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ABSTRACT Visual perception is critical and essential to understand phenomenon and environments of the
world. Pervasively configured devices like cameras are key in dynamic status monitoring, object detection
and recognition. As such, visual sensor environments using one single or multiple cameras must deal with
a huge amount of high-resolution images, videos or other multimedia. In this paper, to promote smart
advancement and fast detection of visual environments, we propose a deep transfer learning strategy for
real-time target detection for situations where acquiring large-scale data is complicated and challenging.
By employing the concept of transfer learning and pre-training the network with established datasets, apart
from the outstanding performance in target localization and recognition can be achieved, time consumption
of training a deep model is also significantly reduced. Besides, the original clustering method, k-means,
in the You Only Look Once (YOLOv3) detection model is sensitive to the initial cluster centers when
estimating the initial width and height of the predicted bounding boxes, thereby processing large-scale
data is extremely time-consuming. To handle such problems, an improved clustering method, mini batch
k-means++ is incorporated into the detection model to improve the clustering accuracy. We examine the
sustainable outperformance in three typical applications, digital pathology, smart agriculture and remote

sensing, in vision-based sensing environments.

INDEX TERMS Clustering methods, machine learning algorithms, machine vision, object detection.

I. INTRODUCTION
Vision is a significant and basic way to acquire information
and explore the essence of the real world. In recent years,
due to the rapid development of imaging devices in manu-
facturing, cameras are becoming cheaper and smaller, while
maintaining higher capturing speed and resolution. As such,
visual sensors are ubiquitously used in environments such
as transportation systems [1], medical imaging [2], system
status monitoring [3] as well as consumer products [4].
Despite the great promise offered by smart visual sensing
devices, there are many challenges in realizing the opportuni-
ties. One of the key problems stems from the requirements of
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the digital system in real-time performance in dynamic envi-
ronments, which is mainly caused by the large-scale data col-
lected by numerous sensors. Such issue is particularly severe
in vision-based projects, in which several high-speed high-
resolution cameras are configured. Concretely speaking,
vision-based sensing can significantly impact the health-care
field by connecting distributed medical devices and adding
intelligent modules for information acquisition and process-
ing. In hospitals, human or technological errors caused by
false alarms, slow response, and inaccurate information are
still major reasons of preventable death and patient suf-
fering. With the help of automatic imaging and analysis
platform, for example, clinical testing like molecular imag-
ing and subsequent specific cell detection/counting, cancer
histology and MRI image reconstruction, can be precisely
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performed in a short time. Accordingly, hospitals can signif-
icantly accelerate the testing speed and reduce uncertainty,
thereby overcoming such limitations and improving patient
safety and doctor experiences [5]. Also, in smart agriculture,
by the use of cameras and processing platforms, the target
crop/plant within a field at any time can be imaged. Farmers
can then measure agricultural variables to get the knowl-
edge of the status of soil, crop yield, and weed/pest control
instantly, thereby raising productivity and facilitating preci-
sion agriculture [6]. Combining image analytics from sensing
devices and advanced algorithms, smart agriculture can be
successfully achieved. And similarly, powerful visual sen-
sors also provide opportunities and possibilities to enhance
efficiency, safety, and working conditions in field inves-
tigation. Using unmanned aerial vehicles (UAVs), drones
or satellite embarked a camera in field monitoring allows
people to inspect/gather geological information or surface
features in the actual situation, or undertake daily land sur-
veys by checking the status of oil tanks/pipelines and alarm-
ing/locating the wildfire in a no man’s land or distant forest,
thereby minimizing people’ exposure to wild and hazardous
zones in industrial and remote environments [7]. These
vision-based applications are developing towards smart and
digital processing, in which a camera is configured to capture
high-resolution images or videos at a high relatively frames
per second (FPS). As such, fast processing and analysis when
handling massive data is necessary.

Inrecent years, driven by big data and computational capa-
bility, deep learning has become a powerful tool that deeply
revolutionizes numerous areas such as computer vision and
coherent imaging [8]-[10]. The use of computational intelli-
gence in vision-based applications, especially in the above
three topics, health-care, agriculture and field monitoring,
has been undertaken for years. To be specific, in order to
assist doctors in evaluating more patients and speed up the
diagnostic process which in turn can reduce the time gap
for treatments, deep learning is employed to automatically
detect specific cells/tissues for screening process. Google
Al team proposes to train a deep neural network to detect
referable diabetic and reaches a higher F-score than profes-
sional ophthalmologists [11]. For the histological analysis at
cellular and tissue level, authors of Ref. [12] train a deep
learning model for detection and classification of colon can-
cer, thereby benefiting understanding of the tumor microen-
vironment. In Ref. [13], authors apply deep learning and
end-to-end strategy on mammographic images to improve
breast cancer detection. Sarraf ef al. employ LeNet-5 to detect
Alzheimer’s disease in fMRI data and the network reaches a
mean accuracy of 96.8% [14]. In smart agriculture, research
efforts of deep learning have also been demonstrated. With
cameras embarked on a UAV, images are extensively col-
lected for tasks of fruit counting [15], weed detection and
mapping [16], plant disease recognition [17] and plant iden-
tification [18]. In field monitoring which is empowered by
remote sensing, Ref. [19] reports land-use and land-cover
classification and reaches accuracies of 93.57% to 96.17%
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for three CNN-based algorithms, and Ref. [20] reports an
F-score of 0.96 for a deep recurrent neural network. Besides,
to better observe the earth surface and recognize aerial scenes
acquired by remote imaging systems like satellite, drone and
multi-spectrum imagery, researchers have made efforts on
various topics such as airport [21] detection, natural haz-
ards monitoring [22], as well as crop yield and vegetation
detection [23] etc.

In this paper, to reduce the computational load and accu-
racy of generating anchor boxes for customized data, and to
improve the performance and inference speed of target local-
ization and recognition, with the help of advanced deep learn-
ing method, we propose a mini batch k-means++ method
and a transfer learning strategy for real-time object detec-
tion using the You Only Look Once (YOLOvV3) model. By
employing heuristic initialization and mini batch clustering,
anchor boxes are created in a smart and fast way. And by
training a detection model with natural images and by reusing
pre-trained weights, knowledge learned from one domain can
be effectively transfered to a new domain. As such, burdens
of generating clustering centers, collecting large-scale pro-
fessional datasets and annotating each image manually are
significantly ameliorated. Apart from the outstanding perfor-
mance benefited from training with massive data, the time
consumption of training models for specific vision-driven
projects is also greatly reduced. We demonstrate the capa-
bility of the proposed scheme by applying to three typical
vision-based sensing environments: cell detection in digital
pathology, crop detection in smart agriculture and aerial scene
detection in earth observation and remote sensing. Code
snippets can be found at https://github.com/thomas0708/
object-detection.

The contributions of this paper can be summarized as
follows

1) This work shows that by using an improved clustering
strategy, computational burden of generating new
anchor boxes for customized data is significantly ame-
liorated and the quality of new cluster centers is
improved.

2) Deep transfer learning can significantly relax the
time-consuming training process by pre-training the
model with natural images and by transferring weights
to small-scale customized datasets in professional
communities.

3) The superior performance and real-time detection of
using the improved clustering method and transfer
learning are verified by applying to three detection
cases: digital pathology, smart agriculture and remote
sensing.

This paper is organized as follows. Basic principle of
object detection is reviewed and the proposed training strat-
egy, transfer learning, and the improved anchor box gen-
eration method are explained in Section II. Comparison of
the proposed method and the experimental results of three
vision-based detection scenarios are introduced in Section III.
Finally, Section IV addresses the concluding remarks.
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FIGURE 1. Pipeline of detection network using YOLOv3 model. In this architecture, “Conv” denotes the 2D
convolution, “Residual” is the skip connection, “Avgpool” is the average pooling, “Concat” denotes the
concatenation, “xn" in blocks means that the operation is repeated n times, (N x N) in Detection shows

different scales of feature maps.

Il. PRINCIPLE AND METHODS

A. DEEP LEARNING AND OBJECT DETECTION

In recent years, deep learning, or in other words, convolu-
tional neural network, has received increasing attention from
the industry and academia. Thanks to its outstanding perfor-
mance in computer vision and natural language processing,
it has been successfully applied to numerous real-world appli-
cations [24]. Generally speaking, the deep learning algorithm
aims to automatically learn high-level features from massive
data, making it beyond traditional machine learning where
features have to be manually and deliberately designed. By
supervised, unsupervised or semi-supervised learning, repre-
sentation features can be extracted with hierarchically cascad-
ing functional layers, including convolutional layer, pooling
layer, fully connected layer and activation layer etc [24].
Usually a deep network is constructed with multiple layers
since such network has more fitting variables and can enrich
the representation learning capability from data.

Object detection is more challenging compared to clas-
sification. Not only multiple objects in a single image
need to be correctly recognized (recognition), but also their
individual locations are required to be detected (localiza-
tion) [25]. Popular detection algorithms empowered by deep
learning can be categorized into two groups [26]. The first
type is based on region proposal CNN, including R-CNN
and its derivatives like Fast R-CNN, Faster R-CNN, Mask
R-CNN etc. They follow traditional detection pipeline by
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firstly generating region proposals and then classifying each
proposal into respective target categories. The second group
regards the detection task as a regression or classification
problem. A single framework is adopted to predict the final
category and location of a target directly, resulting in the
so-called one-stage detection. Typical models of one-stage
detection are AttentionNet, Single Shot MultiBox Detector
(SSD), and YOLO [27]. Considering the requirement of
prediction speed in vision-based object detection applica-
tions in the industry, we select the third version of YOLO,
YOLOV3 [28], [29], as the detection model. The full network
is shown in Fig. 1.

In this model, there are three modules, Darknet-53, Multi-
scale and Detection. A deep CNN, Darknet-53, is built as the
backbone for feature extraction. A key point of YOLOV3 is
the use of three scale feature maps at the output layer. They
are designed for multi-scale detection, enabling the network
to recognize small targets. At the end of detection, given
all the scored regions in an image, non-maximal suppres-
sion is implemented to retain the winner bounding box and
class. The loss function of YOLOV3 is the sum of the mean
square error of coordinate error, intersection over union (IoU)
error and classification error [27]. Adam optimizer is used
to minimize the loss function while training the network. In
details of method implementation, in which the IoU thresh-
old is set as 0.4 and confidence score threshold is 0.35.
We set the learning rate empirically to 0.0001, and make

VOLUME 8, 2020



Z. Ren et al.: Real-Time Target Detection in Visual Sensing Environments

IEEE Access

it decay exponentially with a rate of 0.9 as the training
progresses every 10 epochs. The training epoch is 300, and
each mini-batch contains 16 images. All images are resized
to 416 x 416 before training and testing. After prediction,
the image as well as the detected bounding box is resized
back to its original size. We implement the model using
TensorFlow and Keras and all the experiments are performed
with a CPU of Intel Core i7@3.6GHz and a GPU of Nvidia
Titan RTX.

B. DEEP TRANSFER LEARNING

Despite of its power in many vision-based applications,
unfortunately, in order to get the knowledge of the latent pat-
terns and mathematical distribution, deep learning is strongly
dependent on massive training data. In common computer
vision projects such as self-driving cars and face detection,
it is quite easy to acquire large amounts of image and video
data. However, for professional communities like disease
detection and plant recognition, building a large-scale and
high-quality annotated dataset becomes challenging, com-
plex and sometimes expensive [30]. Besides, a large and deep
neural network contains a huge number of kernels and
weights, which are randomly initialized before training and
iteratively updated based on the training data and objective
function. Such operation of updating all the weights during
training is extremely time consuming. Additionally, with
limited training data, deep architectures have the possibility
to overfit to the modest dataset. One solution to getting
around these problems is to use the pre-trained deep learning
models for representation feature extraction first, and then to
use transfer learning to adapt the models to the particular
application scenario [31].

Concretely, transfer learning is an important tool in deep
learning to solve the basic problem of insufficient training
data. It aims at transferring the knowledge from the source
domain to the target domain by relaxing the hypothesis that
the training data must be independent and identically dis-
tributed with the test data. Such rationale provides a promis-
ing alternative that makes use of a deep model trained with a
common dataset. As discussed above, CNNs are able to learn
hierarchical representations from image data, and the knowl-
edge embedded in the kernels/weights of the pre-trained
model can be transferred to the new task. Tremendous exper-
iments have shown that, lower-level convolutional layers
extract low-level features like edges and curves, which are
applicable to common image classification tasks. Operations
at higher layers can learn more abstract representations that
are specific and relevant to different application fields [24].
Therefore, lower-level representations can be transferred to a
new task, and only the higher-level features need to be learned
from the new data, even the amount of data is not huge. As
such, this will lead to a great positive effect that the deep
model in the target domain is not necessary to get trained
from scratch, thereby significantly reducing the demand of
training data and training time [32], [33]. Such advantages,
therefore, motivate us to employ transfer learning in detection
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FIGURE 2. Principle of transfer learning. With the help of transfer
learning, in the source domain, large-scale natural images such as Pascal
VOC and MS COCO are used to pre-train the low-level layers of the deep
detection model. Afterward, learned features are transfered into the
target domain to equip the model with general image representations.
Afterward, small-scale specialized data in professional communities are
used to re-train and fine-tune high-level layers.

Fine-tuning

High-level layers

network training to against problems of insufficient training
data and tremendous training time by initializing the target
deep model with parameters transferred from a pre-trained
model. The basic principle of transfer learning is illustrated
in Fig. 2.

The procedure for updating weights of higher layers is
called fine-tuning. Its success partly relies on the disparity
between the source data and the target data. For similar
data distribution, one can only fine-tune the fully-connected
layers, while for datasets that have considerable differences,
several convolutional blocks need to be updated along with
training [34]. In this paper, considering the principle of trans-
fer learning and characteristics of the two datasets in two
domains, pre-training the deep model shown in Fig. 1 is
achieved using large datasets of natural images, Pascal VOC
and MS COCO. Concretely, the training scheme is composed

of three stages:
1) Train parameters in dashed blocks of the Darknet-53

module on the MS COCO dataset and freeze the other
two modules;

2) Train parameters in dashed blocks of the Multi-scale
module on the Pascal VOC dataset;

3) Train parameters in dashed blocks of the Multi-scale
module again and the Detection module with respective
professional datasets in vision-based projects.

By doing so, weights are updated in respective training
stages. As such, model parameters and hyper-parameters
can be learned and then transferred to the target domain.
Low-level weights are directly obtained from the pre-trained
model, and high-level kernels are further fine-tuned for the
specific detection tasks. In this way, transfer learning gives
the target model a reasonable initialization and reduces the
number of parameters that need to be updated, as well as
ameliorates the burden of training a large and deep detection
model from scratch.

C. IMPROVED ANCHOR BOXES GENERATION

In YOLOv3-based detection model, a representative width
and height, or the so-called anchor box, which is a set of
predefined bounding box priors, has to be defined a priori
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to capture the scale and aspect ratio of specific object. They
are typically chosen based on object sizes in the training data.
Therefore, although YOLOV3 can use any reasonable set of
anchor boxes for model convergence, the anchor box can
be selected in a targeted manner by analyzing the training
samples of the input training dataset, such that we can achieve
more effective training convergence. A clustering method,
k-means, is employed in YOLOV3 to determine anchor boxes
to avoid considerable time-consumption in adjusting the
width and height, instead of directly mapping the coordinates
of the bounding box. Howeyver, there are two theoretical draw-
backs of the k-means clustering method. (1) The complexity
of the k-means clustering method is expressed as O(n*¢) for
the data based on d dimension and k cluster centers, whereby
n is the number of data. The larger the dataset is, the more
time-consumption the model processes. (2) The number of
clusters k is a user-defined parameter, which means that an
inappropriate choice of k may yield poor results. Conse-
quently, the YOLOv3 method is sensitive to the initialization
of cluster centers and the anchor boxes found can be thus
arbitrarily bad. An inappropriate choice of k may yield poor
detection results [35].

To overcome problems that the k-means clustering brings,
we propose to apply two optimization strategies: mini batch
iteration and heuristic initialization. The first solution is to
use the mini batch clustering strategy [36]. The main idea is
to randomly use a small and size-fixed batch of samples to
reduce the computational burden by not using all samples in
each iteration. For the next iteration, a new random batch of
samples from the dataset is extracted to update the clusters.
As the iteration of clustering goes on, the effect of new mini
batch of samples is gradually reduced. Such operation is
repeatedly implemented until no changes to the clusters occur
in several consecutive iterations and the clustering procedure
finishes and converges as a result. Second, to perform the
heuristic initialization, k-means++ clustering method is con-
sidered here [37], [38]. Compared to randomly specifying
initial cluster centers, k-means+-+ method starts with the
allocation of the first cluster center uniformly at random.
Afterward, other centers are searched and chosen from the
remaining data points with probability proportional to the
squared distance from the point’s closest existing cluster
center given the first one. As such, the improved seeding
method ensures a smarter initialization of the centroids and
yields considerable improvement in the quality of clustering.
A faster convergence and better quality of the final cluster
centers is thus guaranteed.

In order to measure the performance of each clustering
method, average IoU (shorten as Avg IoU) between boxes that
are generated by using cluster centers and all ground-truth
boxes is used as a metric of target clustering analysis. The
objective function of Avg IoU is written as

Avg IoU
| X
== IoU (G d-truth;, Prediction;) { ,(1
N = ieﬁl,?).(,k]{ oU (Ground-truth;, Prediction;) } (1)
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where N is the number of ground-truth boxes, and k is the
number of cluster centers. The larger the Avg IoU value,
the better the clustering effect.

IIl. REAL-TIME DETECTION RESULTS

As is explained above, many vision-based projects require
fast object detection. In this section, we examine the proposed
method by applying to three typical visual sensing applica-
tions, i.e., digital diagnosis (cell detection), smart agriculture
(crop detection) and field monitoring (aerial scene detection).

A. ANCHOR BOXES GENERATION AND ACCELERATION
Before proceeding to target detection, we first examine the
proposed mini batch k-means++ clustering method and gen-
erate anchor boxes for each customized situations. The orig-
inal YOLOv3, which uses the conventional k-means method
for clustering, generates 9 cluster centers (anchor boxes), 3 of
which are for each scale by default. According to Ref. [39],
for YOLOV3, a higher or lower number of £ may increase
both the training and validation loss, leading to a worse detec-
tion. Therefore, an optimal value is between 6 and 9. After
testing the two values, we find that there is no big difference
between them, we then follow the routine of the original
setting and set k£ to be 9. Besides, these generated anchor
boxes, in a general sense, performs particularly well for
the MS COCO dataset. However, for customized datasets in
professional communities, it would be better to generate new
anchor boxes accordingly. In Table 1, we compare the running
time, average IoU and anchor boxes using the conventional
and improved k-means clustering methods for the MS COCO
data and each detection cases used in this paper. Note that
since the MS COCO dataset is only used for image feature
extraction, average loU and newly generated anchor boxes for
this case are therefore not given and marked as N/A. As can
be seen that the running time for all four cases are reduced
due to the involvement of the proposed clustering strategy.
Accuracy of average IoU is also improved. This illustrates
that the proposed clustering method can lead to a higher
average IoU and shorter time consumption. Anchor boxes are
accordingly generated for each specialized detection case. In
the following experiments, newly generated anchor boxes by
the proposed clustering method and the original one are used
for detection and comparison.

B. CELL DETECTION

In blood testing, knowing the ratio and throughput of the
red blood cell (RBC), white blood cell (WBC) and platelet
of a patient is crucial to help doctors make a clinical diag-
nosis. The first example is to examine the performance in
detecting and counting the individual cells. The dataset we
use here is Blood Cell Count and Detection (BCCD) dataset,
which is a small-scale dataset for blood cells detection.!
Totally, the dataset contains 364 images and the respective
annotations. Each image has a size of 640 x 480. Annotations
are labeled by manually outlining the individual cells and

Lsee https://github.com/Shenggan/BCCD_Dataset
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TABLE 1. Comparison of running time, average loU (%) and generated anchor boxes using conventional and improved k-means clustering methods. Best

results are marked in bold. The unit of running time is s.

Conventional k-means Clusterin
Dataset g

Proposed Mini Batch k-means++ Clustering

Time AvgloU Anchor Boxes

Time AvgloU Anchor Boxes

(10 x 13), (16 x 30), (33 x 23),
(30 x 61), (62 x 45), (59 x 119),

MS COCO 1963.42 N/A

768.32 N/A N/A

(116 x 90), (156 x 198), (373 x 326)

(25 x 33), (52 x 91), (59 x 71),

(25 x 33), (55 x 90), (61 x 71),

Cell 536 8701 (63 x 85), (66 x 101), (72 x 78),  0.68 88.03 (66 x 85), (67 x 102), (72 x 93),
(72 x 90), (81 x 100), (140 x 170) (75 x 80), (83 x 102), (140 x 172)
(8 x 15), (12 x 11), (15 x 21), (11 x 13), (18 x 10), (18 x 23),
Crop 211 6823 (19x 9), (28 x 15), (33 x 33), 059  69.69 (30 x 15), (37 x 35), (63 x 74),
(55 x 63), (105 x 108), (166 x 219) (109 x 110), (149 x 202), (245 x 256)
(9 x 9), (12 x 13), (17 x 16), (9 x 10), (14 x 14), (19 x 19),
Aerial scene  13.68  80.65 (20 x 21), (25 x 25), (31 x 33),  0.81 8LI1 (24 x 26), (31 x 33), (41 x 45),

(41 x 45), (51 x 59), (147 x 179)

)
(51 x 59), (102 x 174), (172 x 183)

Detected objects count: 24

U7

j ;

(e

(c)
= Pl
| g i 4
IF Flm pacoaz "]
wigll el ]
P e 2 ||
(2) (h)

FIGURE 3. Cell detection results of BCCD dataset. (a-d): Using the original detection model. (e-h): Using the proposed detection model.

stored in VOC format. Comparatively, the RBC and WBC are
larger and the platelet is smaller, meaning that recognizing
the platelet is more challenging. It is also worth to note that
these images are captured under a microscope equipped with
a high numerical aperture (NA) objective lens, leading to a
narrow depth-of-field (DOF). Consequently, when the RBC
and WBC are within the DOF and thus in-focus, the platelet
may be slightly out-of-focus and blur. This is also true for
RBCs and WBCs when multiple cells are located within the
field-of-view of the microscope. In some cases, two or more
RBC:s are so close and clustering that they even have overlap-
ping regions. On the other hand, although RBCs are mostly
homogeneous in shape and size, they still vary greatly in mor-
phology and images often contain visible debris. Therefore,
we consider these variables more challenging factors and may
pose problems for automated detection methods.

For network training, 80% of the data is randomly split
for training, 10% is for validation and the remaining 10% is
for testing. In Fig. 3, we show four detection and counting
results of the individual cell types with their bounding boxes
using the original and proposed models. Figures at the top row
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are created with the classic YOLOv3 model, while figures at
the bottom are obtained with the new anchor boxes and
transfer learning. Note that cells are marked in red (RBC),
green (WBC) and blue (platelet), respectively. On the top of
each bounding box, prediction score of each target is also
given. From the figures we can see that, most RBCs can
be correctly located and recognized by the two methods.
However, the proposed method is apparently capable to find
more RBCs. Despite several RBCs are severely overlapping,
the improved network can still successfully detect them. Even
some RBCs that are not annotated in the annotation files
can be surprisingly found out. These newly found RBCs are
labeled with numbers in Fig. 3. In the four cell images, 4
new RBCs are detected in Fig. 3, while in Fig. 3, as many
as 8 new RBCs are noticed. This means that due to the
limitation of manually annotated cell images, the authenticity
of the annotation files is actually problematic and may lead
to an incorrect report of the blood test of a patient, which
may negatively affect the clinical diagnosis. We also note
that in Fig. 3, the platelet Number 7 is not successfully
found, while Number 8 is wrongly recognized as a platelet.
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FIGURE 4. Crop detection results. (a-d): Using the original detection model. (e-h): Using the proposed detection model.

Some RBCs close to margins are also not correctly detected.
This is because: (1) the cell is not complete and thus the
information for a final decision is insufficient; (2) some RBC
cells are not annotated in the annotation files, such that in the
training stage, the network can barely handle cells locating
around borders; (3) in some cases, the platelet is not within the
DOF and thus out-of-focus and blur, increasing the difficulty
for detection. A solution is to acquire more images to cover
as many imaging situations as possible, otherwise one can
use defocused images in the pre-training stage to train the
network, and then transfer weights to handle such scenario.
As for the WBC cell, since there is only one or two WBCsin a
single image and the size is large, such that more information
and features can be extracted by the network. That’s why
in Fig. 3, all WBCs can be detected with pretty high scores.
For platelets, as mentioned above, in some images they are
out-of-focus and blurred. Unclear edges and main structures
pose difficulty in detection. However, despite scores are not
very high, compared to Figs. 3b-3d obtained with the classic
model, the proposed method can still detect them, as shown
in Figs. 3f-3h.

C. CROP DETECTION

In smart agriculture, a UAV is frequently deployed to capture
images of the crop and to monitor the growth status, soil
quality and weed identification. The second example is to
achieve crop and weed detection, which is an important topic
in agriculture. Concretely, the dataset records two plants: sug-
arbeet and weed.” Totally there are 120 images and annota-
tions. Each image has a size of 512 x 512. Before training, we

Zsee https://github.com/jmpap/YOLOV2-Tensorflow-2.0/tree/master/
data
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artificially augment data by flipping (left-right and up-down)
each image and adjusting brightness by multiplying a coef-
ficient to each image. By doing so, the number of images
is scaled up by a factor of 3. Then, 80% of the pairs in the
new dataset is for training, 10% is for validation and the
rest 10% is for testing. In Fig. 4, four candidate images in
the testing subset detected using the original and improved
methods respectively are shown.

As can be seen, the sugarbeet (marked in green) in
a single image is relatively large, compared to the weed
(marked in red). Consequently, they are clearly detected by
the two methods with relatively high scores, as demonstrated
in Figs. 4a, 4c, 4d, 4e, 4g and 4h. Even when only half of
the sugarbeet appears in Figs. (4b-4d) and (4-f4h), they can
still be successfully found out. However, as shown in Figs. 4b
and 4f, only the proposed method can precisely locate the two
weeds, one of which is pretty small and hard to be noticed by
human eyes. This is the power of the vision-based technolo-
gies and the improved model, with which unseen targets can
be clearly seen by the machine and algorithm. By taking pic-
tures with a camera set up on a UAV and instantly calculating
and transmitting results, people can achieve precise control
and management in smart agriculture.

D. AERIAL SCENE DETECTION

Remote sensing image scene detection is an active research
topic in the field of aerial and satellite image analysis in
the past decades. Due to the involvement of high-resolution,
hyper-spectral imaging instruments, it is demanding for intel-
ligent earth observation to develop advanced methods to
handle high-performance computing requirements. The third
example is to realize land-use detection in remote sensing.
The dataset we use here is a collection of aerial scenes
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FIGURE 5. Aerial scene detection results of detection results of (a-h) aircraft, (i-p) oil tank, (q-x) overpass and (y-ff) playground in RSOD dataset.

captured from a drone/airborne or space platforms. The
Remote Sensing Object Detection (RSOD) dataset’ includes
four scenes, aircraft, oil tank, playground and overpass, col-
lected from Google Earth and Tianditu [40]. There are 446
images for the aircraft, 165 images for the oil tank, 189
images for the playground, and 176 images for the overpass.
Each image has a resolution about 1000 x 1000. For each
class, 10 images are randomly selected for testing (totally
40 images in the test subset), and the remaining images are
for training. In Fig. 5, 8 predicted images selected from
each category and created using the improved method are
demonstrated (predictions with the conventional method are
not shown here since targets can be basically detected but with
arelatively lower score), in which the aircraft is labeled in red,
oil tank is in green, overpass is in blue and playground is in
yellow. The prediction score is also annotated at the top of
each bounding box.

As can be seen, these images are captured by an airborne or
a satellite with complex backgrounds and surroundings, lead-
ing to varying image contrast. For the aircraft and oil tank,
there are more than one target of diverse scales and poses in a
single image. These aspects raise great challenges in accurate
detection. However, the proposed method, as shown in Fig. 5,
has a superior performance. Since one image contains only
one overpass or playground, it is thus comparatively easier for
detection, leading to high confidence scores. For the aircraft
and oil tank, all targets are successfully found out, even in
cases where targets are closely located. Especially for small
aircrafts in Fig. 5f and for oil tanks having a similar color to
the background in Figs. 5i and 5o, all targets are successfully
identified.

3see https://github.com/RSIA-LIESMARS-WHU/RSOD-Dataset-
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To further examine the generality of the trained network,
we select several remote sensing images from two new
datasets, NWPU VHR-10 [41] and NWPU-RESISC45 [42],
for detection. The former dataset is a public geospatial object
detection dataset, and the latter is a benchmark for remote
sensing image scene classification. Each image in NWPU
VHR-10 has a size of about 800 x 500, while the image
size of NWPU-RESISC45 is 256 x 256. To evaluate the
generalization capability of the above trained network, for
each class, we select four images from the two datasets,
respectively. Then, they are fed into the network for testing,
and the detection results are shown in Figs. 6 and 7. It is
clearly demonstrated that the trained network is capable to
deal with new data from other datasets, thereby confirming
that representation features of these four classes, aircraft,
oil tank, overpass and playground, are indeed learned by
the transfer learning-enabled method. For classes of aircraft,
overpass and playground, scores are relatively high. That is
because structures and shapes of them does not vary greatly
in two datasets. For the oil tank, since the viewing angle
and altitude when capturing an image change significantly,
the shadow and inclination affect the recognition and there-
fore scores are not as high as other three categories. However,
they are still correctly located and recognized. Consequently,
the generality is supported by results in Figs. 6 and 7.

E. PERFORMANCE ANALYSIS

To quantitatively evaluate the proposed method, we conduct
comparison experiments on the network with and with-
out transfer learning. Two aspects are examined, perfor-
mance in object detection and running time for training and
testing per image. Here, for the former, we use recall and
precision as objective evaluation metrics. Definitions of
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TABLE 2. Performance comparison of models with and without the proposed method. Best results are marked in bold.

Detection Cases Class

Model with Proposed Method

Model with Original Method

Recall Precision Training Inference Recall Precision Training Inference

RBC 0.9582 0.9554 0.8635 0.7521

Cell WBC 0.9821 0.9151 2.5 36.6 0.9283 0.8312 6.8 37.1
Platelet  0.9436  0.8988 0.8369 0.6748
Sugarbeet  0.9721  0.9690 0.9196 0.9027

Crop Weed 09328 09197 7 332 G755 osed . O 30
Aircraft  0.9428 0.9371 0.8771 0.8222
. Oil tank  0.9458  0.9588 0.8747 0.8399

Aerial Scene - —0 e 0.9244  0.9051 > 384 Ggo33 osera 109 385
Playground 0.9742 0.9431 0.9384 0.9188

FIGURE 6. Detection results of aircraft, oil tank, overpass and playground
in NWPU VHR-10 dataset.

FIGURE 7. Detection results of aircraft, oil tank, overpass and playground
in NWPU-RESISC45 dataset.

recall and precision are, respectively, the ratio of correctly
detected objects to the total number of actual objects, and
the ratio of correctly detected objects to all detections in
the actual classes. Scores and time consumptions of training
and inference are given in Table 2. The unit of training
time is h, and the unit of inference time is ms. Results
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indicate that, with the help of transfer learning, the model
performs better for all categories in three cases, as the bold
scores indicate. Despite the performance of the improved
YOLOV3, compared to other detection frameworks, is not
state-of-the-art, refinements with the help of the advanced
clustering method and deep transfer learning are demon-
strated, which is the novelty and key point of this paper.
Furthermore, although the inference time per image with and
without transferring pre-trained weights is basically identical
since the proposed clustering method reduces the complexity
of anchor boxes generation, which is implemented outside the
main detection architecture of YOLOV3, training time is sig-
nificantly reduced by 4 h(““Cell” and “‘Crop”’) or 6 h(“‘Aerial
Scene”’), saving plenty of time in potentially configuring
the model to new scenarios. Therefore, the engagement of
transfer learning can indeed boost the network performance,
and the burden of training a model from scratch is greatly
ameliorated.

In order to test whether the proposed method performs
better than the original approach with the statistical signifi-
cance, we implement the paired t-test under the three cases.
The paired t-test is a common way to test whether the dif-
ference between two measurements over various data sets
is non-random. [43]. Let d; be the difference between the
performance scores of the two detectors on the i-th out of N
scores of recall and precision (N = 18 as shown in Table 2).
The mean difference d, standard deviation of the differences
o4, standard error of the mean difference SE(d), and the
t-statistic Tpaired are thus computed as

N
_ 1
d = v Zdi =0.1062,

2
i=1
v —
N (di —d)?
o4 = Limydi—d = 0.0854, 3)
N—1
SE@) = 24 — 0.0201, (4)
N
Toaired = d =5.2736 (3)
paired = E (3) =J. .

According to the t-distribution with df = N — 1 = 17
degrees of freedom, with a specified alpha level of 0.05 (5%),
from the t-table we have T(gf=17,0=0.01) 2.110. Since
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TABLE 3. Ablation study of contributions from the clustering method and the pre-training method. The unit of training time is h, and the unit of inference

time is ms.
Class Model with Clustering Only Model with Pre-training Only
Recall Precision Training Inference Recall Precision Training Inference
Aircraft 09012  0.8978 0.8843  0.8752
Oiltank  0.9159 0.9197 0.8923  0.9038
Overpass 0.9070  0.9022 103 378 0.9008 0.8875 36 39:2
Playground 0.9568 0.9410 0.9259 0.9301

Tpaired > T(df=17,6=0.01), We can then reject the null hypoth-
esis that there is no significant difference between the two
approaches. Instead, the significance testing shows strong
evidence that, on average, the proposed module does lead to
detection improvements compared to the original approach.

Furthermore, to evaluate the influence of performance
enhancement provided by the advanced clustering and the
pre-training, we conduct ablation study by remaining each
method, respectively. Table 3 presents the experimental result
that is performed with the case of remote sensing. As can
be seen, the detection models under both cases, clustering
only and pre-training only, perform better than the original
model and worse than the proposed method in recall and
precision. This is reasonable since the advanced clustering,
which provides better anchor boxes, and the pre-training
strategy, which extracts comprehensive features from more
images, have a positive impact on the detection model.
A minor improvement is thus achieved in Table 3. As for
the running time, the scheme of pre-training accelarates the
training stage as the proposed method, while the model only
with clustering has a similar performance to the original
method. While the inference time basically keeps the same
to scores in Table 2, since the network architecture does
not change and the feedforward computation remains. All in
all, from the ablation study we can conclude that, separate
involvement of the clustering method and the pre-training
scheme is solely capable of providing a limited improve-
ment in detection. By combining the two strategies together,
a far better performance in detection can be successfully
achieved.

IV. CONCLUSION

In this paper, we have developed a novel deep transfer
learning framework and improved detection model for
real-time object detection in vision-enabled environments.
Main contributions lie in three aspects as follows.

« By using the mini batch k-means+-+ clustering method,
computational burden of generating new anchor boxes
for customized data is significantly reduced and the
quality of new cluster centers is improved.

o By pre-training the detection model with natural images
and by transferring weights to customized datasets,
time-consuming network training from scratch is thus
avoided and superior detection performance is achieved
even with insufficient data.

o Comparative analysis shows that the method can
handle multiple targets detection at about 30 FPS
(i.e.,33.2ms)@416 x 416 per image across each of these
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datasets with pretty high confidence scores, in a general
sense.

We validate the proposed method and demonstrate its
outstanding performance by applying to three typical
vision-based sensing applications, disease diagnosis, smart
agriculture and earth observation. With the help of powerful
and advanced learning algorithms, we envision that in the
future they can be expected to play an essential and construc-
tive role in object detection and other processing tasks across
diverse vision-based scenarios.
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