during
positioning. During the offline Bluetooth fingerprint library
collection, multiple sets of data were collected every day at
each reference point for a week.

The signal strengths received at each reference point
should be converted into a picture. Therefore, the signal
strengths are taken as eigenvectors, and the 144 signal
strengths collected at each reference point are converted into
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X Y FLOOR  CLASSIFIC/TIMESTAMP
0.8 5.7 2 1 1.38E+09
2.7 5.7 2 2 1.38E+09
45 5.7 2 3 1.38E+09
6.3 5.7 2 4 1.38E+09
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171 5.7 2 9 1.38E+09
18.9 5.7 2 10 1.3BE+09
20.7 5.7 2 11 1.38E+09
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FIGURE 3. Eigenvector converted from fingerprint data.

2 4 6 8 10 12

FIGURE 4. Grayscale image converted from fingerprint data.

a 12 x 12 eigenvector, as shown in Fig. 3. The eigenvector is
then transformed into a grayscale image, as shown in Fig. 4.
In this way, the complete reference point fingerprint data
are transformed into a fingerprint image whose features are
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then extracted using the CNN, and the classification is then
completed.

C. ESTABLISHMENT OF CNN

When the data are sorted out according to the prescribed
format, it is necessary to establish its own CNN to identify the
floor and estimate the position. The CNN includes an input
layer for data input, a hidden layer, and an output layer for the
output results. The hidden layer includes convolution layers,
activation layers, pooling layers, and fully connected layers.

1) CONVOLUTION LAYER

The function of the convolution layer is to extract the fea-
tures of input data. The convolution layer contains several
convolution kernels used to extract the basic features of the
image. The more convolution kernels there are, the more basic
features that are obtained, which makes the convolution layer
abstract and rich in high-order features. The feature map is
obtained after convolution operation of the fingerprint data
image. The convolution operation is shown in the formula as
follows:

S, j) = (K*1)(, )
= ZZ[(i+m,j+n)K(m, n) )]

where S is the identification of the feature map, whose coor-
dinates are (i, ). K is the convolution kernel, I is the two-
dimensional matrix composed of image pixel values input
by convolution operation, and (m, n) are the coordinates of
the convolution kernel. Convolution layer parameters include
convolution kernel size, step size, and filling, which together
determine the size of the feature map output by the convolu-
tion layer, and are the CNN’s hyperparameter. The convolu-
tion kernel size can be any value that is smaller than the size of
the input image. The larger the convolution kernel, the more
complex the input features extracted. The convolution step
defines the distance between the positions of two adjacent
scans when the convolution kernel scans the feature image.
When the convolution step is 1, the convolution kernel will
scan the elements of the feature map one by one; when the
step size is n, it will skip n-1 pixels in the next scan. For
fingerprint data, the convolution step is 1. The full filling is
selected according to the nature of fingerprint.

2) ACTIVATION LAYER

In the CNN, the output of each layer is a linear function of
the input of the upper layer. Thus, no matter how the network
structure is constructed, the output is a linear combination of
inputs. However, the actual data to be processed are nonlinear.
To solve this problem, an activation layer is added to the
convolution layer and pooling layer. The most important part
of the activation layer is the activation function, which mainly
maps features to a high-dimensional nonlinear interval for
interpretation and solves problems that the linear model can-
not solve. Other activation functions include sigmoid func-
tion, ReLLU function, and tanh function. The ReLLU function
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offers calculation efficiency, solves the problem of gradient
disappearance, and simplifies the calculation process, which
is in line with the experimental requirements. Therefore, this
article uses the ReLLU function as the activation function, and
its function analytical formula is

J (x) = max(0, x) @)

3) POOLING LAYER

The pooling layer of the CNN is composed of the pooling
function. After obtaining features by convolution, the pooling
layer uses these features for classification. In theory, all the
features extracted by convolution can be the input of the
classifier but that entails a tremendous amount of computa-
tion. Therefore, the pooling function is used to further pro-
cess the feature map obtained by the convolution operation.
The pooling function summarizes the eigenvalue of a certain
position and its adjacent positions in the plane and takes the
summarized results as the value of this position in the plane.
The role of the pooling layer is to reduce the dimensions of
each feature map without losing too much important infor-
mation. The pooling layer is sandwiched in the middle of
the continuous convolution layers and compresses the amount
of data and number of parameters to reduce overfitting. The
pooling layer has no parameters; it is merely a down sampling
of the results given by the upper layer.

There are two types of pooling functions: Max Pooling
and Average Pooling. The Max Pooling function calculates
the maximum value of the location and the surrounding
rectangular area; the Average Pooling function calculates the
average value. The Max Pooling function is used in our exper-
iments. Each convolution kernel can be regarded as a feature
extractor, and different convolution kernels are responsible
for extracting different features. After Max Pooling in the
indoor localization experiment of the CNN, those kernels
that can truly identify the features are extracted, and those
not quite useful for extracting specific features are discarded.
Therefore, in the subsequent calculation, the size of the fea-
ture map is reduced, so as to reduce the number of parameters
and the amount of calculation without losing the effect.

4) FULLY CONNECTED LAYER

In the fully connected layer, all neurons are connected by
weight. The fully connected layer is usually at the tail of the
CNN. When the convolution layer accumulates enough fea-
tures to identify the image, the next step is classification. The
cuboid obtained at the end of the CNN is spread into a long
vector, which is sent to the fully connected layer to cooperate
with the output layer for classification. A dropout function is
introduced to the fully connected layer to prevent overfitting
during training, thereby improving the generalization ability
of the model.

Using the characteristics of the experimental data and the
environment, we established the CNN for floor determination
and location classification. The CNN’s structure is shown
inFig. 5. As shownin Fig. 5, the input data size is 12x 12. Due
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C1 feature map
Input 12x12 62 121

C2 feature map
64 12x12

53 feature map

Full connected
layers

Convolution

Convolution

Pooling

FIGURE 5. Our convolutional neural network structure.

TABLE 2. Parameter settings for constructing convolutional neural
networks.

parameter name

value

Input Size 12x12
Convolutional layers 4

Kernel size 3x3

Stride 1

Pooling Max Polling
Pooling size 2x2

Pooling layers 2
Fully connected layers 2

to the small data size, in order to realize the two functions of
floor classification and positioning, after continuous exper-
imental tests, the input data after convolution layer do not
directly carry out pooling calculation but continue to carry out
the convolution operation before entering the pooling layer.
After going through two convolution layers and one pooling
layer, the pooled data enter the entire company layer and are
finally classified accurately. To optimize the performance of
the CNN, the selection of the convolution kernel size is also
tested. Combined with the data size, the convolution kernel
selection is 3 x 3, but when the convolution kernel is 5 x 5
or even larger, the computational performance will decline.
By analyzing the data and referring to popular CNNs such
as AlexNet and GooglLeNet, through the experimental test,
the feature map of the first two CNNs is set to 64, the parame-
ter quantity of each convolution layer is 640, the feature maps
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FIGURE 6. Magnetic field positioning method.

after pooling are 128, the number of feature maps of the last
two convolution neural networks is 128, and the number of
parameters in each convolution layer is 73,856. The structure
of the CNN established in this article is shown in Table 2.

D. COORDINATE CALCULATION

After determining the floor and the area where the unknown
point is located, the magnetic field data collected from the
unknown point are used to match the magnetic field finger-
print data collected in the area, as shown in Fig. 6, and finally
the position coordinates are calculated. In the fingerprint
data collection, not only the Bluetooth fingerprint data of the
reference point but also the magnetic field fingerprint data
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(A)

(B)

©

FIGURE 7. Environment of each floor in the field.

are collected at the four corners of the reference point control
area. Kriging interpolation is used to interpolate the data into
amagnetic field fingerprint map, and then the KNN algorithm
is used to determine the magnetic field fingerprint location.
Use convolutional neural network to quickly determine the
range of magnetic field matching, improve positioning effi-
ciency and accuracy.

However, some medical instruments change the magnetic
field near the area, resulting in large errors or locating fail-
ure when positioning activities are near these instruments.
However, the operation of these devices has minor effect on
the received Bluetooth signal strength. Therefore, when these
devices are running, if the fixed point is classified into the
range controlled by the reference points near these devices,
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their coordinates will be replaced by the coordinates of the
reference points in the matching area.

IV. EXPERIMENTS AND RESULTS

The experiment was carried out in Dongfang Hospital of
Qigihar city in China. The positioning fields were set up on
the second, third, and fourth floors of the hospital, as shown
in Figure 7. Each of the three floors is 27.6 m long and
12.8 m wide, for a total area of 1059.84 square meters. The
iBeacon commercial base station produced by VOLIVAM
Company was selected as the Bluetooth signal transmitting
station, and a Nokia X7 mobile phone equipped with the
Android 9.0 operating system was selected as the mobile
device to be located. The sampling frequency of Bluetooth
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FIGURE 8. Location of the 49 reference points (1.8 m x 1.8 m each, with magnetic field data collected at the four corners of each region).

fingerprint data was 20 Hz, and that of magnetic field data
was 50 Hz.

A total of 144 Bluetooth base stations were deployed in
the positioning field of the three floors for positioning. The
base stations were set on the wall 2.5 m above the ground
in order to reduce the impact of indoor objects on signal
transmission, taking into consideration that the base station
was small, consumed little energy, and produced a stable
signal. In order to ensure the diversity and complexity of
the environment, a room is randomly selected for positioning
on each floor outside the corridor. A total of 49 reference
points were selected for Bluetooth fingerprint data collection,
as shown in Fig. 8. Therefore, there were 49 categories that
needed to be trained by the CNN we designed. The control
area of each reference fingerprint point was 1.8 m x 1.8 m.
The magnetic field fingerprint data were collected at each of
the four corners of each control area, and the magnetic field
map of each reference point control area was interpolated by
the kriging method.

During the process of fingerprint data collection and posi-
tioning, the mobile phone was held horizontally to receive
Bluetooth and magnetic field data, as shown in Fig. 9. In the
control area of 49 reference points, 30 points of known
floor and location area were selected as the points to be
located for the experiment. In order to test the universal-
ity to the environment, 6 of the 30 points to be tested are
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FIGURE 9. Method of collecting signal strength data and magnetic field
data.

located in the selected room. In order to reduce the impact
of sudden changes in the indoor environment on the per-
formance of the convolutional neural network, the training
data can fully reflect the changes in signal strength with
the environment and improve the classification accuracy.
Data were collected at each of the 49 reference points for
a week. The data collected in the first six days were used
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FIGURE 10. Performance of CNNs (floor classification). (a) is the change in the loss of the validation data with the epoch, (b) is

the change in the accuracy of the validation data with the epoch.

TABLE 3. Parameter settings of CNN for floor classification.

Parameter Value
Batch size 30
Learning rate 0.001
Training epochs 30
Drop rate 0.5

for training, and the data from the seventh day were used for
verification.

A. FLOOR CLASSIFICATION EXPERIMENT AND RESULTS
The main reason why the traditional signal strength finger-
print location method is not widely used is that the floor
where the unknown point is located cannot be determined
by matching the feature data of the received signal strength
alone, and therefore it can only estimate the location once the
floor is determined, making it difficult to be used in indoor
environments of large area and with multiple stories. Com-
pared with the traditional signal strength fingerprint loca-
tion, a CNN can determine the particular floor without extra
equipment and data. The Bluetooth signal strength fingerprint
data are used as the feature matrix, and the floor number is
taken as the label. The CNN is trained using the designed
data format. The parameter settings of the CNN are shown
in Table 3.

The parameters settings of the CNN are not fixed, and
different parameters will lead to different calculation results.
Taking into consideration the characteristics of the input data,
after continuous testing, when the CNN is used for floor
classification, the performance is optimal when the batch size
is set to 30, the learning rate is set to 0.001, and the training
epoch is set to 30. After setting the parameters, the data
are trained. After the CNN is trained, the verification data
are brought into the network to verify the accuracy of the
calculation. Then, 30 points with known floors and coordi-
nates are selected in the positioning field, and the Bluetooth
signal strength data are collected on these points. The signal
strength data collected on these 30 points are taken as test
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TABLE 4. Results of floor classification.

Evaluation metric Value
Loss 1.014
Validation accuracy 0.9796
Testing accuracy 0.9667
1 . : : . ; . .
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FIGURE 11. Accuracy of floor classification experiments over 10 times.

data and put into the trained CNN for calculation. We use
validation accuracy, loss, and testing accuracy to evaluate
the performance of CNN. Validation accuracy represents the
proportion of correctly classified data in validation data, and
testing accuracy represents the proportion of test data cor-
rectly classified. The results of loss and validation accuracy
are shown in Fig. 10.

It can be seen from Fig. 10 (a) that the loss value cor-
responding to each epoch decreases with the increase of
epoch and tends to be stable after 20. From Fig. 10 (b),
it can be seen that the validation accuracy increases
with the increase of epoch and Validation accuracy sta-
ble at 0.9796. The final calculation results are shown in
Table 4.

The calculation results show that validation accuracy
reaches 0.9796, while testing accuracy reaches 0.9667, and
loss is 1.014. Through the analysis of the calculation results,
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FIGURE 12. Performance of CNN (location classification) (a) is the change in the loss of the validation data with the
epoch, (b) is the change in the accuracy of the validation data with the epoch.

it can be seen that the floor where the unknown point is
located can be determined using a CNN without extra equip-
ment and feature data, making the signal strength fingerprint
location method usable in indoor environments with large
area and multiple stories. To verify the stability of the algo-
rithm, data were collected at the same points 10 times at
different times over three days. The calculation results are
shown in Fig. 11. The results of the 10 times of calculation
show that the lowest test accuracy was 0.9, the highest was
0.9667, and the average value of the 10 times was 0.93.
The results indicate that the CNN model established in this
article can classify the floors using only the Bluetooth sig-
nal strength and determine the floor where the unknown
points are located. The average accuracy of the test was 0.93.
Analysis of the experimental results shows that the use of
convolutional neural network can be used to determine the
floor of the signal strength received by the test point.

B. POSITIONING EXPERIMENTS AND RESULTS

After performing floor classification, the CNN is used for
estimate position. As with floor classification, first, the signal
strength fingerprint data collected by the mobile phone are
sorted by corresponding format, then brought into the pro-
gram to be transformed into the corresponding feature matrix,
while the area data in the fingerprint data are selected as the
label. The feature matrix and label data are trained in the
CNN established to estimate position. The Bluetooth signal
strength data and magnetic field data are collected on the
unknown points, and the Bluetooth RSS data are taken into
the trained CNN as the feature matrix, and then the region
where the unknown points are located can be estimated,
thereby completing a rough positioning. The parameter set-
tings of the CNN for positioning are shown in Table 5. First,
the verification data are brought into the CNN for verifica-
tion. Then, the Bluetooth signal strength data collected on
the 30 unknown points are put into the trained CNN for
classification calculation in order to determine the location
area of the unknown points.
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TABLE 5. CNN parameter settings for positioning.

Parameter Value
Batch size 50
Learning rate 0.0001
Training epochs 30
Dropout 0.5

TABLE 6. Results of CNN used for positioning.

Name Value
Loss 1.107

Validation accuracy 0.9592
Testing accuracy 0.9333

Taking into account the characteristics of the input training
data, the batch size, learning rate, and training epochs are
finally set to 50, 0.0001, and 30, respectively. Continuous
experimental tests showed that the CNN has the best perfor-
mance. The training results are shown in Fig. 12. Fig. 12 (a)
shows the loss of each epoch in the training process, and
Fig. 12 (b) represents the variation of validation accuracy with
each epoch.

The final calculation results of the CNN used for posi-
tioning are shown in Table 6. The loss of the CNN is 1.107,
the validation accuracy is 0.9592, and the testing accuracy
is 0.933. The results indicate that the CNN can classify the
unknown points, and then determine the area where they are
located.

Once the area where the unknown points are located is
determined using the CNN, the magnetic field map data of
the area are obtained from the fingerprint database, which
is matched with the magnetic field data collected on the
unknown points to estimate the final coordinates. To ver-
ify the accuracy of the positioning results, the Bluetooth
fingerprint data are collected on the magnetic field data
collection points to establish the fingerprint database, and
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TABLE 7. Accuracy of KNN and CNN positioning.

Compared Approach KNN (Bluetooth) KNN (mag) CNN
Max error/m 2.501 247 2.0995
Mean error/m 1.806 1.732 1.3753
Min error/m 0.4286 0.274 0.2306

TABLE 8. Average positioning error of 10 repeated tests.

Num CNN (mean error/m)

KNN (Bluetooth mean error/m)

KNN (Magnetic field mean error/m)

1 1.261 1.814 1.987
2 1.072 2.073 2.013
3 1.108 1.637 1.674
4 0.897 1.742 1.577
5 1.365 1.992 2.103
6 0.924 2.168 1.784
7 1.289 2.075 2.017
8 1.367 1.808 1.973
9 0.736 1.906 2.276
10 0.974 2.181 1.964
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FIGURE 13. CDF of three positioning methods.

the KNN algorithm is used to perform traditional finger-
print positioning on these 30 test points. At the same time,
the traditional magnetic field positioning method is used to
locate these 30 points. The results of the comparison between
the three positioning methods are shown in Table 7. The
minimum positioning error of 30 points tested is 0.2306 m,
the maximum positioning error is 2.0995 m, and the average
positioning error is 1.1753 m, which are all better scores
than those of the traditional Bluetooth and magnetic field
matching algorithms. The maximum error value appears at
the point where the matching error occurs.

The positioning error of each point is then analyzed, and
the cumulative error distribution is shown in Fig. 13. The
comparison results show that the CNN can classify the data
categories of the fingerprint database more precisely, which
improves the accuracy and stability of positioning. To verify
the stability of the algorithm, the collected data from 10 times
were also brought into the CNN for positioning. The testing
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FIGURE 14. Accuracy of location area classification experiments over
10 times.

accuracy of the 10 repeated location classification experiment
tests are shown in Figure 14. The average testing accuracy
of the 10 tests is 0.92, which meets the positioning require-
ments and can accurately determine the location area of the
unknown points. The positioning accuracy of the 10 tests is
significantly improved compared to traditional Bluetooth and
magnetic field fingerprint positioning accuracy. The average
positioning results of 10 repeated experiments are shown
in Table 8.

The comparison results of the average positioning error
of the 10 repeated tests indicate that the average positioning
error using CNN is less than that of traditional Bluetooth and
magnetic field fingerprint positioning, positioning accuracy
increased by 43.32% and 44.67% respectively.

Some instruments in the hospital will interfere with the
magnetic field at work, resulting in large errors in the mag-
netic field matching positioning result. Therefore, when the
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TABLE 9. Positioning error of the two methods.

46

48

(b)

Num Mag BLE
1 0.78 0.94
2 0.69 0.33
3 0.84 0.21
4 0.57 0.88
5 0.62 0.92
6 0.74 1.06
7 0.93 0.41
8 1.52 1.47
9 0.83 0.57
10 0.91 1.03

Bluetooth data received at the unknown point is classified
to be near these devices by CNN, their coordinates will
be replaced by the reference point coordinates of the area.
To verify the rationality of the scheme, we conducted experi-
mental verification in rooms where the described instruments
were installed. Specifically, the room where reference points
13-18 and 46-49 are located. 5 unknown points are selected
in each of the two rooms for the experiment as shown in
the figure 15. Before the experiment, the effect of instrument
status (i.e. working and not working) on the received Blue-
tooth signal strength was verified, and it is concluded that
whether these instruments worked or not has no effect on
Bluetooth signal. In the experiment, when the instrument is
turned off, the location classification of the Bluetooth signal
is performed using CNN. Then, the coordinates are calcu-
lated using the magnetic field matching method. When the
device is working, since the received Bluetooth signal will be
classified into the area controlled by corresponding reference
points, the coordinates of these reference points are used as
the coordinates of the unknown points. The positioning errors
of the 10 selected unknown points calculated in the two cases
above are shown in Table 9.

Through the error analysis of each point, it can be seen that
when the instrument is turned on, the average error of using
the reference point coordinates as the pending coordinates is
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0.782m, which is less than the positioning error of traditional
KNN Bluetooth fingerprint. The classification accuracy of
CNN is 0.9 m. The maximum positioning error occurs at point
8 of the misclassification. It is shown that the error is quite
small when the unknown points are close to the reference
points, and the error is larger when the reference points are
far away. All the errors are less than 1.273m, which meet
the precision requirements. The comparison of the two cases
at each point shows that the stability of positioning accuracy
of the proposed method is weaker than that of the positional
results calculated by the magnetic field when the instrument
is not working.

To further verify this conclusion, 10 repetitive experiments
were performed on these 10 points. The cumulative score
of the positioning error is shown in Figure 16. The above
conclusion is verified through error analysis.

The experiments suggest that: (1) compared with tra-
ditional fingerprint location methods, using the CNN for
signal strength fingerprint location can accurately identify
the floor where the unknown points are located.(2) CNN
can accurately classify their location area, so as to
improve the accuracy and stability of the final coordi-
nate estimation, thereby enabling the signal strength fin-
gerprint location method to be used in large-area indoor
environments.
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C. DYNAMIC POSITIONING

After verifying the positioning accuracy of the unknown
points, a dynamic positioning experiment is carried out on
the 4th floor of the hospital. All the instruments in the hos-
pital were working properly during the experiment. The real
trajectory was shown in Figure 17with Bluetooth and geo-
magnetic data sampled at the same frequency as in the above
experiment. To verify the accuracy of dynamic positioning,
ten repeated experiments were performed on this trajectory.
After CNN classification and coordinate calculation, the posi-
tioning error of each point is analyzed. The distribution of
cumulative positioning error is shown in Figure 18.

We found that the error of dynamic positioning is larger
than that of static positioning due to accuracy of CNN
classification (91.667%, which is lower than that of static
positioning). The average error of dynamic positioning
is 1.526 m, which is significantly improved compared
with traditional KNN Bluetooth positioning. In the vicin-
ity of the room where the instrument changes the mag-
netic field, the positioning accuracy also meets requirements.
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Therefore, whether in static or dynamic positioning, improv-
ing fingerprint indoor localization using Convolutional Neu-
ral Networks (CNN) can improve positioning accuracy.

V. CONCLUSION

The main work of this article consists of two components. The
Bluetooth signal strength data in the fingerprint library are
converted into a ““fingerprint image”’ using the characteristics
of the CNN to accurately classify image data, so as to apply
the CNN to the fingerprint positioning method.

First, the CNN is used to classify floors, and through
fingerprint data training, the floor of the pending point can
be determined only by receiving the Bluetooth signal strength
in real-time positioning. Here, the test accuracy rate reaches
96.7%. Second, the CNN is used for positioning. After train-
ing, it can accurately determine which reference point the
pending point is in the real-time positioning process. The
test accuracy rate reaches 93.33%, and the unknown point
is calculated by the magnetic field matching method. The
final coordinate of the point, which is the positioning error,
is less than 1.4 m. The CNN is used for dynamic positioning,
the accuracy of classification exceeds 91%. The accuracy of
dynamic positioning is also within 1.55 meters. The finger-
print location method based on convolutional neural network
can be used in multi-floor large-area indoor environment,
which solves the problem that traditional fingerprint location
cannot judge the floor and cannot be used in a large range,
and improves the practicality of fingerprint location
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