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ABSTRACT Modular exponentiation is one of the most fundamental operations in lots of encryption and
signature systems. Due to the heavy computation cost of modular exponentiation, many schemes have been
put forward to securely outsourcemodular exponentiation to cloud. However, most of the existing approaches
need two non-colluded cloud servers to securely complete the modular exponentiation, which will result in
private data leakage upon the cloud servers collude. Besides, most existing schemes assume both base and
exponent in modular exponentiation are private, which does not conform to many real-world applications.
For example, in public key encryption system that uses modular exponentiation, one of base and exponent
is the public key, and the other is a message. Usually, only the message should be privately protected.
In this paper, we propose two secure outsourcing schemes for fixed-base (public base and private exponent)
and fixed-exponent (private base and public exponent), respectively. In the proposed schemes, we employ
only one cloud server and can thus avoid collusion attack. Further, we achieve an efficient and secure
Paillier encryption outsourcing scheme based on our secure modular exponentiation outsourcing methods.
Additionally, we theoretically analyze our overheads and leverage simulation experiments to evaluate our
proposed solutions, which show our schemes can achieve high efficiency.

INDEX TERMS Cloud computing, outsource-secure algorithm, modular exponentiations, single server.

I. INTRODUCTION
Cloud computing, as a new network service model, has
become a hot topic, since it can economically and efficiently
provide users with dynamic storage and computation services
in a pay-as-you-go manner. The users can thus avoid large
capital expenditures in hardware, software deployment and
maintenance. Besides, by leveraging the computing resource
of cloud servers, a resource-constrained device in the Internet
of Things (IoT) can finish their computation tasks that go
beyond its computation capability.

Nevertheless, it will inevitably bring some new security
challenges when users outsource the computation tasks to
the cloud [1], [20], [27], as the direct physical control will
be transferred to the cloud server. Firstly, the cloud servers
cannot be fully trusted and the outsourced computation tasks
usually contain some private information. Therefore, the
most basic security requirement is confidentiality of the
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computation tasks. Although fully homomorphic encryption
provides a theoretical way for the problem, there is no prac-
tical fully homomorphic encryption scheme now. Secondly,
the untrusted servers may not return the right results for some
reasons, such as loaf on the job, software bugs, hardware
error. Accordingly, the users should be able to verify the
validity of the results with little cost which are returned by the
cloud servers (the cost must be far less than the outsourcing
task).

As well known, modular exponentiation is one of the
most fundamental and expensive operations in most encryp-
tion and signature systems, such as RSA, Paillier encryption
system [31]. For resource-limited devices in IoT, both the
running time and cost of the computations are very huge.
Thus, it is fatal for some schemes which need to com-
plete some modular exponentiations in a short time. Most of
the secure outsourcing of modular exponentiation is imple-
mented by employing two cloud servers [2], [3], [6], [19].
However, all of these schemes cannot resist the collusion
attack of the cloud servers. Ding et al. [26] recently proposes
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a secure modular exponentiation outsourcing scheme. Nev-
ertheless, they assume both base and exponent in modular
exponentiation are private, which does not conform to many
real-world applications. For example, in public key encryp-
tion system that uses modular exponentiation, one of the
base and exponent is public key, and the other is message.
In fact, only the message should be privately protected. In this
paper, we propose two new secure outsourcing algorithms
for fixed-base (public base and private exponent) and fixed-
exponent (private base and public exponent) in the model of a
single malicious cloud server. Further, we achieve an efficient
and secure Paillier encryption outsourcing scheme based
on our secure modular exponentiation outsourcing methods.
Additionally, we theoretically analyze our overheads and
leverage simulation experiments to evaluate our proposed
solution, which shows our solutions can achieve high effi-
ciency. In general, our main contributions in this paper are as
follows.

• We propose two secure outsourcing schemes for
fixed-base (public base and private exponent) and
fixed-exponent (private base and public exponent)
modular exponentiation, respectively. Our proposed
schemes require only one untrusted server.

• Based on our modular exponentiation outsourcing
schemes, we propose an efficient and secure Paillier
encryption outsourcing scheme.

• We theoretically analyze our schemes in security, effi-
ciency and checkability, and conduct simulation exper-
iments to evaluate our schemes. The results show that
our schemes can securely complete the modular expo-
nentiation and encryption tasks outsourcing in an effi-
cient manner.

The rest of this paper is organized as follows. In Section II,
we simply review the related work. In Section III, we present
the system model and security definitions of our schemes.
In Section IV, we describe our two secure modular expo-
nentiations outsourcing schemes, and present the security
and complexity analysis. Then, we propose secure Paillier
encryption outsourcing scheme in Section V. Finally, we con-
clude this paper in Section VI.

II. RELATED WORK
How to securely outsource expensive computations has been
attracting the attention from computer science community.
Hohenberger and Lysyanskaya [3] presented the formal secu-
rity definition of secure outsourcing model and proposed a
CCA2 secure outsourcing encryption scheme. Barbosa and
Farshim [5] presented a modular construction of delegatable
homomorphic encryption from fully homomorphic encryp-
tion, functional encryption and MAC, and then described
how to build a secure outsourcing computation scheme from
delegatable homomorphic encryption. However, fully homo-
morphic encryption is limited to immaturity and it cannot be
put into practice.

There are also a lot of research works on the securely
outsourcing computation. Chen et al. [6] proposed a new
secure outsourcing algorithm EXP which improved in
both efficiency and checkability. Atallah and Frikken [7],
Benjamin and Atallah [8] proposed protocols to solve the
problem of secure outsourcing for widely applicable lin-
ear algebra computations with homomorphic encryptions.
Applebaum et al. [9] in 2010 presented an improved
protocol based on the weak secret hiding assumption.
Chevallier-Mames et al. [10] proposed the first algorithm for
a secure delegation of elliptic-curve pairings in the model
of one untrusted server. Then Parno et al. [11] described
a construction of a multi-function computation delegation
scheme.

However, outsourcers can’t fully trust the cloud server.
Plenty of works have been done to achieve secure and
efficient outsourcing computations by the untrusted server.
Mironov and Golle [22] first presented the notion of
ringers to verify the truth of results from untrusted servers.
Gennaro et al. [12] first integrated the notion of checkabil-
ity to solve the issue of trust. In 2005, Hohenberger and
Lysyanskaya [3] proposed a checkable algorithm that verify
the results by two untrusted servers. Based on this work,
they further achieved secure outsourcing encryption and
signature, but the checkability of the algorithm is only 1

2 .
Chen et al. [6] further studied and proposed an improved
version, they rise the checkability to 2

3 . Ye et al. [21] made
further improvements in checkability and it comes to 19

20 .
Focusing on fixed-base and fixed-exponent, Ma et al. [2]
proposed three secure outsourcing schemes in 2013 and the
checkability reach 3

4 . One of their schemes is in the model
of one untrust server and the checkability almost reaches 1.
Wang et al. [13] proposed a new secure outsourcing scheme
of modular exponentiation in one untrusted server, while
their checkability is just 1

2 . Xue et al. [29] proposed a new
joint distribution estimation under Local Differential Privacy
which can be used to Naive Bayes Classification.

Recently, Zhao et al. [23] improved the checkability
to nearly 1 with the method of blinding matrix, while
the server needs to undertake too much computation.
In addition, Cai et al. [24] proposed a new algorithm SmExp
whose checkability can almost reach 1 with a single sever.
Ding et al. [26] improved the checkability of algorithm EXP
and SEXP to 119

120 and 74
75 , while the client needs to do part of

modular exponentiations.

III. SYSTEM MODEL AND SECURITY DEFINITIONS
A. SYSTEM MODEL
In this paper, our system model is composed of a client and
a server. The client has input data x, and wants to gain the
result f (x) where the function f is appointed by the client.
However, because of lacking enough computing resource, the
client can not finish it by itself. Therefore, the client needs to
complete it with the help of cloud servers. Considering that
the input data x may be private, cloud servers should know
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FIGURE 1. System model.

nothing about x. Thus the client will transform the private data
such that the original input data can be well protected. With
function f and the transformed input data, the cloud servers
can complete calculation tasks. After receiving the computing
results from the cloud server, the client can get the final result
f (x) with little cost. Meanwhile, the client also can verify the
correctness of cloud server’s returned data. In this paper, the
function f represents modular exponentiation. Generally, this
kind of modular exponentiation scheme can be described as
follows:

1) Given modular exponentiations which will be com-
puted, client invokes Rand .

2) The client blinds the inputs with the rand pairs and
sends them to cloud server.

3) After receiving these transformed values, the cloud
server compute and return the results to the client.

4) After receiving the results from the cloud server, the
client verifies the correctness of the results. If the
results are not right, the cloud server outputs ‘‘error’’.
Otherwise, the client computes the real results of the
modular exponentiations.

In our schemes, we propose two system models for two
different situations, which is shown in Fig.1.

• For the fixed-base modular exponentiation (public base
and private exponent) scheme, the client wants to com-
pute (gx1 , gx2 , . . . , gxt ) mod p where base g is public
and exponent xi (1 ≤ i ≤ t) is private.With ourmethod,
the client divides the private exponent set into a public
set A. The cloud server returns gai mod p (ai ∈ A) to
the client. Finally, with the returned data from cloud
server, the client can get gxi (1 ≤ i ≤ t).

• For the fixed-exponentmodular exponentiation (private
base and public exponent) scheme, what the client
needs is the result of (gx1, g

x
2, . . . , g

x
t ) modp where

exponent x is public and base gi (1 ≤ i ≤ t) is private.
With our method, the client divides the private base set
into a public set A. The cloud server returns the result
axi mod p (ai ∈ A) to the client. In the end, the client
can get gxi (1 ≤ i ≤ t) by some transformations of the
results from cloud server.

B. SECURITY DEFINITIONS
In this paper, we follow the security definitions of out-
sourcing cryptographic computations proposed by Hohen-
berger and Lysyanskaya in [3]. Generally, it is said that
the computation-constrained client T securely outsources
some computation tasks to cloud server U , and (T ,U ) is
an outsource-secure implementation of a cryptographic algo-
rithm Alg, if (1) T and U correctly achieve Alg, i.e., Alg =
TU , and (2) assume that, instead of cloud server U , T is
given oracle access to an adversary U ′ who records all its
computation during every implementation and tries to act
maliciously, but the adversary U ′ can learn nothing useful
about the client’s input and output. We will introduce Hohen-
berger and Lysyanskaya’s formal definitions as follows.
Definition 1 (Algorithm With Outsource-I/O [3]): An algo-

rithm Alg obeys the outsource input/output specification
if it takes in five inputs, and produces three outputs: Alg
(xhs, xhp, xhu, xap, xau)→ (ys, yp, yu).
Inputs: The first three inputs are generated by an honest

party, and are classified by in what degree the adversary
A = (E,U ′) has knowledge about them, where E is the
adversarial environment that submits adversarially chosen
inputs to Alg, and U ′ is the adversarial software operating
in place of oracle U.

• The honest, secret input xhs, which is unknown to both
E and U ′.

• The honest, protected input xhp, which may be known
by E, but is protected from U ′.

• The honest, unprotected input xhu, which may be known
by both E and U.

In addition, there are two adversarially-chosen inputs gener-
ated by the environment E:

• The adversarial, protected input xap, which is known to
E, but protected from U ′.

• The adversarial, unprotected input xau, which may be
known to E and U.

Outputs: Similarly, the outputs are defined as follows.

• The secret output ys, which is unknown to both
E and U ′.
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• The protected output yp, which may be known to E, but
is unknown to U ′.

• The unprotected yu, which may be known by both parts
of A.

Definition 2 (Outsource-Security [3]): Let Alg be an algo-
rithm with outsource I/O. A pair of algorithm (T ,U ) is said
to be an outsource-secure implementation of Alg if:

1) Correctness: TU is a correct implementation of Alg.
2) Security: For all probabilistic polynomial-time adver-

saries A = (E,U ′), there exist probabilistic expected
polynomial-time simulators (S1, S2) such that the fol-
lowing pairs of random variables are computationally
indistinguishable.

• Pair one: EVIEWreal ∼ EVIEWideal
The real process:

EVIEW i
real = {(istate

i, x ihs, x
i
hp, x

i
hu)←

I (1k , istatei−1);
(estatei, ji, x iap, x

i
au, stop

i)←
E(1k ,EVEIVEW i−1

real , x
i
hp, x

i
hu);

(tstatei, ustatei, yis, y
i
p, y

i
u)←

T u
′(ustatei−1)(tstatei−1, x j

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au).}

Thus, the view of E in the i-th round of the real pro-
cess is EVIEW i

real = (estatei, yip, y
i
u). The overall view

is just its view in the last round, i.e., EVIEWreal =

EVIEW i
real if stop

i
= TRUE. The ideal process also

proceeds in rounds. In the ideal process, we have a
stateful simulator S1 who, shielded from the secret input
x ihs, but given the non-secret outputs that Alg produces
when run all the inputs for round i, decides to either
output the values (yip, y

i
u) generated by Alg, or replace

them with some other values (Y ip,Y
i
u). Note that this is

captured by having the indicator variable repi be a bit
that determines whether yip will be replaced with Y

i
p.

In doing so, it is allowed to query oracle U ′; moreover,
U ′ saves its state as in the real experiment.
The ideal process:

EVIEW i
ideal = {(istate

i, x ihs, x
i
hp, x

i
hu)←

I (1k , istatei−1);
(estatei, ji, x iap, x

i
au, stop

i)←
E(1k ,EVEIVEW i−1

real , x
i
hp, x

i
hu);

(astatei, yis, y
i
p, y

i
u)←

Alg(astatei−1, x j
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei,Y ip,Y
i
u, ind

i)←

SU
′(ustatei−1)

1 (sstatei−1, . . . , x j
i

hp, x
ji

hu, x
i
ap, x

i
au, y

i
p, y

i
u);

(zip, z
i
u) = ind i(Y ip,Y

I
u )+ (1− ind i)(yip, y

i
u).}

Thus, the view of E in the i-th round of the ideal process
is EVIEW i

ideal = (estatei, zip, z
i
u). The overall view is

just its view in the last round, i.e.,
EVIEWideal = EVIEW i

ideal if stop
i
= TRUE.

• Pair two: UVIEWreal ∼ UVIEWideal
The view that the untrusted software U ′ obtains by
participating in the real process described in Pair One.
UVIEWreal = ustatei if stopi = TRUE.

In the ideal process, we have a stateful simulator
S2 who, equipped with only the unprotected inputs
(x ihu, x

i
au), queries U

′. As before, U ′ maymaintain state.
The ideal process:

EVIEW i
ideal = {(istate

i, x ihs, x
i
hp, x

i
hu)←

I (1k , istatei−1);
(estatei, ji, x iap, x

i
au, stop

i)←
E(1k ,EVEIVEW i−1

real , x
i
hp, x

i
hu, y

i−1, yi−1);
(astatei, yis, y

i
p, y

i
u)←

Alg(astatei−1, x j
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei,Y ip,Y
i
u, ind

i)←

SU
′(ustatei−1)

1 (sstatei−1, x j
i

hu, x
i
au);

Thus, the view of U ′ in the i-th round of the ideal
process is UVIEW i

ideal = ustatei. The overall view is
just its view in the last round, i.e.,
UVIEWideal = UVIEW i

ideal if stop
i
= TRUE.

Definition 3 (β-Checkable [3]): A pair of algorithms
(T ,U ) is said to be a β-checkable implementation of Alg if (1)
TU is a correct implementation of Alg and (2) for any input
x, if U ′ deviates from its advertised functionality during the
execution of TU

′

(x), T will detect the error with probability
no less than β.
Definition 4 (α-Efficient [3]): A pair of algorithms (T ,U )

is said to be an α-efficient implementation of Alg if (1) TU is
a correct implementation of Alg and (2) for any input x, the
running time of T is no more than an α-multiplicative factor
of the running time of Alg.

C. RAND ALGORITHM
The subroutine Rand is used to expedite calculation the speed
of scheme [3]. The main inputs for Rand are a prime p and
a base g ∈ Z∗p while the output is a random independent pair
(a, ga mod p) for some a ∈ Z∗p . We use Rand1 and Rand2 for
our schemes respectively. Rand1 is used to generate random
pair (a, ga mod p) like Rand described above for the scheme
of fixed-base exponent exponentiation. In addition, Rand2 is
used to generate random pair (g, gx mod p) for the scheme of
fixed-exponent base exponentiation where x ∈ Zp, g ∈ Gp.
Until now, EBPV generator, taking into account the efficiency
and security, is the most excellent algorithm, which runs in
time O(log2n) for an n-bit exponent.

IV. SECURE OUTSOURCING PROTOCOLS OF MODULAR
EXPONENTIATIONS
In this paper, we propose two algorithms for secure out-
sourcing modular exponentiations. Both schemes only need
one cloud server. The two schemes are executed within the
cyclic group Gp, where p is a large secure prime and g is the
generator of Gp.

A. SECURE FIXED-BASE MODULAR EXPONENT
EXPONENTIATION OUTSOURCING ALGORITHM
The fixed-base modular exponentiation scheme is aimed at
securely computing fixed-base exponent exponentiations by
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outsourcing them to cloud server, i.e., (gx1 , gx2 , . . . , gxt ) mod
p. Due to that the base g is public, what we should protect is
the exponents x1, x2, · · · , xt . To reach the purpose that the
cloud server cannot get any information about the exponents
and the client can easily verify the correctness of the returned
data, we transform the exponents into some other numbers
which seem to be irrelevant to protect the privacy of expo-
nents. In the end, the exponents (x1, x2, . . . , xt ) are translated
into a set A = {a1, a2, . . . , an} which can be sent to cloud
server.

The cloud server makes some computations based on the
information (g, p,A) and returns the result to the client.
According to the internal relation between set A and expo-
nents {x1, x2, . . . , xt }, the client can figure out gxi and verify
the correctness of the returned valueswith little cost. Next, the
fixed-base exponent exponentiation scheme can be formally
described as follows.

• Given (g, x1), (g, x2), . . . , (g, xt ) as input data to
compute (gx1 , gx2 , . . . , gxt ), where xi ∈ Zp and
i ∈ [1, t]. The client first transforms the exponents
(x1, x2, . . . , xt ) into another set A = {a1, a2, . . . , an}
where m elements of set A can be summed to xi for
each i ∈ [1, t]. The set A can be regarded as the
combination of set B, C and R. Set B is composed
of m − 1 numbers which are randomly selected from
Zp. Let B = {b1, b2, . . . , bm−1}. Set C is the result of
the set of exponent xi minus the sum of set B, then
ci is ci = xi −

∑m−1
j=1 bj, 1 ≤ i ≤ t . The client

needs to invoke the subroutine Rand1 e times to get
pairs (g, gyi ). Next, the rest set R can be generated
by the way like set C , ri can be generated by rbi =
yi −

∑m−1
j=1 bj, 1 ≤ i ≤ e and rck = yk −

∑t
j=1 cj,

1 ≤ k ≤ e. Finally, the client, using a pseudo-random
permutation function, transforms the set of Ã =

{b1, b2, . . . , bm−1, c1, c2, . . . , ct , rb1 , rb2 , . . . , rbe , rc1 ,
rc2 , . . . , rce} into permutate set A = {a1, a2, . . . , an}
where n = m + t + 2e − 1, while the client needs to
record the index of set B,C,R. Then, the client sends
σx = (A, g,P) to the cloud server.

• The server returns the result setV = {ga1 , ga2 , . . . , gan}
to the client.

• After receiving the result set V from the cloud server,
the client needs to check the truth of the returned data.
Firstly, the client needs to calculate Sbl and Scl by the
following formulas: Sbl =

∏
gbi · grbl and Scl =∏

gci ·grcl . If Sbl = Scl = gyl , the client concludes that
the cloud server is honest. Then the client completes
the exponentiations as: gxi =

∏
gbl · gci , 1 ≤ i ≤

t . Otherwise, the client concludes that the server is
dishonest.

B. SECURE FIXED-EXPONENT MODULAR
EXPONENTIATION OUTSOURCING ALGORITHM
This subsection focuses on securely computing fixed-
exponent modular exponentiations by outsourcing them to

cloud server, i.e., (g1x , g2x , . . . , gt x) modp. Due to that the
exponent x is public, what we should protect is the bases.
To reach the purpose that the cloud server cannot get any
information about the bases and the client can easily verify
the correctness of the returned data, we process the bases into
some other numbers which seem to be irrelevant to protect
the privacy of bases. In the end, the bases (g1, g2, . . . , gt ) are
translated into a set A = {a1, a2, . . . , an} which can be sent
to cloud server.
The cloud server makes some computations based on the

information (x, p,A) and returns the result to the client.
According to the internal relation between set A and bases
{g1, g2, . . . , gt }, the client can figure out gix and verify the
correctness of the returned values with little cost. Next, the
fixed-exponent base exponentiation scheme can be formally
described as follows.

• Given (g1, x), (g2, x), . . . , (gt , x) as input data to com-
pute (g1x , g2x , . . . , gt x), where x ∈ Zp and gi ∈ Gp.
The client first transforms the bases (g1, g2, . . . , gt )
into another set A = {a1, a2, . . . , an} where m ele-
ments of set A can be multiplied to gi for each i ∈
[1, t]. The set A can be regarded as the combination
of set B, C and R. Set B is composed of m − 1
numbers which are randomly selected from Gp. Let
B = {b1, b2, . . . , bm−1}. Set C is the set of base xi
divided by the multiplication of set B, then element ci
is ci = gi/

∏m−1
j=1 bj, 1 ≤ i ≤ t . The client needs to

invoke the subroutineRand2 e times to get pairs (gyi , x).
Similarly, the element ri of set R can be generated by
rbi = yi/

∏m−1
j=1 bj, 1 ≤ i ≤ e and rck = yk/

∏t
j=1 cj,

1 ≤ k ≤ e. Finally, the client, using a pseudo-random
permutation function, transforms the set of Ã =

{b1, b2, . . . , bm−1, c1, c2, . . . , ct , rb1 , rb2 , . . . , rbe , rc1 ,
rc2 , . . . , rce} into permutate set A = {a1, a2, . . . , an}
where n = m + t + 2e − 1, while the client needs to
record the index of set B,C,R. Then, the client sends
σx = (A, g,P) to the cloud server.

• The server returns the result setV = {a1x , a2x , . . . , at x}
to the client.

• After receiving the result set V from the cloud server,
the client needs to check the truth of the returned data.
Firstly, the client needs to calculate Sbl and Scl by the
following formulas: Sbl =

∏
bix ·rbi

x and Scl =
∏
cix ·

rci
x . If Sbl = Scl = gyi

x , the client concludes that
the cloud server is honest. Then the client can compute
gix =

∏
bl x · cix , 1 ≤ i ≤ t . Otherwise, the client

concludes that the server is dishonest.

C. SECURITY ANALYSIS
Theorem 1: Fixed-base algorithm and fixed-exponent

algorithm satisfy the the requirements of Correctness.
Proof: In the calculating part, the client can get

the correct value (gx1, g
x
2, . . . , g

x
t ) in fixed-base scheme and

(gx1, g
x
2, . . . , g

x
t ) in fixed-exponent scheme if the values

returned by the cloud server are correct. The calculation
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procedure is as follows:

SsetB =
m−1∏
i=1

gbi = g
∑m−1

i=1 bi ,MsetB = (
m−1∏
i=1

bi)x ,

Sk = Sk · SsetB = gck+
∑m−1

i=1 bi = gxk , k ∈ [1, t],

Mk = Mk ·MsetB =
(
gk ·

m−1∏
i=1

bi
)x
= gxk , k ∈ [1, t].

Theorem 2: The algorithm (Tfixed−base,U ) is outsource-
secure implementation, under the conditions that the inputs
(x1, x2, . . . , xt , g) are honest, secret; or honest, protected; or
adversarial protected.

Proof: In this section, we only focus on security. Let
A = (E,U ′) be a PPT adversary.

Fistly, we prove Pair One EVIEWreal ∼ EVIEWideal :
The simulator S1 behaves the same way as in the real exe-

cution under the input (x1, x2, . . . , xt , g) anything other than
honest, secret. If (x1, x2, . . . , xt , g) are honest, secret inputs,
then the simulator S1 behaves as follows: S1 makes n random
queries of form (x1, x2, . . . , xn, g) to U ′ when receiving the
inputs in round i. S1 tests two outputs from each program ran-
domly. If an error is detected, S1 checks the rest two outputs
(error,∅, 1). If no error is detected, S1 checks the rest two
outputs. If all checks pass, S1 outputs (∅,∅, 0); Otherwise,
S1 selects a random element r and outputs (r,∅, 1). In other
case, S1 saves the appropriate states. In the real experiment,
all three queries are computationally indistinguishable. In the
ideal experiment, the inputs are chosen randomly and uni-
formly. Thus the input distributions toU ′ are computationally
indistinguishable. In the ideal experiment, the inputs are cho-
sen randomly and uniformly. Thus the input distributions to
U ′ are computationally indistinguishable both in the real and
ideal experiments. Next, it can be proved that EVIEW i

real ∼

EVIEW i
ideal , which implies EVIEWreal ∼ EVIEWideal .

Secondly, we prove Pair Two UVIEWreal ∼ UVIEWideal :
The simulator S2 behaves as follows: S2 makes n random

queries of form (x1, x2, . . . , xn, g) to U ′ when receiving the
inputs of round i. Then S2 saves its states and the states of
U ′. Although, E can distinguish between these real and ideal
experiments, he cannot communicate this information to U ′.
Thus, UVIEW i

real ∼ UVIEW i
ideal for each round i, proceed to

the next step, and we have UVIEWreal ∼ UVIEWideal .
Theorem 3: The algorithm (Tfixed−exponent ,U ) is

outsource-secure implementation, under the conditions that
the inputs (g1, g2, . . . , gt , x) are honest, secret; or honest,
protected; or adversarial protected.

Proof: In this section, we focus on the security of
fixed-exponent algorithm. Because of the similarity between
the two algorithms, we omit the specific proof process. The
security proof can refer to the proof process of Theorem 2.
Theorem 4: The checkability of fixed-base algorithm is

1− C2
t

C2
n
−

2e
Ce+1n
·

1
e+1 , if the server cheats the client.

Proof: The checkability of a secure outsourcing scheme
is that the malicious server cannot successfully persuade the

client to trust that the returned values are exactly correct.
In our schemes, the client has ability to verify the correctness
of the result from cloud server, which prove the checkability
of our schemes.

Then we will analyze the checkability of fixed-base
scheme by probability. We split set A into B, C , R, how-
ever, what we care the returned data are

∏
gbi (1 ≤ i ≤

m),
∏
gci (1 ≤ i ≤ t), grbi (1 ≤ i ≤ e), grci (1 ≤ i ≤ e).

Client needs to check the equations:
m∏
i=1

gbi · grbj = gyj ,
t∏
i=1

gci · grcj = gyj .

The server successfully cheats the client means that returned
result pass the verification while it changes some right values.
On the one hand, the server computes the correct values and
chooses a random numberw. Then the server returns thew·gbi
or w · gci and the corresponding 1

w · g
bi or 1

w · g
ci . After that,

w
m∏
i=1

gbi ·
1
w
· grbj = gyj , w

t∏
i=1

gci ·
1
w
· grcj = gyj .

The probability that the server finds the right ele-
ments (bi, rb1 , . . . , rbe ) or (ci, rc1 , . . . , rce ) is

m
Ce+1n
·

1
e+1 +

t
Ce+1n
·

1
e+1 . In this way, the probability that cloud server

can cheat the client is 2e
Ce+1n
·

1
e+1 . Compared with another

circumstance, the probability of this condition is much less.
On the other hand, the server chooses a random number l and
two elements ci, cj which belong to set C . Then the server
returns gci+l, gcj−l to the client. In this way, the probability
is C2

t
C2
n
.

Thus the checkability of client is 1 − C2
t

C2
n
−

2e
Ce+1n
·

1
e+1 .

To improve the efficiency of our schemes, we suggest that
e should be much smaller than t and m. In our experiment,
we set e = 5 while m = 100. After the values of t and e have
been determined, we can find that the checkability increases
with the increase of n, but efficiency is getting lower and
lower. Considering that users have different requirements for
efficiency and checkability, users can adjust the value of n
to balance checkability or efficiency according to their own
circumstances. Finally, the user can choose a suitable n to
determine all parameters in this scheme.

Theorem 5: The checkability of fixed-exponent algorithm
is 1− C2

t
C2
n
−

2e
Ce+1n
·

1
e+1 , if the server cheats the client.

Proof: Due to the similarity between the two algorithms,
the specific proof of fixed-exponent algorithm can refer to the
proof in Theorem 4.

D. COMPLEXITY ANALYSIS
Compared with previous secure outsourcing modular expo-
nentiation schemes, the advantages of our schemes in effi-
ciency must be emphasized. Above all, our schemes do not
need any complicated precomputations, which is more effi-
cient than the existing schemes in [3], [6]. In addition, we will
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FIGURE 2. Comparison of time cost.

analyze the efficiency in computation, communication and
storage complexity.

1) COMPUTATION COMPLEXITY
We compare the proposed schemes with the algorithms
in Ma et al. [2], Chen et al. [6], Ding et al. [26], and
Ren et al. [19] on outsourcing modular exponentiations.
We denote by MM a modular multiplication and by MInv a
modular inverse. We omit other operations such as modular
additions in these algorithms. The comparison of the effi-
ciency and the checkability of the algorithms are shown in
Table 1.

Compared with the scheme of Ma et al. [2], our scheme is
almost the same in terms of MM, MInv and Invoke (Server)
than the other schemes. However, we invoke rand for e times
and we use only one cloud server while Ma et al. [2] is
based on the two severs model. What’s more, the minimum
checkability of our scheme is better than Ma et al. [2]. As for
Chen et al. [6], our scheme is more excellent in both effi-
ciency and checkability. In addition, our scheme is performed
in single cloud server, which can save a lot expenses for client.
Based on Ma et al. [2], Ding et al. [26] made improvements
in checkability and the number of cloud server. However,
they put part of modular exponentiations to the client, which
is a burden for the client. On the contrary, our schemes are
clearly superior to Ding et al. [26] in terms of the times
of the invoking server while the client doesn’t need to do
any complicated computations. Although the checkability of
Ren et al. [19] has reached 1, it seems to perform better than
ours in the above tables. However, our schemes, considering
MM and MInv, are more efficient. What’s more, our schemes
only need one cloud server.

We implement our experiment using C++ language and
the GNU multiple precision arithmetic library (GMP). The
experiment has been carried out on a LINUX machine with

Intel Core i3-3320 processors running at 3.30GHz and 4G
memory. The time cost is shown in Fig.1.

In our experiment, we randomly generate 180 random
numbers in the range of 0 to 512 bit and invoke Rand 5
times. We also randomly select a 100-bit g. As shown in
Fig.2, when computing (gx1 , gx2 , . . . , gxt ), the time cost of
our outsourcing scheme is far less than without outsourc-
ing. As the number of modular exponentiations increases,
the rate of using time of the without outsourcing scheme
grows clearly faster than the outsourcing scheme. The larger
amounts of modular exponentiations need to be computed,
the more resource and energy a device can be saved.

2) STORAGE COMPLEXITY
In fixed-base algorithm, the client needs to compute SsetB
and SsetC and the gyi . Thus the client has to store m + t +
2e − 1 indexes, which is same as fixed-exponent algorithm.
Therefore, the storage complexity is m+ t + 2e− 1 elements
in every scheme.

3) COMMUNICATION COMPLEXITY
In our schemes, the client sends set A to the cloud server.
In fixed-base algorithm, the number of rounds between the
client and cloud server is only one. Due to the uncertainty of
the specific size of the number, we substitute the number of
elements in communication set for communication complex-
ity. Combined with the process of schemes, the communica-
tion complexity of fixed-base algorithm is 2n, which is same
as fixed-exponent algorithm.

V. SECURE PAILLIER ENCRYPTION OUTSOURCING
SCHEME
Paillier encryption system [31] is a widely-used public key
encryption scheme [25], [28], [30], which includes three
algorithms as follows.
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TABLE 1. Comparison of efficiency and checkability.

1) Key generation. Firstly, Two big enough primes p and
q are selected. Then, set λ = lcm(p − 1, q − 1) as the
secret key sk . The public key pk is (n, g), where n = pq
and g ∈ Z∗

n2
so that gcd(L(gλ mod n2), n) = 1. Here,

L(x) = (x − 1)/n.
2) Encryption. Select a number m0 from plaintext space

Zn. Let a random r ∈ Z∗n be the secret parameter, then
the ciphertext c0 of m0 is c0 = gm0rn mod n2.

3) Decryption. Make c0 ∈ Zn2 be a ciphertext. The

plaintext hidden in c0 is m0 =
L(cλ0 mod n2)
L(gλ mod n2)

mod n.

As we can see, both Encryption and Decryption algo-
rithms contain fixed-base and fixed-exponent modular expo-
nentiations. While we utilize Paillier encryption system to
encryption a big number of values, it will cost much compu-
tation time, especially for resource-constrained clients. Thus,
it is necessary to accelerate the Encryption and Decryption
algorithms of Paillier encryption system by employing the
strong computation ability of cloud. Here, we will propose
a secure scheme for outsourcing Encryption and Decryp-
tion of Paillier algorithm based on our Protocols 1 and 2.
We assume that the client want to encrypt or decrypt t plain-
texts or ciphertexts simultaneously. Our general idea are as
follows.

Based on Paillier algorithm, the parameter λ is
λ = lcm(p − 1, q − 1) where lcm means least common
multiple. The logarithmic function L(x) can be described
as L(x) = (x − 1)/n. According to the encryption formula
c = gmrn mod n2, the problem we want to solve is how to
compute gm while the random number r has been selected.
Because what we concentrate on is encrypting t plaintexts
simultaneously, the protocol 1 is right to compute gmi . Due
to that the base g is public key, what we should protect in the
process of outsourcing is the plaintext mi. To reach the pur-
pose that the cloud server cannot get any information about
the plaintexts and the client can easily verify the correctness
of the returned data, we divide the plaintexts into some other
numbers which seem to be irrelevant to protect the privacy
of plaintexts. In the end, the plaintexts {m1,m2, . . . ,mt } are
translated into a set A = {a1, a2, . . . , an} which can be sent
to cloud server. The cloud server does some computations
based on the information (g, n,A) and returns the result to
the client. According to the internal relation between set A
and plaintexts {m1,m2, . . . ,mt }, the client can figure out gmi
and verify the correctness of the returned results with little
cost.

In the process of decryption, the client should have
decrypted by the formula m = L(cλ mod n2)

L(gλ mod n2)
mod n. We find

that the main problem we need to solve is how to com-
pute cλ mod n2 while gλ mod n2 is a fixed value. Because
what we concentrate on is decrypting t ciphertexts simul-
taneously, the protocol 2 is right to compute ciλ. In order
to avoid the cloud server learning anything about the pro-
cess of decryption, what we should protect in this process
of outsourcing is the ciphertext ci while the exponent λ is
public. To reach the purpose that the cloud server cannot
get any information about the ciphertexts and the client can
easily verify the correctness of the returned data, we divide
the ciphertexts into some other numbers which seem to
be irrelevant to protect the privacy of ciphertexts. In the
end, the ciphertexts {c1, c2, . . . , ct } are translated into a set
HA = {a1, a2, . . . , an}which can be sent to cloud server. The
cloud server does some computations based on the informa-
tion (λ, n,HA) and returns the result to the client. Accord-
ing to the internal relation between set HA and ciphertexts
{c1, c2, . . . , ct }, the client can figure out ciλ and verify the
correctness of the returned results with little cost. Next, secure
outsourcing of Paillier algorithm can be formally described as
follows.
• Key generation Let p, q be large primes, n = pq. g ∈

(Z/n2Z )∗ and gcd(L(gλ mod n2), n) = 1, public-Key
is {n, g}, Secret-Key is {p, q}.

• Encryption On input the public key g, n, a message
set M = {m1,m2, . . . ,mt } and a random number
r(r < n), the client first conceals the plaintext set
M by dividing mi in a manner that m elements of set
A = {a1, a2, . . . , an} can be summed tomi. In addition,
set A is composed of set B, C and R. Then the client
needs to randomly choose m − 1 numbers from Zn,
which comprise set B = {b1, b2, . . . , bm−1}. Thus,
the set C can be generated by the function sci =
mi −

∑
bi. Then the client needs to invoke rand1 e

times to get pairs (g, gyi ). The set R can be generated
by the formulas rBi = yi −

∑
bi, 1 ≤ i ≤ e and

rCi = yi −
∑
sci, 1 ≤ i ≤ e. Next, the client sends

g, n and set A to cloud server. After receiving the result
set V = {ga1 , ga2 , . . . , gan} from the cloud server, the
client needs to check the truth of the results. Firstly, the
client needs to calculate Sbl and Scl by the following
formulas: Sbl =

∏
gbi · grbl and Scl =

∏
gsci · grcl .

If Sbl = Scl = gyl , the client concludes that the cloud
server is honest. Then the client can compute gxi =∏
gbi · gsci , 1 ≤ i ≤ t . Otherwise, the client concludes
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that the server is dishonest. In the end, the client can
compute the ciphertext by ci = gmirn mod n2.

• Decryption Firstly, the client needs to hide the cipher-
text set {c1, c2, . . . , ct } by dividing ci in a manner
that m elements of set HA = {a1, a2, . . . , an} can
be multiplied to ci. In addition, the set HA can be
composed of set HB, HC and HR. The client randomly
selects m− 1 numbers from Gn, which make up HB =
{hb1 , hb2 , . . . , hbm−1}. Therefore, set HC can be gener-
ated by the formula hci = ci/

∏
hbi . Then the client

needs to invoke rand2 e times to get pairs (yi, yiλ).
The set HR can be generated by the formulas hbi =
yi/
∏
hbi , 1 ≤ i ≤ e and hci = yi/

∏
hci , 1 ≤

i ≤ e. Next, the client sends λ, n and set HA to
the cloud server. After receiving the result set HV =
{a1λ, a2λ, . . . , anλ} from the cloud server, the client
needs to check the truth of the results. Firstly, the
client needs to calculate Sbl and Scl by the following
formulas: Sbl =

∏
bix · rbi

x and Scl =
∏
cix · rci

x .
If Sbl = Scl = gyi

x , the client concludes that the cloud
server is honest. Then the client can compute gix =∏
bl x · cix , 1 ≤ i ≤ t . Otherwise, the client concludes

that the server is dishonest. In the end, the client can
compute the plaintext by mi =

L(ciλ mod n2)
L(gλ mod n2)

mod n.

The proposed algorithms can be used in both encryp-
tion and decryption. By using our schemes, we securely
outsource the modular exponentiations that are burden
for resource-constrained devices to cloud, which strikingly
reduces the cost of time in encryption and decryption.
Therefore, the efficiency of paillier algorithm is exceedingly
improved. For space limitation, we will provide analysis
detail of secure Paillier algorithm outsourcing scheme in
extended version.

VI. CONCLUSION
In this paper, we presented two secure outsourcing schemes
for outsourcing modular exponentiations to single cloud
server, which are suitable for fixed-base modular exponen-
tiation and fixed-exponent modular exponentiation, respec-
tively. Based on secure modular exponentiation outsourc-
ing schemes, we then proposed a secure outsourcing of the
Paillier algorithm. Additionally, we theoretically analyzed
our overheads and leveraged simulation experiments to eval-
uate our proposed schemes, which shows our solutions can
achieve high efficiency.
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