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ABSTRACT Service composition is always employed to enhance function by composing atomic services
that reside in different clouds together. In a multi-cloud environment (MCE), the time and energy con-
sumption of service composition may differ because of the dynamic of the network. The network varies
between clouds, or even between composite requests and clouds. A cloud provides a limited variety of
services, which makes a composite request that requires multiple clouds to jointly compose all atomic
services together. All of this makes it more difficult than ever to implement energy-aware service composite
in a MCE. In this paper, we model service composition in the MCE and propose an energy-aware multiple
targets service composition method for executing atomic services in a composite request. Since the proposed
method gets the scheduling by searching all possible mappings between service request blocks (a set of
requests to multiple atomic services) and clouds, we call it ‘‘All-Search’’. To reduce the complexity of
All-Search, we propose ‘‘Itersplit’’, a heuristics algorithm that can achieve multiple targets. The performance
of All-Search, Cloud-SEnergy, and Itersplit is tested through simulations. The results in multiple aspects
indicate that Itersplit performs better than other algorithms when we take Itersplit-20%.

INDEX TERMS Multi-Cloud, energy-aware, service composition, virtualization.

I. INTRODUCTION
Service-oriented computing and cloud computing work
together [1] to provide consumers with all kinds of ser-
vices. Users obtain services from clouds with the help of ser-
vice composition technology [1]–[3]. Service composition
enables users to believe that they are using remote services
locally to meet their various requirements and services, even
though users’ do not know who and where the services are
provided.

Sometimes, service requests involve more than one
cloud [4]–[7] in order to satisfy users needs. And those
clouds provide different kinds of atomic services for users.
Service composition combines all atomic services together
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to meet users’ functional requirements and quality of services
(QoSs) [10]–[15].

The study on service composition in a cloud environment
began since 2009 [7]. Cloud computing is a computing
paradigm that provides end-users with an infinite number
of computing resources in a pay-as-you-go way wherever
and whenever they want, and users only need to pay for the
services they use [1].

A multi-cloud environment makes the service composition
more difficult than ever before [5]–[9], [13], [16]–[21]. It is
necessary for us to consider a lot of aspects such as network
between clouds, the atomic services provided in multiple
clouds, the number of involving clouds of composite requests
and various requirements to the quality of service (QoS).
Service composition in MCE is more difficult than that in a
single-cloud environment. Some studies have been completed
in MCE, such as [6], [15], [20].
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However, prior work has always ignored the energy con-
sumption of atomic services, especially in MCE, where files
need to be transferred between clouds if the two atomic
services of a composite request located in a discrete cloud.
In addition to the size of files being transferred, the network
between clouds, and even that between the cloud and the com-
posite request, also affects energy consumption. Considering
the various QoSs of atomic services in clouds and various
requirements to QoSs, the service composition in MCE is
more difficult.

Based on the analysis of the service composition targets
and the MCE environment, this paper first presents a method
to find the minimum value of the target functions. Then,
in order to reduce the complexity of our method, we propose
a heuristic algorithm for service composition. To the best of
our knowledge, this is the first paper to consider networks
between clouds and the network between composite demands
(users) and clouds.

The main work and contributions of this paper are as
follows:
• we give a definition of ‘‘distance’’ to address the influ-
ence of two adjacent atomic services that reside in dif-
ferent clouds;

• according to the distance, we give the split-policy of a
service request;

• we give an algorithm for service composition in MCE
based on the split-policies of a service request;

• we propose a heuristic to reduce the complexity of the
prior algorithm.

This paper is organized as follows. Section II is the related
work. Section III illustrates the system framework of MCE.
In Section IV, we introduce related models to be employed in
the paper such as execution time and energy consumption.
Based on the analysis of service composition, we give the
targets and requirements of service composition in Section V.
Section VI introduces an algorithm for the service composi-
tion, and proposes a heuristic to compose services in MCE so
as to reduce the complexity of time and space. We evaluate
simulation in Section VII to compare our proposed methods
with other methods. Section VIII concludes the paper and
presents a new direction of future research.

II. RELATED WORK
Service composition provides a way to organize various
atomic services together to meet users’ various requirements.
Previous work mainly focuses on service composition meth-
ods ( [21]–[23] to ensure QoS requirements. And those meth-
ods include deep reinforcement learning methods, particle
swarm optimization methods, genetic algorithm, Grey Wolf
Optimizer, and other heuristics. They always assume that
only one cloud provides services. J. Liu et al. [24] proposed
a service composition method based on deep reinforcement
learning, and used recurrent neural network (RNN) to predict
the objective function, thus overcoming the shortcomings of
traditional reinforcement learning in large-scale space prob-
lems. S. Haytamy et al. [8] proposed a deep learning-based

service composition (DLSC) framework that considered an
amalgamation between the deep learning long short term
memory (LSTM) network and particle swarm optimization
(PSO) algorithm. They used LSTM to predict the value
of QoSs of services and used PSO to compose services.
Aiming at selecting the appropriate service candidates, M.E.
Khanouche et al. [9] proposed a Flexible QoS-aware Ser-
vices Composition (FQSC) algorithm to improve the fea-
sibility of the composition, reduce composition time, and
maintain composition optimality, by using Pareto dominance
between services and composite requests. C. Zhang [25]
used a particle swarm optimization algorithm for service
composition that considered multiple feasible service com-
position candidates. J. Lu et al. [26] sorted services and
service requests and tried to find the optimal mapping
based on ranking. Considering Quality of Service (QoS),
S. K. Gavvala et al. [27] used Whale Optimization Algo-
rithm to provide users’ optimal values on QoS. Some service
composition methods also consider the energy consumption
for executive service candidates. M. Sun et al. [28] pro-
posed an energy-efficient mechanism to optimize Internet
of Thing (IoT) service compositions that IoT devices save
energy consumption bymutual collaboration. J. Lu et al. [29]
proposed a data cell evolution model (DCEM) that combines
data service information and biological cell behavior analysis
to encapsulate data services into data cells, and then they
used bigraph theory to guarantee the consistency of service
evolution.

Some work has been done on service composition inMCE.
H. Kurdi et al. [5] tried to use COMposition (COM2) for
service composition in a multi-cloud environment. Using the
combination method, they developed a composite approach
to service composition for multiple clouds that took a short
execution time and required a minimal number of clouds.
J. Lu designed amulti-layer algorithm tominimize the service
composition overhead and the average number of clouds
involved per composite request. R. Entezari-Maleki et al. [4]
used timed colored Petri nets to evaluate the service compo-
sition in multi-cloud environments, seeking to minimize the
number of clouds involved per composite request. By con-
sidering energy consumption between clouds, monetary cost,
and trust between users and clouds, B. Bang et al. [16] uti-
lized Formal Concept Analysis and social network to propose
a sustainable strategy for service composition in multi-cloud.
H. KURDI et al. [6] used a bio-inspired algorithm to sim-
ulate the behavior of cuckoo birds for service composition
(MultiCuckoo) in multi-cloud environments. Z. Nazari et
al. [30] used the similarity measurement to find the most
suitable cloud and composition plan in each phase, while
keeping QoSs and load balanced between multiple clouds.
Those works tend to ignore the network between clouds, and
thus it may extend the execution time and improve energy
consumption.

Big data management also presents challenges to ser-
vice composition. M. Sellami et al. [31] proposed a scal-
able approach for big service composition by considering
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both the quality of reused services (QoS) and the quality
of their consumed data sources (QoD). The work can be
divided into four steps: (1) quantifying the data breaches
using L-Severity metrics; (2) building a repository of big
services into a lattice family; (3) clustering services and
data sources based on various criteria; (4) parsing the lat-
tice family to select and compose high-quality and secure
big services in a parallel fashion. To solve the problem
caused by the increasingly complex users’ requirements and
numerous services, H. Wang et al. [32] proposed a new
service composition scheme based on Deep Reinforcement
Learning for adaptive and large-scale service composition.
S. Chattopadhyay. et al. [33], [34] used abstraction refine-
ment to seamlessly integrate over any off-the-shelf service
composition method to tackle the spatial and temporal com-
plexity of service composition.

TABLE 1. Related works on different environments

Table 1 lists the related researches in different environ-
ments (One cloud, MCE, big data) and different targets. This
paper focuses on how to reduce energy consumption while
achieving other scheduling targets and QoSs.

FIGURE 1. System framework of MCE for service composition.

III. SYSTEM FRAMEWORK
As shown in Fig.1, there are multiple clouds, each of which
provides different kinds and numbers of atomic services. For
example, cloud C2 has atomic services a, b, c, f, and their
numbers are 3, 4, 4, and 2, respectively. Composite requests
are submitted to the data set center through user interface.
Submitted information includes the structure and details of
the composite request, the related QoSs requirement, and
other information about every atomic service in composite
request. Every cloud submits information of atomic services

TABLE 2. List of terms and their meanings

provided in the cloud to the data set center. The service com-
position center is responsible for service composition based
on the obtained information of atomic services of clouds and
requirements of service compositions.

IV. DEEP ANALYSIS OF THE SERVICE COMPOSITION IN
THE MULTI-CLOUD ENVIRONMENT
A. ABSTRACT SERVICE MODEL
There are I abstract services in the system. Every abstract
service is denoted by ai. The set A of abstract services is as
follows:

A = {ai|1 ≤ i ≤ I } (1)

We assume that one cloud has some certain kinds of
abstract service. An abstract service means a specific func-
tion for users. For example, Cloud c3 supports four kinds
of atomic services: a, b, d, and e in Fig. 1. This is not
related to the quality of services (QoSs), such as cost, time,
and energy consumption. We will take into account QoSs
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when we compose services in MCE. There are numc QoSs in
the paper. We can further classify QoSs into kinds: positive
QoSs and negative QoSs. Positive QoSs mean ‘‘the bigger
the better’’, including processing speed, reliability, stability,
trust, and so on. Negative QoSs include time, cost, network
latency, and so on.

B. CLOUD MODEL
Suppose that there are numc clouds in ourMCE. For cloud cm,
the total processing ability is P(cm), the energy efficiency is
EE(cm) (denoted by energy consumption per. MI).CA(cm, ai)
denotes whether cloud cm provides abstract service ai. If it is
equal to 1, cloud cm can provide abstract service ai; otherwise,
it cannot. PP(cm, ai) is the provided processing ability for
atomic service ai of cloud cm. CAQ(cm, ai, q) is the value of
qth QoS of cloud cm provided for abstract service ai. In the
paper, we only consider five QoSs, when q equals 1, 2, 3,
4, and 5, the related QoSs are the execution time, reliability,
availability, reputation, and price, respectively.

C = {< cm,P (cm),EE (cm),CAQ (cm, ai, q), < QoSrqj,k >

|m ∈ [1, numc], i ∈ [1, I ], q ∈ [1, 5]} (2)

In the multi-cloud environment, a composite request may
require multiple clouds to obtain all atomic services of
the composite request. Hence, we need to consider some
attributes about the network connection between cloud cm and
cn.RSC(cm, cn) is the rate of sending files from cm to s and cn,
PSC(cm, cn) is the relevant power consumption, SRC(cm, cn)
is the rate of sending files from cm to cn, PRC(cm, cn) is the
relevant power consumption.

C. COMPOSITE REQUEST MODEL
Suppose that there are J composite requests. B is the set of
composite requests:

B = {bj|1 ≤ j ≤ J} (3)

Composite request bj is a request to a group of atomic
services with successive constraints, and it is denoted as
follows:

bj = {< aj,k ,QoSr
q
j,k , inj,k , out j,k ,minumj,k ,Pj, Sj >

|aj,k ∈ A, k ∈ [1, |bj|]} (4)

aj,k is kth abstract of bj. QoSr
q
j,k is the requirement of

qth QoS of composite request bj to the of atomic service aj,k .
inj,k and out j,k are the size of input files and that of output
files of aj,k . minumj,k is the number of instructions in aj,k .
Pj, and Sj are a set of precursor nodes and successor nodes.
We must point out that even for the same abstract service,
they may vary in the size of input files and output files.
For example, when we try to get a summary of a dataset,
the dataset may differ in file size, but they use the same
abstract service.

Every composite request uses different QoSs to obtain
atomic services from different clouds. RS(bj, cm) is the rate
of sending files from composite request bj to cloud cm,

PS(bj, cm) is the relative power consumption, RR(bj, cm)
is the rate of receiving files from cloud cm to composite
request bj, PR(bj, cm) is the relative power consumption.

V. SERVICE COMPOSITION ANALYSIS AND SCHEDULE
TARGETS
A. DEEP ANALYSIS OF SERVICE COMPOSITION
For composite request bj, suppose that atomic service asj,k
(asj,k ∈ A) is allocated to cloud acj,k (acj,k ∈ C).
Thus, asj,k+1 is allocated to cloud acj,k+1. Function
‘‘checkn(asj,k , asj,k+1)’’ is used to denotewhether atomic ser-
vices are in the same cloud. If it is, it returns ‘‘1’’; otherwise,
it returns ‘‘0’’.

checkn
(
asj,k , asj,k+1

)
=

{
1 if acj,k 6= acj,k+1
0 if acj,k == acj,k+1

(5)

For composite request bj, the execution time has four parts:
(1) time for sending files to the first cloud (t1) (Formula 6);
(2) time for receiving files to the last cloud (t2) (Formula 7);
(3) execution time in clouds (t3) (Formula 8); (4) time
for sending files (and receiving files) between clouds (t4)
(Formula 9). They are expressed as follows:

t1 = inj,1/RS(bj, acj,1) (6)

t2 = out j,|bj|/RR(bj, cj,|bj|) (7)

t3 =
∑|bj|

k=1
minumj,k/PP(acj,k , asj,k ) (8)

t4 =

∑|bj|
k=1 out j,k

min(RSC
(
acj,k , acj,k+1

)
,PSC

(
acj,k , acj,k+1

)
)
(9)

The total execution time t (Formula 10) is:

t =
∑4

temp=1
ttemp (10)

For t4, the files are transferred between clouds. There are
two kinds of energy consumption: for one cloud, it con-
sumes energy for receiving files; for the other cloud, it con-
sumes energy for sending files. E4,1 (Formula 14) and E4,2
(Formula 15) are used to denote the energy consumption for
sending files and receiving files, respectively. The related
energy consumption is denoted by E1 (Formula 11), E2
(Formula 12), E3 (Formula 13), E4,1 and E4,2:

E1
= t1 ∗ PRS(bj, acj,1) (11)

E2
= t2 ∗ PRR(bj, cj,|bj|) (12)

E3

=

∑|bj|

k=1
minumj,k/PP(acj,k , asj,k ) ∗ PP(acj,k , asj,k ) (13)

E4,1

=

∑|bj|

k=1

out j,k
min

(
RSC

(
acj,k , acj,k+1

)
,PSC

(
acj,k , acj,k+1

))
∗PSC

(
acj,k , acj,k+1

)
(14)
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E4,2

=

∑|bj|

k=1
out j,k/min(RSC

(
acj,k , acj,k+1

)
,

PSC
(
acj,k , acj,k+1

)
) ∗ PRC

(
acj,k , acj,k+1

)
(15)

So, the total energy consumption for the system E is
expressed as follows:

E = E1 + E2 + E3 + E4,1 + E4,2 (16)

B. SERVICE COMPOSITE TARGETS
Based on the above analysis, our scheduling targets are to
minimize those metrics:
• Average energy consumption (AEC);
• Average execution time (AET)
• Average number of clouds of a composite request (ANC)
• Average file size transferring between clouds (AFS)
• Average Energy consumption for transferring files
(AECFS)

In other words, our targets are:

To minimize: AEC = E/J (17)

AET = T/J (18)

ANC =
∑J

j=1
checkn

(
asj,t , asj,t+1

)
/J (19)

AFS =
∑J

j=1

∑
k

checkn
(
asj,k , asj,k+1

)
∗ min(RSC

(
acj,k , acj,k+1

)
,

RRC
(
acj,k , acj,k+1

)
)/J (20)

AECFS =
∑J

j=1

∑
k

checkn
(
asj,k , asj,k+1

)
∗ min(RSC

(
acj,k , acj,k+1

)
,

RRC
(
acj,k , acj,k+1

)
)∗(PSC

(
acj,k , acj,k+1

)
+ PRC

(
acj,k , acj,k+1

)
)/J (21)

Subject to: ∃k,m : CA
(
cm, asj,k

)
= 1

∀k :
(
acj,k , aj,k , q

)
≥ QoSrqj,k

VI. MULTI-TARGET ENERGY-AWARE SERVICE
COMPOSITION
For a composite request, if we can compose all atomic
requests in one cloud, we would reduce the energy to zero
for transferring files between clouds, in other words, E4 = 0.
When multiple clouds can provide all atomic services of the
composite request, the total energy consumption is the sum
of E1, E2 and E3.
If a composite request cannot be composed in one

cloud, then (1) how to split all atomic services into some
groups (blocks) and (2) how to compose those groups in
various clouds are the two key problems. If we have deter-
mined split-point positions, we may take the (an atomic
service block) groups as a new composite request. The
only difference is that files need to be exchanged between
clouds.

A. ANALYSIS OF VARIOUS STRUCTURES OF SERVICE
COMPOSITION
For composite request bj, there are

∣∣bj∣∣! kinds of methods
to divide atomic services into groups. The energy consump-
tion and execution time are influenced by those factors:
(1) sending file rate; (2) sending file power consumption;
(3) transferring file size between atomic services; (4) receiv-
ing file rate; (5) receiving file power consumption;
(6) split-point positions.

FIGURE 2. Four kinds of service structure.

According to prior research, there are four kinds of service
structures (Fig. 2): sequence structure, cycle structure, paral-
lel structure, and case structure [26]. In this section, we will
give the distance and time in details.

For composite request bj, we give the distance of atomic
service aj,k1 and aj,k2 (k1 6= k2):

dist
(
aj,k1, aj,k2

)
= out j,k1 + inj,k2 (22)

We add a beginning point (with input files; aj,0) and an
ending point (with output files; aj,|bj|+1)) to bj, so,

dist
(
aj,0, aj,|bj|+1

)
= inj,0 + out j,|bj| (23)

The size of input files of aj,k is the same as that of output
files of aj,k−1:

inj,k = out j,k−1 (24)

If we add a split-point temp between aj,k1 and aj,k2, the dis-
tance can be denoted as:

dist
(
aj,k1, aj,temp, aj,k2

)
= dist

(
aj,k1, aj,temp

)
+ dist

(
aj,temp, aj,k2

)
= out j,k1 + out j,temp + inj,temp+1 + inj,k2
= out j,k1 + 2 ∗ out j,temp + inj,k2 (25)

According to Formulas 22∼25, the distance of other kinds
of structures is also calculated in the same way.

B. SEARCH IN ALL POSSIBLE SPLIT-POINT POSITIONS
AND CLOUDS
Here, we assume that we have got all possible split-policies
for a composite request. One split-policy gives a splitting
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position and divides composite request into blocks. One row
in R is a split policy. According to Formulas 17∼21, there are
five targets in total. Assume that every target has the same
weight: we normalize those targets and obtain a new target
function:

tar = AEC ′ + AET ′ + ANC ′ + AFS ′ + AECFS ′ (26)

Algorithm 1 All-Search ()
1: For i = 1:rows(R) // for every split policy
2: For j = 1:splitnum(i) //for split group
3: For l = 1:cloudnum // for every cloud
4: If check(i, j, l);
5: record as a new solution, and record the

resource states;
6: Else
7: Drop the split-point position;
8: EndIf
9: EndFor
10: EndFor
11: Calculate the value of target function;
12: If the value is small than prior split-policy, we record

the new split policy.
13: EndFor

The main idea is searching for every split policy (line 1,
Algorithm 1; same in the following paragraph), and finding
all possible values of target functions (the total execution time
and energy consumption) (lines 1∼10). ‘‘rows(R)’’ returns
the number of split-policies (Line 1). ‘‘splitnum(i)’’ is the
number of blocks for i th of R. Function ‘‘check(i, j, l)’’
checks whether lth cloud can provide relative atomic ser-
vice (ensure meeting QoSs) of jth split group of ith service
request. We select the split-point policy with the smallest
value of the target function (lines 11, 12). Though All-Search
has the smallest value of the target function (Formula 26),
the complexity of time and space is too high. In the following
paper, we will address a heuristic for service composition in
a multi-cloud environment with less complexity in time and
space.

C. A HEURISTIC FOR SERVICE COMPOSITION IN
MULTI-CLOUD ENVIRONMENTS
In this section, instead of considering the attributes of net-
works and the cloud first (assuming that the network has the
same metrics between clouds), we consider the composite
request and divide it into blocks (Formula 25) based on the
distance between nodes (clouds) (defined in Section VI(A)).

1) GETTING THE DISTANCE OF TWO ADJACENT NODES
Here, first of all, we consider the distance between two
adjacent nodes. The distance includes the enhancement of
execution time and energy consumption when the two adja-
cent nodes are executed in different clouds. We give the
same weight to normalized execution time and energy con-
sumption. First of all, we get the distance (by the method

in Section VI(A)) when there is only one split position:
atomic services before the split position are executed in one
cloud, and others are executed in the second cloud (as shown
in Fig. 2(a)). We calculate the distance between two nodes
which divides the composite request into three blocks: atomic
services before the first node (from the split position), atomic
services between the two nodes, and atomic services after
the second node.

Algorithm 2 gives the detail of calculating the distance
of two adjacent points (atomic services). In Algorithm 2,
we only define nodes that are directly connected (line 4,
Algorithm 2). First of all, we get all distances of two adjacent
nodes (Lines 3∼7, Algorithm 2; same in the following paper).
We add the two adjacent points as a new split position and
add it as a new row of R (Line 5). Every row of R is a 1 ∗ |bj|
array that records the split-point policy. If two nodes are not
adjacent, we define the distance as negative infinity (−∞)
(line 8, Algorithm 2).

Algorithm 2 Getadjadist () //Get Distance Of Two Nodes
1: For iid = 1:|bj|
2: For jid = 1:|bj|
3: If iid is the adjacent node of jid
4: Calculate the distance between atomic service iid

and jid, and record as the distance
5: Add a new split position as a new row of R;
6: Record the distance with the new split position;
7: Else
8: The distance of atomic service iid and jid is neg-

ative infinity (−∞).
9: EndIf
10: EndFor
11: EndFor

2) GET SPLIT-POINT POSITIONS
In algorithm 3, n is the number of split-point positions. When
n is equal to 1, we get R as algorithm 2. Otherwise, we use
an iterative algorithm to get the possible split-point policy.
For every row of R (Line 2), we add every point as a new
split-point (Line 5) and add it as a new row of R (Line 6).
To reduce the complexity of Algorithm 3, we only keep
Bottom n∗

√
|bj| rows ofR according to ascending order of the

distance of rows. Line 10 schedules iteratively Algorithm 3.

3) SERVICE COMPOSITION IN MCE
R records all possible split-point positions. One row ofR gives
a method to divide the composite request into blocks. The
rows of R have been sorted in the ascending order of distance
of R. The problem is how to allocate atomic service blocks
to the cloud to meet our needs. Different from the above
section, wewill consider the networkmetrics and the attribute
of resources in this section as the higher value the distance,
the smaller the value of target function tar .

In Algorithm 4, we check the value of target functiontar of
every possible split-point policies (Lines 1∼20, Algorithm 4;
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Algorithm 3 Itersplit (n, R[])// Get Initializing Split-
Positions, n is the Number of Split-Point Positions
1: If n! = 1 // composite request is divided into two blocks
2: For rnum=1:rows(R)
3: For iid=1:|bj|
4: Add a new split position to every row of R as a

new split-point policy sp;
5: Add sp as a new row of R;
6: Record the distance with the new split position;
7: EndFor
8: EndFor
9: Keep Bottom n∗

√
|bj| rows of R according to the value

of the distance of rows.
10: Itersplit (n-1, R);
11: EndIf

Algorithm 4 Itersplitpolicy(R, numc) //for Every Split-Point
Policy, Check the Target Function
1: For every split-point row r in R
2: mintar = 0, sleid = 0;
3: For every split-point
4: For every cloud
5: If only one cloud can provide all atomic services

before (or after) the split point
6: Allocate the atomic service block, and record

resource state and the new value of target function tar ;
7: Else // multiple clouds
8: Allocate the atomic service block to the cloud

with minimum target function tar ;
9: Record resource state and the new value of

target function;
10: EndIf
11: EndFor
12: If no anyone cloud can provide all atomic services

before (or after) the split point
13: Drop the row;
14: EndIf
15: EndFor
16: Calculate the value vl of target function tar ;
17: If mintar > vl
18: mintar = vl, selr = r ;
19: EndIf
20: EndFor
21: Select the row with the minimum target function.

same in the following paragraph). mintar is the minimum
of our target function (Line 2), and sleid is the identifier of
selected split-point policy (Line 2). For every split-point row
r in R (Line 1), we check every cloud (Line 4) that whether
Clouds can provide all atomic services before (or after) the
split point (Lines 5∼10). If they can, we allocate the atomic
service block to the cloud with minimum target function tar
(Line 8); and also we record resource state and the new value
of target function (Line 9). Otherwise, we drop row r in R

(Line 13). Line 16 calculates the value vl of target function
tar . Line 18 checks theminimum target function (mintar) and
records the related identifier (selr) of the selected row of R.

D. COMPLEXITY ANALYSIS
In this section, we suppose the number of clouds is numc,
the maximum number of atomic services is numa, and the
number of service requests is J .

SectionVI(B) gives the schedulingmethod by searching all
possible solutions. In Algorithm 1: the complexity of line 3
is O(numc); the complexity of line 2 is O(numanuma); the
complexity of algorithm 1 is:

O(J ∗ 2numa ∗ numc)

In Section VI(C), first of all, we give a method (Algorithm 2)
to get the distance of two adjacent nodes; then according to
the distance, algorithm 3 gets some split-policies by selecting
Bottom n ∗

√
|bj| rows of R according to the value of the dis-

tance of every row; finally, Algorithm 4 calculates the value
of target functions of the selected policy by Algorithm 3, and
selects the scheduling with the minimum target function. The
complexity of Algorithm 2 searches all possible distances,
so it has a complexity of numa. Algorithm 3 can be done
at the same time with Algorithm 2, so it does not improve
the complexity. Algorithm 3 maps all selected possible split
policies in every cloud, so the complexity of algorithm 3 is
O(numa ∗ numc). In summary, our proposed method has a
complexity of O(J ∗ numa2 ∗ numc).

TABLE 3. QoSs of atomic services provided by clouds.

VII. SIMULATIONS
A. SIMULATION ENVIRONMENT
Assume that there are 1,000 abstract services and 50 clouds,
the possibility of an abstract service that belongs to a cloud
is random in [10%∼40%] and uniformly distributed. CTF
is the constraint factor with a range of [0, 1]. We use it
to denote the strength of a QoS constraint. The values of
relative attributes of QoSs are random in the range of the
last column in Table 3 and they are uniformly distributed.
We only consider five QoSs in the simulations. They are
execution time, energy consumption, reliability, availabil-
ity, reputation and price, and they have a scope of [1, 10],
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[1, 10], [0.95, 0.9999], [0.95, 0.9999], [1, 10] and [1, 10],
respectively.

We will randomly generate the DAG of the composite
request. The size of input files and that of output files of
atomic services is in the range of [0,10M]. The sending and
receiving rates between clouds have a range of [1, 2] (M/s)
and [1,4] (M/s). And the related power consumption has a
range of [1, 8] (J/M) and [1, 2] (J/M). (Most of previous works
show that power consumption of sending files is more than
that of receiving files.)

We will evaluate the performance of different methods
when the number of atomic services in the composite request
is changed from 10 to 80, with a step of 10.We evaluate 10000
service requests in the simulation.

FIGURE 3. AEC under various NCRs.

FIGURE 4. AET under various NCRs.

FIGURE 5. AECTC under various NCRs.

B. INFLUENCE OF SELECTION ‘‘n’’ FOR ITERSPLIT
In this section, we will compare Itersplit with ALL-Search in
respect to fivemetrics: average energy consumptions (Fig. 3),
average execution time (Fig. 4), average size of transferring
files (Fig. 6) and average energy consumption for transferring
files (Fig. 5), and the number of involved clouds (Fig. 7).
Those metrics have been introduced in Section V(B).We give
the definition in formulas 17∼21. We only compare our

FIGURE 6. ASTF under various NCRs.

FIGURE 7. ANC under various NCRs.

method with ALL-Search because ALL-Search always per-
forms the best in target function (to others methods) because
it searches all possible mapping between tasks and clouds.
Since the performance of our heuristic algorithm is highly
related to parameter of ‘n’, during simulation, we will eval-
uate the condition when ‘n’ is 10%, 15%, and 20% of the
number of atomic services in the composite request, called
as ‘‘Itersplit-10%’’, ‘‘Itersplit-15%’’, and ‘‘Itersplit-20%’’,
respectively. As All-Search always has the minimum value
in target function (but with very high complexity in time
and space), we will compare it with ‘‘Itersplit’’ in multi-
ple aspects: average execution time (AET) (Fig. 4), average
energy consumptions (AEC) (Fig. 3), average size of trans-
ferring files (ASTF) (Fig. 6), average energy consumption
for transferring files (AECTF) (Fig. 5), average number of
involved clouds of composite request (ANC) (Fig. 7).

Generally speaking, all five metrics of all methods are
improved as the number of atomic services in the composite
request increase. When the value of n changes from 10%
to 15%, all five metrics are improved obviously. But, when
the value of n changes from 15% to 20%, Itersplit has
no much difference in all five values. For example, com-
pared to Itersplit-15%, Itersplit-20% only enhances about 3%
in AEC. In particular, those metrics are very close to the
ALL-Search. As Itersplit-20% also has a very good perfor-
mance compared to All-Search, we will give a new com-
parison of the average value of five metrics in Figure (8).
As shown in Figure (8), Itersplit-20% has a good perfor-
mance almost near to ALL-Search in every aspect. To average
values of AET, AEC, ASTF, AECTC and ANC, the dif-
ference between Itersplit-15% and All-Search are 5.04%,
3.30%, 7.12%, 7.06% and 7.14%, respectively; the dif-
ference between Itersplit-20% and All-Search are 2.17%,
2.17, 3.32%, 3.28% and 3.33% respectively. Itersplit-20%
has a good performance because the minimum distance
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FIGURE 8. Compared about various metrics.

(Algorithm 3) ensures it has the possibility of getting a good
performance in those five metrics. Algorithm 4 seeks the best
mapping between the split-point solutions and clouds, which
further keep those metrics in the scope of a relative better
performance. Therefore, we will compare multiple metrics
for Itersplit-20%with other methods in the following section.

C. COMPARED ITERSPLIT AND OTHER METHODS
In Section VII(B), we find that Itersplit-20 almost has
the same performance as All-Search in multiple aspects.
In this section, we will compare Itersplit-20 and All-Search
with other two methods: the novel bin-packing based on
energy-efficient service broker (Cloud-SEnergy) [18] and
the hybrid Shuffled Frog Leaping Algorithm and Genetic
Algorithm (SFGA) [35]. Cloud-SEnergy [18] tried to tackle
how to select the most energy-efficient services from cross-
continental competing cloud-based data centers, and used a
bin-packing technique to generate the most efficient service
composition plans. SFGA [35] divided quality measurement
factors into three negative factors (response time, energy and
cost). SFGA algorithm performed in faster service selection
and better service composition with better results in response
time and service cost. The simulation environment is the same
as that in Section VII(B). Figs 8∼12 are AEC, AET, ASTF,
AECTC, and NIC of these four methods under different
numbers of atomic services.

FIGURE 9. AEC under various NCRs.

As can be seen from Figs 9∼13, the growth trend of the five
metrics is consistent. With the enhancement of NCRs, NIC
of every method gradually increases (Fig. 13), thus improv-
ing AEC (Fig. 9), AET (Fig. 10), ASTF (Fig. 11), AECTC
(Fig. 12) and NIC (Fig. 13). All-Search always has the
lowest value, followed by Iteraplit-20%. To Cloud-SEergy,
Itersplit-20 reduces by 6.67%, 9.55%, 11.82%, 11.89%
and 11.52% in AEC (Fig. 9), AET (Fig. 10), ASTF
(Fig. 11), AECTC (Fig. 12) and NIC (Fig. 13), respectively.

FIGURE 10. AET under various NCRs.

FIGURE 11. AECTF under various NCRs.

FIGURE 12. ASTF under various NCRs.

FIGURE 13. ANC under various NCRs.

To Cloud-SEergy, Itersplit-20 decreases by 7.44%, 10.47%,
14.99%, 15.01% and 14.68% in AEC (Fig. 9), AET (Fig. 10),
ASTF (Fig. 11), AECTC (Fig. 12) and NIC (Fig. 13),
respectively.

FIGURE 14. Compared about various metrics.

To further facilitate the comparison between these meth-
ods, Fig. 14 gives a summary comparison of those methods
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with normalized value of the five metrics. We find that SFGA
always has the largest value in all five metrics, following
by Cloud-SEnergy. All-Search owns the best performance
in every metric because it searches all possible mappings
between composite blocks and clouds. Itersplit-20 also tries
to reduce the value of those metrics by limiting search scope
and get smaller values in the related metrics as much as
possible. SFGA tries to get the approximate optimal solution,
but in our environment, we find that it does not achieve the
desired effect. Cloud-SEnergy neglects the energy consump-
tion between atomic services, thus increasing the energy con-
sumption when service request blocks are located in different
clouds, especially when the file size transferred between
clouds is large.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we focus on the problem of service composi-
tion when multiple clouds provide different kinds of atomic
services. The network between clouds and composite request
can extend the execution time and increase the energy con-
sumption of file transfer. First of all, we give a method to
split composite requests in all possible sets and map those
sets to clouds to find the scheduling with the minimum value
of target function. To reduce the complexity of All-Search,
we propose a heuristic for service composition-Itersplit. First
of all, we give a definition of ‘‘distance’’, which is a value
related to the size of the input and output files between atomic
services. Itersplit starts by looking for atomic service nodes
in the short path, and then adds nodes by selecting an atomic
service node with the lowest value in target functions. The
simulation results show that when we take 20% of the number
of atomic services in the iteration, Itersplit performs nearly as
well as All-Search.

In this paper, we assume that the network has rela-
tively stable performance in terms of transmitting rate and
power consumption. Sometimes, however, the speed and
power consumption of a network change dynamically, which
is a challenge in the energy-aware service composition.
Moreover, some new methods, such as deep learning may
bring a new method for future research. We can collect
data and use neural computing for service composition
in MCE.
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